SMEs in Automotive Supply Chains: A Survey on Six Sigma Performance Perceptions of Czech Supply Chain Members
Abstract
:1. Introduction
- Research question: How do SMEs differ in their six sigma performance measures from LEs in the automotive industry?
2. Literature Review
- : mean value of all samples in the population;
- m: midpoint of the specification interval;
- LSL: lower specification limit;
- USL: upper specification limit;
- d: half range of the specification interval.
3. Materials and Methods
Methodology
- y1 for actual six sigma process capability value (actual Cp) of the company;
- y2 for the direct customer-required six sigma process capability value (required Cp) of the company;
- y3 for the supplier six sigma process capability value (supplier Cp) required by the given company;
- y4 for the confidence that the given company meets the customer-required six sigma process capability value (customer-required Cp);
- y5 for perception of the given company’s long-term six sigma process capability value (long-term Cp);
- y6 the perception of the whole supply chain’s six sigma process capability value (supply-chain Cp).
4. Results
5. Discussion
6. Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cp | Potential process capability index |
Cpk | Process capability index |
Cpm | Taguchi capability index |
ISO | International Organization for Standardization |
LE | Large enterprise |
OEM | Original equipment manufacturer |
PCI | Process capability index |
ppm | Parts per million |
SCM | Supply chain management |
SCRM | Supply chain risk management |
SME | Small and medium-sized enterprise |
SPC | Statistic process control |
SPOF | Single point of failure |
TQM | Total quality management |
Appendix A
Dependent Variable | df | Chi-Square Crit. | Fisher’s Exact Test | Sig. |
---|---|---|---|---|
y1 | 9 | 16.92 | 8.017 | 0.811 |
y2 | 6 | 12.59 | 7.692 | 0.189 |
y3 | 6 | 12.59 | 3.884 | 0.794 |
y4 | 9 | 16.92 | 21.918 | 0.001 ** |
y5 | 9 | 16.92 | 11.485 | 0.198 |
y6 | 9 | 16.92 | 14.342 | 0.049 * |
Dependent Variable | df | Chi-Square Crit. | Fisher’s Exact Test | Sig. |
---|---|---|---|---|
y1 | 3 | 7.81 | 9.107 | 0.020 * |
y2 | 2 | 5.99 | 0.211 | 0.940 |
y3 | 2 | 5.99 | 10.277 | 0.005 ** |
y4 | 3 | 7.81 | 7.650 | 0.054 |
y5 | 3 | 7.81 | 4.455 | 0.245 |
y6 | 3 | 7.81 | 9.770 | 0.016 * |
References
- Cudney, E.A.; Venuthurumilli, S.S.J.; Materla, T.; Antony, J. Systematic review of Lean and Six Sigma approaches in higher education. Total Qual. Manag. Bus. Excell. 2018, 31, 231–244. [Google Scholar] [CrossRef]
- Huq, F.; Pawar, K.S.; Rogers, H. Supply chain configuration conundrum: How does the pharmaceutical industry mitigate disturbance factors? Prod. Plan. Control. 2016, 27, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Prashar, A. Adopting Six Sigma DMAIC for environmental considerations in process industry environment. TQM J. 2020, 32, 1241–1261. [Google Scholar] [CrossRef]
- Nath, S.D.; Eweje, G.; Sajjad, A. The hidden side of sub-supplier firms’ sustainability—An empirical analysis. Int. J. Oper. Prod. Manag. 2020, 40, 1771–1799. [Google Scholar] [CrossRef]
- Mubarik, M.S.; Naghavi, N.; Mubarik, M.; Kusi-Sarpong, S.; Khan, S.A.; Zaman, S.I.; Kazmi, S.H.A. Resilience and cleaner production in industry 4.0: Role of supply chain mapping and visibility. J. Clean. Prod. 2021, 292, 126058. [Google Scholar] [CrossRef]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). J. Manuf. Syst. 2018, 49, 194–214. [Google Scholar]
- Rehman, A.U.; Anwar, M. Mediating role of enterprise risk management practices between business strategy and SME performance. Small Enterp. Res. 2019, 26, 207–227. [Google Scholar] [CrossRef]
- Chowdhury, P.; Lau, K.H.; Pittayachawan, S. Operational supply risk mitigation of SME and its impact on operational performance. Int. J. Oper. Prod. Manag. 2019, 39, 478–502. [Google Scholar] [CrossRef]
- Ali, M.H.; Suleiman, N.; Khalid, N.; Tan, K.H.; Tseng, M.L.; Kumar, M. Supply chain resilience reactive strategies for food SMEs in coping to COVID-19 crisis. Trends Food Sci. Technol. 2021, 109, 94–102. [Google Scholar] [CrossRef]
- Bak, O.; Shaw, S.; Colicchia, C.; Kumar, V. A Systematic Literature Review of Supply Chain Resilience in Small–Medium Enterprises (SMEs): A Call for Further Research. IEEE Trans. Eng. Manag. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Haraguchi, M.; Lall, U.; Watanabe, K.E.A. Building Private Sector Resilience: Directions After the 2015 Sendai Framework. J. Disaster Res. 2016, 11, 535–543. [Google Scholar] [CrossRef]
- Pfeifer, M.R. IT security in SMEs—Threats and Chances for Supply Chains. J. Supply Chain. Cust. Relatsh. Manag. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Stankalla, R.; Koval, O.; Chromjakova, F. A review of critical success factors for the successful implementation of Lean Six Sigma and Six Sigma in manufacturing small and medium sized enterprises. Qual. Eng. 2018, 30, 453–468. [Google Scholar] [CrossRef]
- da Silva, F.F.; Filser, L.D.; Juliani, F.; de Oliveira, O.J. Where to direct research in lean six sigma? Int. J. Lean Six Sigma 2018, 9, 324–350. [Google Scholar] [CrossRef]
- Alexander, P.; Antony, J.; Rodgers, B. Lean Six Sigma for small- and medium-sized manufacturing enterprises: A systematic review. Int. J. Qual. Reliab. Manag. 2019, 36, 378–397. [Google Scholar] [CrossRef]
- Antony, J.; Sony, M.; Dempsey, M.; Brennan, A.; Farrington, T.; Cudney, E.A. An evaluation into the limitations and emerging trends of Six Sigma: An empirical study. TQM J. 2019, 31, 205–221. [Google Scholar] [CrossRef] [Green Version]
- Sreedharan, V.R.; Raju, R. A systematic literature review of Lean Six Sigma in different industries. Int. J. Lean Six Sigma 2016, 7, 430–466. [Google Scholar] [CrossRef]
- Yadav, G.; Desai, T.N. Lean Six Sigma: A categorized review of the literature. Int. J. Lean Six Sigma 2016, 7, 2–24. [Google Scholar] [CrossRef]
- Makwana, A.D.; Patange, G.S. A methodical literature review on application of Lean & Six Sigma in various industries. Aust. J. Mech. Eng. 2019, 19, 107–121. [Google Scholar] [CrossRef]
- Singh, M.; Rathi, R. A structured review of Lean Six Sigma in various industrial sectors. Int. J. Lean Six Sigma 2019, 10, 622–664. [Google Scholar] [CrossRef]
- Gerger, A.; Firuzan, A.R. Taguchi based Case study in the automotive industry: Nonconformity decreasing with use of Six Sigma methodology. J. Appl. Stat. 2020, 48, 1–17. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, R.; Meena, M.L.; Dangayach, G.S. Six-sigma application in tire-manufacturing company: A case study. J. Ind. Eng. Int. 2018, 14, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.; Rodrigues, N.; Nunes, E. Evolution of process capability in a manufacturing process. J. Manag. Anal. 2018, 5, 95–115. [Google Scholar] [CrossRef]
- Andersson, R.; Pardillo-Baez, Y. The Six Sigma framework improves the awareness and management of supply-chain risk. TQM J. 2020, 32, 1021–1037. [Google Scholar] [CrossRef]
- Yang, C.C. The effectiveness analysis of the practices in five quality management stages for SMEs. Total Qual. Manag. Bus. Excell. 2018, 31, 955–977. [Google Scholar] [CrossRef]
- Sodhi, H.S.; Singh, D.; Singh, B.J. A conceptual examination of Lean, Six Sigma and Lean Six Sigma models for managing waste in manufacturing SMEs. World J. Sci. Technol. Sustain. Dev. 2020, 17, 20–32. [Google Scholar] [CrossRef]
- Swarnakar, V.; Singh, A.; Tiwari, A.K. Effect of lean six sigma on firm performance: A case of Indian automotive component manufacturing organization. Mater. Today Proc. 2020, 46, 9617–9622. [Google Scholar] [CrossRef]
- Salah, S.; Rahim, A. Implementing Lean Six Sigma in Supply Chain Management. In An Integrated Company-Wide Management System; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 105–111. [Google Scholar] [CrossRef]
- Yadav, N.; Shankar, R.; Singh, S.P. Impact of Industry4.0/ICTs, Lean Six Sigma and quality management systems on organisational performance. TQM J. 2020, 32, 815–835. [Google Scholar] [CrossRef]
- Zhang, A.; Luo, W.; Shi, Y.; Chia, S.T.; Sim, Z.H.X. Lean and Six Sigma in logistics: A pilot survey study in Singapore. Int. J. Oper. Prod. Manag. 2016, 36, 1625–1643. [Google Scholar] [CrossRef]
- Oprime, P.C.; Pimenta, M.L.; Jugend, D.; Andersson, R. Financial impacts of innovation in Six Sigma projects. Total Qual. Manag. Bus. Excell. 2019, 32, 829–851. [Google Scholar] [CrossRef]
- Palmer, K.; Tsui, K.L. A review and interpretations of process capability indices. Ann. Oper. Res. 1999, 87, 31–47. [Google Scholar] [CrossRef]
- Chakraborty, A.K.; Chatterjee, M. Distributional and inferential properties of some new multivariate process capability indices for symmetric specification region. Qual. Reliab. Eng. Int. 2020, 37, 1099–1115. [Google Scholar] [CrossRef]
- Kulkarni, S.D.; Prasanna, N.; Mirunalini, S.; Akshaya, C.; Deekshitha, R.; Kousalya, N.; Agalya, A. Enhancing the process capability of machining process of boring tool holder by application of six sigma methodology. Mater. Today Proc. 2021, 52, 329–338. [Google Scholar] [CrossRef]
- Hernandez, D.F.; Haddud, A. Value creation via supply chain risk management in global fashion organizations outsourcing production to China. J. Glob. Oper. Strateg. Sourc. 2018, 11, 250–272. [Google Scholar] [CrossRef]
- Chen, K.S.; Wang, C.H.; Tan, K.H.; Chiu, S.F. Developing one-sided specification six-sigma fuzzy quality index and testing model to measure the process performance of fuzzy information. Int. J. Prod. Econ. 2019, 208, 560–565. [Google Scholar] [CrossRef]
- Haktanır, E.; Kahraman, C. Design for Six Sigma and Process Capability Using Penthagorean Fuzzy Sets. In Advances in Intelligent Systems and Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1385–1395. [Google Scholar] [CrossRef]
- Hadian, H.; Rahimifard, A. Multivariate statistical control chart and process capability indices for simultaneous monitoring of project duration and cost. Comput. Ind. Eng. 2019, 130, 788–797. [Google Scholar] [CrossRef]
- de Felipe, D.; Benedito, E. A review of univariate and multivariate process capability indices. Int. J. Adv. Manuf. Technol. 2017, 92, 1687–1705. [Google Scholar] [CrossRef]
- Chyon, F.A.; Ahmmed, S.; Shuvo, K.A.; Suman, N.H.; Hossain, M. Measuring Process Capability in a Hospital by Using Lean Six Sigma Tools—A Case Study in Bangladesh. Glob. Adv. Health Med. 2020, 9, 216495612096244. [Google Scholar] [CrossRef] [PubMed]
- Kotz, S.; Johnson, N.L. Delicate relations among the basic process capability indices cp, CpkAND Cpm, AND THEIR MODIFICATIONS. Commun. Stat. Simul. Comput. 1999, 28, 849–866. [Google Scholar] [CrossRef]
- Balamurali, S.; Kalyanasundaram, M. Bootstrap lower confidence limits for the process capability indices Cp, Cpk and Cpm. Int. J. Qual. Reliab. Manag. 2002, 19, 1088–1097. [Google Scholar] [CrossRef]
- Godina, R.; Rodrigues, E.M.; Matias, J.C. An Alternative Test of Normality for Improving SPC in a Portuguese Automotive SME. In Lecture Notes in Management and Industrial Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 277–285. [Google Scholar] [CrossRef]
- Kotz, S.; Johnson, N.L. Process Capability Indices—A Review, 1992–2000. J. Qual. Technol. 2002, 34, 2–19. [Google Scholar] [CrossRef]
- Noori, B.; Latifi, M. Development of Six Sigma methodology to improve grinding processes. Int. J. Lean Six Sigma 2018, 9, 50–63. [Google Scholar] [CrossRef]
- Narke, M.M.; Jayadeva, C. Value Stream Mapping: Effective Lean Tool for SMEs. Mater. Today Proc. 2020, 24, 1263–1272. [Google Scholar] [CrossRef]
- Ikumapayi, O.; Akinlabi, E.; Mwema, F.; Ogbonna, O. Six sigma versus lean manufacturing—An overview. Mater. Today Proc. 2020, 26, 3275–3281. [Google Scholar] [CrossRef]
- Sahaym, A.; Datta, A.A.; Brooks, S. Crowdfunding success through social media: Going beyond entrepreneurial orientation in the context of small and medium-sized enterprises. J. Bus. Res. 2021, 125, 483–494. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J. Classification of Small- and Medium-Sized Enterprises Based on the Level of Industry 4.0 Implementation. Appl. Sci. 2020, 10, 5150. [Google Scholar] [CrossRef]
- Alkhoraif, A.; McLaughlin, P. Lean implementation within manufacturing SMEs in Saudi Arabia: Organizational culture aspects. J. King Saud. Univ. Eng. Sci. 2018, 30, 232–242. [Google Scholar] [CrossRef]
- Munir, M.; Jajja, M.S.S.; Chatha, K.A.; Farooq, S. Supply chain risk management and operational performance: The enabling role of supply chain integration. Int. J. Prod. Econ. 2020, 227, 107667. [Google Scholar] [CrossRef]
- Falkner, E.M.; Hiebl, M.R. Risk management in SMEs: A systematic review of available evidence. J. Risk Financ. 2015, 16, 122–144. [Google Scholar] [CrossRef]
- Wong, L.W.; Leong, L.Y.; Hew, J.J.; Tan, G.W.H.; Ooi, K.B. Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. Int. J. Inf. Manag. 2020, 52, 101997. [Google Scholar] [CrossRef]
- Melnyk, S.A.; Schoenherr, T.; Verter, V.; Evans, C.; Shanley, C. The pandemic and SME supply chains: Learning from early experiences of SME suppliers in the U.S. defense industry. J. Purch. Supply Manag. 2021, 27, 100714. [Google Scholar] [CrossRef]
- Shokri, A. Reducing the Scrap Rate in Manufacturing SMEs Through Lean Six Sigma Methodology: An Action Research. IEEE Eng. Manag. Rev. 2019, 47, 104–117. [Google Scholar] [CrossRef]
- Costa, J.; Lopes, I.; Brito, J. Six Sigma application for quality improvement of the pin insertion process. Procedia Manuf. 2019, 38, 1592–1599. [Google Scholar] [CrossRef]
- Šproch, F.; Nevima, J. Increasing Competitiveness Through Innovation in an Industrial Enterprise—A Case Study of the Company Massag. Adv. Sci. Technol. Res. J. 2021, 15, 110–125. [Google Scholar] [CrossRef]
- Iyede, R.; Fallon, E.F.; Donnellan, P. An exploration of the extent of Lean Six Sigma implementation in the West of Ireland. Int. J. Lean Six Sigma 2018, 9, 444–462. [Google Scholar] [CrossRef]
- Rathi, R.; Singh, M.; Verma, A.K.; Gurjar, R.S.; Singh, A.; Samantha, B. Identification of Lean Six Sigma barriers in automobile part manufacturing industry. Mater. Today Proc. 2021, 50, 728–735. [Google Scholar] [CrossRef]
- Moya, C.A.; Galvez, D.; Muller, L.; Camargo, M. A new framework to support Lean Six Sigma deployment in SMEs. Int. J. Lean Six Sigma 2019, 10, 58–80. [Google Scholar] [CrossRef]
- Manoj, K.; Kar, B.; Agrawal, R.; Manupati, V.K.; Machado, J. Cycle Time Reduction in CNC Turning Process Using Six Sigma Methodology—A Manufacturing Case Study. In Lecture Notes in Mechanical Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 135–146. [Google Scholar] [CrossRef]
- Mårtensson, A.; Snyder, K.; Ingelsson, P. Interlinking Lean and sustainability: How ready are leaders? TQM J. 2019, 31, 136–149. [Google Scholar] [CrossRef]
- Fan, Y.; Stevenson, M. A review of supply chain risk management: Definition, theory, and research agenda. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 205–230. [Google Scholar] [CrossRef] [Green Version]
- Senna, P.; Reis, A.; Dias, A.; Coelho, O.; Guimarães, J.; Eliana, S. Healthcare supply chain resilience framework: Antecedents, mediators, consequents. Prod. Plan. Control. 2021, 32, 1–15. [Google Scholar] [CrossRef]
- Koyuncu, M.; Miç, P. General Overview of Risk Evaluation in Supply Chain Management. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic, 23–26 July 2019. [Google Scholar]
- Alora, A.; Barua, M.K. Development of a supply chain risk index for manufacturing supply chains. Int. J. Product. Perform. Manag. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Hong, T.; Kolios, A. A Framework for Risk Management of Large-Scale Organisation Supply Chains. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Online, 9 November 2020. [Google Scholar] [CrossRef]
- Saglam, Y.C.; Çankaya, S.Y.; Sezen, B. Proactive risk mitigation strategies and supply chain risk management performance: An empirical analysis for manufacturing firms in Turkey. J. Manuf. Technol. Manag. 2020, 32, 1224–1244. [Google Scholar] [CrossRef]
- El Baz, J.; Ruel, S. Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era. Int. J. Prod. Econ. 2021, 233, 107972. [Google Scholar] [CrossRef]
- Alexander, P.; Antony, J.; Cudney, E. A novel and practical conceptual framework to support Lean Six Sigma deployment in manufacturing SMEs. Total Qual. Manag. Bus. Excell. 2021, 2021, 1–31. [Google Scholar] [CrossRef]
- Deeb, S.; Bril-El Haouzi, H.; Aubry, A.; Dassisti, M. A generic framework to support the implementation of six sigma approach in SMEs. IFAC-PapersOnLine 2018, 51, 921–926. [Google Scholar] [CrossRef]
- Sreedharan, V.R.; Balagopalan, A.; Murale, V.; Arunprasad, P. Synergising Lean Six Sigma with human resource practices: Evidence from literature arena. Total Qual. Manag. Bus. Excell. 2018, 31, 636–653. [Google Scholar] [CrossRef]
- Ulas, D. Digital Transformation Process and SMEs. Procedia Comput. Sci. 2019, 158, 662–671. [Google Scholar] [CrossRef]
- Sahoo, S. Lean practices and operational performance: The role of organizational culture. Int. J. Qual. Reliab. Manag. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Muraliraj, J.; Zailani, S.; Kuppusamy, S.; Santha, C. Annotated methodological review of Lean Six Sigma. Int. J. Lean Six Sigma 2018, 9, 2–49. [Google Scholar] [CrossRef] [Green Version]
- Stankalla, R.; Chromjakova, F.; Koval, O. A review of the Six Sigma belt system for manufacturing small and medium-sized enterprises. Qual. Manag. J. 2019, 26, 100–117. [Google Scholar] [CrossRef]
- Holton, E.F.; Burnett, M.F. The basics of quantitative research. In Research in Organizations: Foundations and Methods of Inquiry; Berrett-Koehler publishers: Oakland, CA, USA, 2005; pp. 29–44. [Google Scholar]
- Armenakis, A.; Mossholder, W.; Harris, S. Diagnostic bias in organizational consultation. Omega 1990, 18, 563–572. [Google Scholar] [CrossRef]
- Ansari, Z.N.; Kant, R. A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. J. Clean. Prod. 2017, 142, 2524–2543. [Google Scholar] [CrossRef]
- Soni, G.; Kodali, R. A critical review of empirical research methodology in supply chain management. J. Manuf. Technol. Manag. 2012, 23, 753–779. [Google Scholar] [CrossRef]
- Bhatia, M.S.; Gangwani, K.K. Green supply chain management: Scientometric review and analysis of empirical research. J. Clean. Prod. 2021, 284, 124722. [Google Scholar] [CrossRef]
- Henrique, D.B.; Filho, M.G. A systematic literature review of empirical research in Lean and Six Sigma in healthcare. Total Qual. Manag. Bus. Excell. 2018, 31, 429–449. [Google Scholar] [CrossRef]
- Reosekar, R.S.; Pohekar, S.D. Six Sigma methodology: A structured review. Int. J. Lean Six Sigma 2014, 5, 392–422. [Google Scholar] [CrossRef]
- van Dijk, B. Orbis—Company Information Across the Globe. Available online: https://orbis.bvdinfo.com/ (accessed on 31 December 2021).
- Raymond, M.; Rousset, F. An exact test for population differentiation. Evolution 1995, 49, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152. [Google Scholar] [CrossRef]
- Thomas, A.; Barton, R. Developing an SME based six sigma strategy. J. Manuf. Technol. Manag. 2006, 17, 417–434. [Google Scholar] [CrossRef]
- Kumar, M.; Antony, J.; Douglas, A. Does size matter for Six Sigma implementation? TQM J. 2009, 21, 623–635. [Google Scholar] [CrossRef]
- Lande, M.; Shrivastava, R.L.; Seth, D. Critical success factors for Lean Six Sigma in SMEs (small and medium enterprises). TQM J. 2016, 28, 613–635. [Google Scholar] [CrossRef]
- Ali, Y.; Younus, A.; Khan, A.U.; Pervez, H. Impact of Lean, Six Sigma and environmental sustainability on the performance of SMEs. Int. J. Product. Perform. Manag. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Muhammad, N.; Upadhyay, A.; Kumar, A.; Gilani, H. Achieving operational excellence through the lens of lean and Six Sigma during the COVID-19 pandemic. Int. J. Logist. Manag. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Choudhary, S.; Nayak, R.; Dora, M.; Mishra, N.; Ghadge, A. An integrated lean and green approach for improving sustainability performance: A case study of a packaging manufacturing SME in the U.K. Prod. Plan. Control. 2019, 30, 353–368. [Google Scholar] [CrossRef]
- Abbes, N.; Sejri, N.; Xu, J.; Cheikhrouhou, M. New Lean Six Sigma readiness assessment model using fuzzy logic: Case study within clothing industry. Alex. Eng. J. 2022, 61, 9079–9094. [Google Scholar] [CrossRef]
- Yadav, V.; Gahlot, P. Green Lean Six Sigma sustainability-oriented framework for small and medium enterprises. Int. J. Qual. Reliab. Manag. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Antony, J.; Kumar, M.; Labib, A. Gearing Six Sigma into UK manufacturing SMEs: Results from a pilot study. J. Oper. Res. Soc. 2008, 59, 482–493. [Google Scholar] [CrossRef]
- Timans, W.; Ahaus, K.; van Solingen, R.; Kumar, M.; Antony, J. Implementation of continuous improvement based on Lean Six Sigma in small- and medium-sized enterprises. Total Qual. Manag. Bus. Excell. 2014, 27, 309–324. [Google Scholar] [CrossRef]
- Kwon, I.W.G.; Suh, T. Factors Affecting the Level of Trust and Commitment in Supply Chain Relationships. J. Supply Chain. Manag. 2004, 40, 4–14. [Google Scholar] [CrossRef]
- Kumar, M.; Antony, J.; Tiwari, M. Six Sigma implementation framework for SMEs – a roadmap to manage and sustain the change. Int. J. Prod. Res. 2011, 49, 5449–5467. [Google Scholar] [CrossRef]
- Romdhane, T.B.; Badreddine, A.; Sansa, M. A new model to implement Six Sigma in small- and medium-sized enterprises. Int. J. Prod. Res. 2016, 55, 4319–4340. [Google Scholar] [CrossRef]
- Kumar, M.; Antony, J.; Madu, C.N.; Montgomery, D.C.; Park, S.H. Common myths of Six Sigma demystified. Int. J. Qual. Reliab. Manag. 2008, 25, 878–895. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.J.; Ringwald, K.; Parfitt, S.; Davies, A.; John, E. An empirical analysis of Lean Six Sigma implementation in SMEs—A migratory perspective. Int. J. Qual. Reliab. Manag. 2014, 31, 888–905. [Google Scholar] [CrossRef]
- Shokri, A.; Waring, T.S.; Nabhani, F. Investigating the readiness of people in manufacturing SMEs to embark on Lean Six Sigma projects. Int. J. Oper. Prod. Manag. 2016, 36, 850–878. [Google Scholar] [CrossRef] [Green Version]
- Ondra, P. Managing quality in industrial companies: The empirical study of quality management systems in the Czech Republic. Serbian J. Manag. 2021, 16, 251–266. [Google Scholar] [CrossRef]
- Sujova, A.; Simanova, L.; Marcinekova, K. Sustainable Process Performance by Application of Six Sigma Concepts: The Research Study of Two Industrial Cases. Sustainability 2016, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Rajnoha, R.; Dobrovič, J.; Gálová, K. The use of lean methods in central eastern European countries: The case of Czech and Slovak Republic. Econ. Sociol. 2018, 11, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, H.S.; Singh, D.; Singh, B.J. A review of critical factors contributing towards failure of Lean Six Sigma. Int. J. Manag. Technol. Eng. 2019, 9, 1534. [Google Scholar]
- Gupta, A.; Sharma, P.; Jain, A.; Xue, H.; Malik, S.C.; Jha, P.C. An integrated DEMATEL Six Sigma hybrid framework for manufacturing process improvement. Ann. Oper. Res. 2019. [Google Scholar] [CrossRef]
- Stekelorum, R.; Laguir, I.; Courrent, J.M.; Jaegler, A. Extending CSR in SMEs’ upstream supply chains: A dynamic capabilities perspective. Supply Chain. Forum Int. J. 2018, 19, 233–251. [Google Scholar] [CrossRef]
OEM | ||
---|---|---|
Criterion | Number | Percentage |
Overall N | 145 | 100.0% |
Supply chain position | ||
OEM | 2 | 1.4% |
Tier 1/Tier 2 | 90 | 62.1% |
Subsuppliers | 53 | 36.5% |
Six Sigma application years | ||
>10 years | 17 | 11.7% |
3 to 10 years | 72 | 49.7% |
1 to 3 years | 48 | 33.1% |
<1 year | 8 | 5.5% |
Criterion | Mean | Standard Deviation |
---|---|---|
OEM | ||
Own Cp | 2.00 | |
Customer requirement of Cp | 1.83 | |
Supplier-required Cp | 2.00 | |
Suppliers respecting Cp | 4.50 | |
Perception on supply chain six sigma compliance | 4.37 | |
Tier 1 & Tier 2 | ||
Own Cp | 1.57 | |
Customer requirement of Cp | 1.52 | |
Supplier-required Cp | 1.33 | |
Suppliers respecting Cp | 2.62 | |
Perception on own Cp score | 2.52 | |
Perception on supply chain six sigma compliance | 2.36 | |
Subsupplier | ||
Own Cp | 1.34 | |
Customer requirement of Cp | 1.32 | |
Supplier-required Cp | 1.21 | |
Suppliers respecting Cp | 2.41 | |
Perception on own Cp score | 2.43 | |
Perception on supply chain six sigma compliance | 2.27 |
Dependent Variable | df | Chi-Square Crit. | Fisher’s Exact Test (-Asymptotic Test) | Sig. |
---|---|---|---|---|
y1 | 9 | 16.92 | −(48.544) | 0.000 *** |
y2 | 6 | 12.59 | 15.974 | 0.012 * |
y3 | 6 | 12.59 | 11.897 | 0.061 |
y4 | 9 | 16.92 | −(76.319) | 0.000 *** |
y5 | 9 | 16.92 | −(40.221) | 0.000 *** |
y6 | 9 | 16.92 | 14.265 | 0.106 |
Dependent Variable | df | Chi-Square Crit. | Fisher’s Exact Test | Sig. |
---|---|---|---|---|
y1 | 9 | 16.92 | 12.944 | 0.131 |
y2 | 6 | 12.59 | 3.738 | 0.724 |
y3 | 6 | 12.59 | 9.051 | 0.159 |
y4 | 9 | 16.92 | 27.499 | 0.000 *** |
y5 | 9 | 16.92 | 15.197 | 0.063 |
y6 | 9 | 16.92 | 12.721 | 0.148 |
Dependent Variable | df | Chi-Square Crit. | Fisher’s Exact Test | Sig. |
---|---|---|---|---|
y1 | 3 | 7.81 | 23.039 | 0.000 *** |
y2 | 2 | 5.99 | 17.627 | 0.000 *** |
y3 | 2 | 5.99 | 7.089 | 0.029 * |
y4 | 3 | 7.81 | 19.112 | 0.000 *** |
y5 | 3 | 7.81 | 8.436 | 0.037 |
y6 | 3 | 7.81 | 9.988 | 0.012 * |
Hypothesis | Description | Outcome |
---|---|---|
Hypothesis 1 (H1) | All SMEs will show a lower six sigma process capability Cp than LEs. | Accepted. The population of SMEs suggests small companies to have lower Cp values. |
Hypothesis 2 (H2) | The increasing duration of the six sigma approach will lead to a higher six sigma process capability (Cp). | Accepted for an interval of 3–5 years after implementation as turning point. |
Hypothesis 3 (H3) | Lower-tier ranks will lead to higher six sigma process capability (Cp). | Accepted. |
Hypothesis 4 (H4) | All companies throughout the supply chain will show the same ability to honor their six sigma process capability (Cp) requirements. | Rejected. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfeifer, M.R. SMEs in Automotive Supply Chains: A Survey on Six Sigma Performance Perceptions of Czech Supply Chain Members. Processes 2022, 10, 698. https://doi.org/10.3390/pr10040698
Pfeifer MR. SMEs in Automotive Supply Chains: A Survey on Six Sigma Performance Perceptions of Czech Supply Chain Members. Processes. 2022; 10(4):698. https://doi.org/10.3390/pr10040698
Chicago/Turabian StylePfeifer, Marcel Rolf. 2022. "SMEs in Automotive Supply Chains: A Survey on Six Sigma Performance Perceptions of Czech Supply Chain Members" Processes 10, no. 4: 698. https://doi.org/10.3390/pr10040698
APA StylePfeifer, M. R. (2022). SMEs in Automotive Supply Chains: A Survey on Six Sigma Performance Perceptions of Czech Supply Chain Members. Processes, 10(4), 698. https://doi.org/10.3390/pr10040698