Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Plant Material
2.3. Extraction Procedure
2.4. Encapsulation Process
2.5. HPLC Analysis of Encapsulated Phenolic Compounds
2.6. In Vitro Simulated Gastrointestinal Digestion
2.7. Bioaccessibility of Encapsulated Bioactive Compounds during In Vitro Simulated Gastrointestinal Digestion
2.8. Bioactivity of Encapsulated Bioactive Compounds during In Vitro Simulated Gastrointestinal Digestion
2.9. Antiproliferative Activity
2.9.1. Samples Used in the Antiproliferative Assay
2.9.2. Sulforhodamine B (SRB) Assay
2.10. Statistical Analysis
3. Results
3.1. HPLC Analysis of Individual Phenolic Contents in Peach Pomace Encapsulates
3.2. Total Phenolic (TPh) and Carotenoids Content (TCar)
3.3. Antioxidant Activity
3.4. Antihyperglycemic Activity (AHgA)
3.5. Antiinflammatory Activity (AIA)
3.6. Antiproliferative Activity
4. Discussion
4.1. Bioactive Compounds Contents and Antioxidant Activity
4.2. Antihyperglycemic, Anti-Inflammatory and Antiproliferative Activity
4.3. Chemometric Modeling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Zhang, W.; Yin, X.; Su, M.; Sun, C.; Li, X.; Chen, K. Phenolic Composition and Antioxidant Properties of Different Peach (Prunus persica (L.) Batch) Cultivars in China. Int. J. Mol. Sci. 2015, 16, 5762–5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoor, M.; Anwar, F.; Mahmood, Z.; Rashid, U.; Ashraf, M. Variation in Minerals, Phenolics and Antioxidant Activity of Peel and Pulp of Different Varieties of Peach (Prunus persica L.) Fruit from Pakistan. Molecules 2012, 17, 6491–6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Jiang, W.; Cao, J.; Ma, L. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties. J. Food Processing Preserv. 2017, 42, e13624. [Google Scholar] [CrossRef]
- Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics 2011, 4, 793–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 438–450. [Google Scholar] [CrossRef]
- Robert, P.; Gorena, T.; Sepulveda, E.; Chavez, J.; Seanz, C. Encapsulation of polyphenols and antocyaninins from pomegranate (Punica grantum) by spray drying. Int. J. Food Sci. Technol. 2010, 45, 1386–1394. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Fr’ıgola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Vulić, J.; Šeregelj, V.; Kalušević, A.; Lević, S.; Nedović, V.; Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G. Bioavailability and Bioactivity of Encapsulated Phenolics and Carotenoids Isolated from Red Pepper Waste. Molecules 2019, 24, 2837. [Google Scholar] [CrossRef] [Green Version]
- Kovačević, S.; Lončarević, I.; Pajin, B.; Fišteš, A.; Vasiljević, I.; Lazović, M.; Mrkajić, D.; Karadžić Banjac, M.; Podunavac-Kuzmanović, S. Toward identification of the risk group of food products: Chemometric assessment of heavy metals content in confectionery products. Food Addit. Contam. A 2019, 36, 1068–1078. [Google Scholar] [CrossRef]
- Jevrić, L.; Karadžić, M.; Podunavac-Kuzmanović, S.; Tepić Horecki, A.; Kovačević, S.; Vidović, S.; Sumić, Z.; Ilin, Ž. New guidelines for prediction of antioxidant activity of Lactuca sativa L. varieties based on phytochemicals content and multivariate chemometrics. J. Food Process. Pres. 2018, 42, 13355. [Google Scholar] [CrossRef]
- Kovačević, S.; Tepić, A.; Jevrić, L.; Podunavac-Kuzmanović, S.; Vidović, S.; Šumić, Z.; Ilin, Z. Chemometric guidelines for selection of cultivation conditions influencing the antioxidant potential of beetroot extracts. Comput. Electron. Agric. 2015, 118, 332–339. [Google Scholar] [CrossRef]
- Malbaša, R.; Jevric, L.; Lončar, E.; Vitas, J.; Podunavac-Kuzmanović, S.; Milanović, S.; Kovačević, S. Chemometric approach to texture profile analysis of kombucha fermented milk products. J. Food Sci. Technol. 2015, 52, 5968–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Li, M.; Jin, L. Data normalization to accelerate training for linear neural net to predict tropical cyclone tracks. Math. Probl. Eng. 2015, 2015, 931629. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Tumbas-Šaponjac, V.; Vulić, J.; Stajčić, S. Extraction and encapsulation of bioactive compounds from carrots. Acta Period. Technol. 2017, 48, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Tumbas Šaponjac, V.; Gironés-Vilaplana, A.; Djilas, S.; Mena, P.; Ćetković, G.; Moreno, D.A.; Čanadanović-Brunet, J.; Vulić, J.; Stajčić, S.; Vinčić, M. Chemical composition and potential bioactivity of strawberry pomace. RSC Adv. 2015, 5, 5397–5405. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple method for simultaneous dermination of chlorophyll and Carotenoids in tomato fruit. Jpn. Soc. Food Sci. Technol. 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Girones-Vilaplana, A.; Mena, P.; Moreno, D.A.; Garcia-Viguera, C. Evaluation of sensorial, phytochemicaland biological properties of new isotonic beverages enriched with lemon and berries during shelf life. J. Sci. Food Agric. 2014, 94, 1090–1100. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on product of browning reaction from glucose amine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Gironés-Vilaplana, A.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Moreno, D.A.; García-Viguera, C. Phytochemical profile of a blend of black chokeberry and lemon juice with cholinesterase inhibitory effect and antioxidant potential. Food Chem. 2012, 134, 2090–2096. [Google Scholar] [CrossRef]
- Al-Saikhan, M.S.; Howard, L.R.; Miller, J.C., Jr. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum, L.). J. Food Sci. 1995, 60, 341–343. [Google Scholar] [CrossRef]
- Ullah, A.M.; Zaman, S.; Juhara, F.; Akter, L.; Tareq, S.M.; Masum, E.H.; Bhattacharjee, R. Evaluation of antinociceptive, in-vivo&in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complem. Alter. Med. 2014, 14, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Nat. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson: London, UK, 2010. [Google Scholar]
- StatSoft Inc. 2300 East 14th Street, Tulsa, Oklahoma, USA. Available online: https://www.statsoft.com/ (accessed on 14 October 2021).
- Stojanovic, B.T.; Mitic, S.S.; Stojanovic, G.S.; Mitic, M.N.; Kostic, D.A.; Paunovic, D.D.; Arsic, B.B. Phenolic Profile and Antioxidant Activity of Pulp and Peel from Peach and Nectarine Fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, A.; Krisa, S.; Cluzet, S.; Costa, G.D.; Temsamani, H.; Renouf, E.; Mérillon, J.M.; Madani, K.; Mesnil, M.; Monvoisin, A.; et al. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212–220. [Google Scholar] [CrossRef]
- Andreotti, C.; Ravaglia, D.; Ragaini, A.; Costa, G. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Ann. Appl. Biol. 2008, 153, 11–23. [Google Scholar] [CrossRef]
- Gerich, J.E. The genetic basis of type 2 diabetes mellitus: Impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 1998, 19, 491–503. [Google Scholar] [CrossRef]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- De, S.; Das, D.C.; Mandal, T. In vitro anti-inflammatory and anti-diabetic activity of methanolic extract of Cardanthera Difformis druce. Int. Res. J. Pharm. 2016, 7, 56–60. [Google Scholar] [CrossRef]
- Fu, D.; Deng, S.; McClements, S.J.; Zhou, L.; Yi, J.; Lu, C.; Liu, W. Encapsulation of β-carotene n wheat gluten nanoparticle-xanthan gum-stablzed Pckering emulzions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocoll. 2019, 89, 80–89. [Google Scholar] [CrossRef]
- Ydjedd, S.; Bouriche, S.; Lopez-Nicolas, R.; Sanchez-Moya, T.; Frontela-Saseta, C.; Ros-Berruezo, G.; Rezgui, F.; Louailache, H.; Kati, D. Effect of in Vitro Gastrointestinal Digestion on Encapsulated and Nanocapsulated Phenolic Compounds of Carob (Ceratonia siliqua L.) Pulp Extracts and Their Antioxidant Capacity. J. Agric. Food Chem. 2017, 65, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Ćujić Nikolić, N.; Stavisavljević, N.; Šavikin, K.; Kalušević, A.; Nedović, V.; Bigović, D.; Janković, T. Application of gum Arabica in the production of spray-dried chokeberry polyphenols, micropartcles characterization and in vitro digestion method. Lek. Sirovine 2018, 38, 9–16. [Google Scholar] [CrossRef]
- Işık, N.; Alteheld, B.; Kühn, S.; Schulze-Kaysers, N.; Kunz, B.; Rainer Wollseifen, H.; Stehle, P.; Lesser, S. Polyphenol release from protein and polysaccharide embedded plantextracts during in vitro digestion. Food Res. Int. 2014, 65, 109–114. [Google Scholar] [CrossRef]
- Pazinatto, C.; Malta, L.G.; Pastore, G.M.; Netto, F.M. Antioxidant capacity of amaranth products: Effects of thermal and enzymatic treatments. Food Sci. Technol. 2013, 33, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Soto, M.J.; Tomás-Barberáb, F.A.; Gracía-Conesa, M.T. Stability of polyphenol in chokeberry (Aronia melanocara) subected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Balhadj, F.; Somrani, I.; Aissoui, N.; Massaoud, C.; Boussaid, M.; Marzouki, M.N. Bioactive compounds contents, antioxidant and antimicrobial activities during ripening of Prunus persica L. varieties from North West of Tunisia. Food Chem. 2016, 204, 29–36. [Google Scholar] [CrossRef]
- Granese, T.; Cardinale, F.; Cozzolino, A.; Pepe, S.; Ombra, M.; Nazzaro, F.; Coppola, R.; Fratianni, F. Variation of polyphenols, anthocyanins and antioxidant power in the strawberry grape (Vitis labrusca) after simulated gastro-intestinal transit and evaluation of in vitro antimicrobial activity. Food Nutr. Sci. 2014, 5, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Cardounel, J.; Dumitrescu, C.; Zweier, J.L.; Lockwood, S.F. Direct superoxide anion scavenging by a disodium disuccinate astaxanthin derivative: Relative efficacy of individual stereoisomers versus the statistical mixture of stereoisomers by electron paramagnetic resonance imaging. Biochem. Biophys. Res. Commun. 2003, 307, 704. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobal activity of pomegranate peel extract improves the shelf life of chicken products. Intern. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Pihlano, A. Antioxidative peptides derived from milk proteins. Intern. Dairy J. 2006, 16, 1306–1314. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Diabetes mellitus in adults. In Conn’s Current Therapy; Rakel, R.E., Ed.; WB Saunders: Philadelphia, PA, USA, 1998; pp. 545–553. [Google Scholar]
- Abete, I.; Goyenechea, E.; Zulet, M.A.; Martinez, J.A. Obesity and metabolic syndrome: Potential benefit from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B1–B15. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.G.; Cao, H.X. Role of diet and nutritional management in non-alcoholicfatty liver disease. J. Gastroent. Hepat. 2013, 28, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 Diabetes Mellitus: A Review of Current Trends. Oman Med. J. 2012, 27, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.; Martino, H.S.D.; Simbo, S.; Byrne, D.; Mertens-Talcott, S.U. Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats. J. Nutr. Biochem. 2015, 26, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chu, Y.F.; Wu, Y.; Liu, R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef]
- Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem. 2009, 57, 5219–5226. [Google Scholar] [CrossRef]
- Rodríguez-González, S.; Pérez Ramírez, I.; Amaya Cruz, D.; Gallegos-Corona, M.; Ramos-Gómez, M.; Mora, O.; Reynoso-Camacho, R. Polyphenol-rich peach (Prunus persica L.) by-product exerts a greater beneficial effect than dietary fiber-rich by-product on insulin resistance and hepatic steatosis in obese rats. J. Funct. Foods 2018, 45, 58–66. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Adnan, M.; Kang, W.S.; Lim, J.D.; Lim, Y.S. A technical strategy to prolong anthocyanins thermal stability in formulated purple potato (Solanum tuberosum L. cv Bora valley) processed by hot-melt extrusion. Int. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Adnan, M.; Azad, M.O.K.; Ju, H.S.; Son, J.M.; Park, C.H.; Shin, M.H.; Alle, M.; Cho, D.H. Development of biopolymer-mediated nanocomposites using hot-melt extrusion to enhance the bio-accessibility and antioxidant capacity of kenaf seed flour. Appl. Nanosci. 2020, 10, 1305–1317. [Google Scholar] [CrossRef]
Compound (mg/100 g) | PPW | PPP | PPM | PPA |
---|---|---|---|---|
Epicatechin | 0.41 ± 0.01 c | 0.18 ± 0.01 b | 0.15 ± 0.01 a,b | 0.86 ± 0.03 d |
Catechin | 10.26 ± 0.49 d | 6.65 ± 0.31 c | 1.99 ± 0.08 a | 3.82 ± 0.17 b |
Caffeic acid | 0.51 ± 0.02 d | 0.02 ± 0.00 a | 0.19 ± 0.01 c | 0.09 ± 0.00 b |
p-coumaric acid | 0.26 ± 0.01 b | 0.48 ± 0.02 c | 2.01 ± 0.01 d | 0.13 ± 0.00 a |
Chlorogenic acid | 2.17 ± 0.09 d | 0.63 ± 0.02 b | 1.31 ± 0.06 c | 0.11 ± 0.00 a |
p-hydroxybenzoic acid | 22.02 ± 1.00 d | 4.52 ± 0.22 c | 0.50 ± 0.02 a | 0.87 ± 0.04 b |
Rutin | 0.15 ± 0.00 b | 0.20 ± 0.00 d | 0.08 ± 0.00 a | 0.18 ± 0.01 c |
Quercetin | 0.23 ± 0.00 c | 0.31 ± 0.01 d | 0.06 ± 0.00 a | 0.11 ± 0.00 b |
Total | 36.01 d | 12.99 c | 6.29 a | 6.17 b |
Compounds | Before Digestion | SGF | SIF | |||
---|---|---|---|---|---|---|
TPh A | Tcar B | TPh A | Tcar B | TPh A | Tcar B | |
PPW | 543.05 ± 23.73 b | 132.77 ± 9.98 a | 3580.23 ± 44.30 d | 32.08 ± 1.02 b | 2242.99 ± 20.89 d | 113.03 ± 1.27 c |
PPP | 818.62± 34.02 c | 126.46 ± 2.72 a | 2369.36± 22.98 c | 27.23± 2.02 a | 1846.02± 36.97 c | 123.30 ± 2.30 d |
PPM | 251.13 ± 2.04 a | 105.25 ± 2.21 a | 1038.11± 62.44 b | 33.02 ± 0.40 b | 911.91 ± 21.12 b | 103.80 ± 1.06 b |
PPA | 624.98 ± 94.20 b | 128.34 ± 33.62 a | 454.28 ±12.19 a | 52.31 ± 1.13 c | 431.54± 0.18 a | 59.04 ± 2.37 a |
Compounds | DPPH A | RC A | SOA A | BCB B |
---|---|---|---|---|
Before Digestion | ||||
PPW | 1059.94 ± 29.38 c | 1673.08 ± 26.08 c | 274.32 ± 2.67 d | 140.66 ± 2.86 a,b |
PPP | 761.58 ± 13.18 a | 763.06 ± 4.21 a | 32.95 ± 0.52 a | 132.93 ± 2.88 a |
PPM | 1039.86 ± 11.45 b,c,d | 1648.63 ± 41.42 c | 218.69 ± 3.95 c | 129.48 ± 2.83 a,b,c |
PPA | 1062.77 ± 25.42 d,c | 1134.78 ± 17.09 b | 56.31 ± 1.93 b | 139.91 ± 4.88 a,c |
SGF | ||||
PPWsgf | 1233.17 ± 59.09 d | 2607.42 ± 7.74 d | 79.71 ± 2.34 a | 135.21 ± 1.65 b |
PPPsgf | 1012.23 ± 85.23 c | 1406.54 ± 95.27 c | 102.88 ± 7.06 b | 134.79 ± 4.88 b |
PPMsgf | 542.03 ± 18.42 b | 536.51 ± 11.71 b | 215.79 ± 1.96 d | 139.43 ± 0.73 c,b |
PPAsgf | 369.24 ± 13.29 a | 102.77 ± 1.38 a | 104.38 ± 7.81 c | 129.51 ± 0.01 a,b |
SIF | ||||
PPWsif | 661.44 ± 14.86 b | 657.11 ± 6.48 d | 250.88 ± 5.14 c | 139.88 ± 2.37 a |
PPPsif | 717.27 ± 23.51 c | 292.89 ± 17.28 c | 254.21 ± 2.97 c | 137.69 ± 0.01 a |
PPMsif | 348.87 ± 19.53 a | 175.23 ± 5.85 b | 224.88 ± 8.87 b | 139.78 ± 0.57 a |
PPAsif | 347.69 ± 12.18 a | 83.67 ± 3.42 a | 209.21 ± 3.67 a | 139.51 ± 0.38 a |
Sample | IC50 (μg/mL) | ||
---|---|---|---|
MCF7 | HT-29 | MRC-5 | |
PPASGF | >500 | >500 | >500 |
PPASIF | 214.00 ± 35.21 | 185.25 ± 7.24 | 163.15 ± 3.17 |
PPMSGF | >1000 | >1000 | 714.24 ± 96.11 |
PPMSIF | 135.29 ± 30.36 | 109.21 ± 4.20 | <62.5 |
PPWSGF | 111.97 ± 3.12 | 101.85 ± 24.30 | 66.10 ± 0.86 |
PPWSIF | 47.39 ± 3.07 | 34.89 ± 1.61 | <62.5 |
PPPSGF | >1000 | >1000 | >1000 |
PPPSIF | 91.15 ± 6.16 | 81.13 ± 2.53 | <62.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulić, J.; Bibovski, K.; Šeregelj, V.; Kovačević, S.; Karadžić Banjac, M.; Čanadanović-Brunet, J.; Ćetković, G.; Četojević-Simin, D.; Tumbas Šaponjac, V.; Podunavac-Kuzmanović, S. Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling. Processes 2022, 10, 642. https://doi.org/10.3390/pr10040642
Vulić J, Bibovski K, Šeregelj V, Kovačević S, Karadžić Banjac M, Čanadanović-Brunet J, Ćetković G, Četojević-Simin D, Tumbas Šaponjac V, Podunavac-Kuzmanović S. Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling. Processes. 2022; 10(4):642. https://doi.org/10.3390/pr10040642
Chicago/Turabian StyleVulić, Jelena, Ksenija Bibovski, Vanja Šeregelj, Strahinja Kovačević, Milica Karadžić Banjac, Jasna Čanadanović-Brunet, Gordana Ćetković, Dragana Četojević-Simin, Vesna Tumbas Šaponjac, and Sanja Podunavac-Kuzmanović. 2022. "Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling" Processes 10, no. 4: 642. https://doi.org/10.3390/pr10040642
APA StyleVulić, J., Bibovski, K., Šeregelj, V., Kovačević, S., Karadžić Banjac, M., Čanadanović-Brunet, J., Ćetković, G., Četojević-Simin, D., Tumbas Šaponjac, V., & Podunavac-Kuzmanović, S. (2022). Chemical and Biological Properties of Peach Pomace Encapsulates: Chemometric Modeling. Processes, 10(4), 642. https://doi.org/10.3390/pr10040642