Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstocks Characterization
2.2. Hydrothermal Carbonization Tests
2.3. Anaerobic Digestion Tests
2.4. Dewaterability Tests
2.5. Analytical Methods
3. Results and Discussion
3.1. Yields of the HTC Tests
3.2. Slurry and HTCL Samples Characterization
3.3. Biogas and Biomethane Production
3.4. Dewaterability Improvement
3.5. Energy Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eurostat Data Brower Sewage Sludge Production and Disposal from Urban Wastewater (in Dry Substance (d.s)). Available online: https://ec.europa.eu/eurostat/web/products-datasets/-/ten00030 (accessed on 15 February 2022).
- EEA. Bio-Waste in Europeturning Challenges into Opportunities; (Issue 04); Publications Office of the European Union: Luxembourg, 2020; ISBN 9789294802231. [Google Scholar]
- Valverde, J.M.; Avilés-Palacios, C. Circular economy as a catalyst for progress towards the sustainable development goals: A positive relationship between two self-sufficient variables. Sustainability 2021, 13, 12652. [Google Scholar] [CrossRef]
- European Parliament Directive. 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste. Off. J. Eur. Union 2006, 16, 45–57, April, L 114/9-21. [Google Scholar]
- Ferrentino, R.; Langone, M.; Andreottola, G.; Rada, E.C. An anaerobic side-stream reactor in wastewater treatment: A review. WIT Trans. Ecol. Environ. 2014, 191, 1435–1446. [Google Scholar]
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587-588, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Corden, C.; Bougas, K.; Cunningham, E.; Tyrer, D.; Kreißig, J.; Zetti, E.; Gamero, E.; Wildey, R.; Crookes, M. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options; Wood Environment & Infrastructure Solutions UK Limited: London, UK, 2019; pp. 1–463. [Google Scholar]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
- Silva, R.D.V.K.; Lei, Z.; Shimizu, K.; Zhang, Z. Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresour. Technol. Rep. 2020, 11, 100453. [Google Scholar] [CrossRef]
- Knötig, P.; Etzold, H.; Wirth, B. Article model-based evaluation of hydrothermal treatment for the energy efficient dewatering and drying of sewage sludge. Processes 2021, 9, 1346. [Google Scholar] [CrossRef]
- Merzari, F.; Langone, M.; Andreottola, G.; Fiori, L. Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization. Crit. Rev. Environ. Sci. Technol. 2019, 49, 947–988. [Google Scholar] [CrossRef]
- Gupta, D.; Mahajani, S.M.; Garg, A. Opportunities for Resource Recovery after Hydrothermal Pretreatment of Biodegradable Municipal Solid Waste: A Mini-Review; Springer: Singapore, 2020; ISBN 9789811516207. [Google Scholar]
- Lucian, M.; Volpe, M.; Merzari, F.; Wüst, D.; Kruse, A.; Andreottola, G.; Fiori, L. Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 2020, 314, 123734. [Google Scholar] [CrossRef]
- Marin-Batista, J.D.; Mohedano, A.F.; Rodríguez, J.J.; de la Rubia, M.A. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Manag. 2020, 105, 566–574. [Google Scholar] [CrossRef] [PubMed]
- González-Arias, J.; Sánchez, M.E.; Cara-Jiménez, J.; Baena-Moreno, F.M.; Zhang, Z. Hydrothermal carbonization of biomass and waste: A review. Environ. Chem. Lett. 2021, 20, 211–221. [Google Scholar] [CrossRef]
- He, C.; Giannis, A.; Wang, J.Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl. Energy 2013, 111, 257–266. [Google Scholar] [CrossRef]
- Ramke, H.-G.; Blöhse, D.; Lehmann, H.-J.; Fettig, J.; Höxter, S.T. Hydrothermal Carbonization of Organic Waste. In Sardinia 2009: Twelfth International Waste Management and Landfill Symposium; International Waste Working Group: Cagliari, Italy, 2009; pp. 1–16. [Google Scholar]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R.; Singh, J.; Kanwar, R.; Kumar, A. A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. Chem. Afr. 2020, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Thunshirn, P.; Wenzel, W.W.; Pfeifer, C. Pore characteristics of hydrochars and their role as a vector for soil bacteria: A critical review of engineering options. Crit. Rev. Environ. Sci. Technol. 2021, 1–25. [Google Scholar] [CrossRef]
- Ayodele, O.O.; Adekunle, A.E.; Alagbe, O.A.; Anguruwa, G.T.; Ademola, A.A.; Odega, C.A.; Dornack, C. Application of biomass-derived hydrochar in process stability of anaerobic digestion. Bioresour. Technol. Rep. 2022, 17, 100903. [Google Scholar] [CrossRef]
- Kimbi Yaah, V.B.; Zbair, M.; Botelho de Oliveira, S.; Ojala, S. Hydrochar-derived adsorbent for the removal of diclofenac from aqueous solution. Nanotechnol. Environ. Eng. 2021, 6, 3. [Google Scholar] [CrossRef]
- Ferrentino, R.; Ceccato, R.; Marchetti, V.; Andreottola, G.; Fiori, L. Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater. Appl. Sci. 2020, 10, 3445. [Google Scholar] [CrossRef]
- Langone, M.; Basso, D. Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways. Int. J. Environ. Res. Public Health 2020, 17, 6618. [Google Scholar] [CrossRef]
- Ferrentino, R.; Merzari, F.; Grigolini, E.; Fiori, L.; Andreottola, G. Hydrothermal carbonization liquor as external carbon supplement to improve biological denitrification in wastewater treatment. J. Water Process Eng. 2021, 44, 102360. [Google Scholar] [CrossRef]
- Ischia, G.; Fiori, L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling. Waste Biomass Valorization 2021, 12, 2797–2824. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int. Biodeterior. Biodegrad. 2015, 101, 42–46. [Google Scholar] [CrossRef]
- Ferrentino, R.; Merzari, F.; Fiori, L.; Andreottola, G. Coupling hydrothermal carbonization with anaerobic digestion for sewage sludge treatment: Influence of HTC liquor and hydrochar on biomethane production. Energies 2020, 13, 6262. [Google Scholar] [CrossRef]
- Romio, C.; Kofoed, M.V.W.; Møller, H.B. Digestate post-treatment strategies for additional biogas recovery: A review. Sustainability 2021, 13, 9295. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Wang, Q.; Tang, Y.; Pavlostathis, S.G. Comparative assessment of pre- and inter-stage hydrothermal treatment of municipal sludge for increased methane production. Water Environ. Res. 2021, 93, 1126–1137. [Google Scholar] [CrossRef]
- Merzari, F.; Lucian, M.; Volpe, M.; Andreottola, G.; Fiori, L. Hydrothermal carbonization of biomass: Design of a bench-Scale reactor for evaluating the heat of reaction. Chem. Eng. Trans. 2018, 65, 43–48. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927. [Google Scholar] [CrossRef] [Green Version]
- Ferrentino, R.; Merzari, F.; Fiori, L.; Andreottola, G. Biochemical Methane Potential Tests to Evaluate Anaerobic Digestion Enhancement by Thermal Hydrolysis Pretreatment. BioEnergy Res. 2019, 12, 722–732. [Google Scholar] [CrossRef]
- American Public Health Association. APHA Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Liu, H.; Basar, I.A.; Nzihou, A.; Eskicioglu, C. Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization. Water Res. 2021, 199, 117186. [Google Scholar] [CrossRef]
- Shi, Y.; Luo, G.; Rao, Y.; Chen, H.; Zhang, S. Hydrothermal conversion of dewatered sewage sludge: Focusing on the transformation mechanism and recovery of phosphorus. Chemosphere 2019, 228, 619–628. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.; Ross, A.B.; Camargo-Valero, M.A. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy 2017, 208, 1357–1369. [Google Scholar] [CrossRef]
- Usman, M.; Shi, Z.; Ji, M.; Ren, S.; Luo, G.; Zhang, S. Microbial insights towards understanding the role of hydrochar in alleviating ammonia inhibition during anaerobic digestion. Chem. Eng. J. 2021, 419, 129541. [Google Scholar] [CrossRef]
- Ren, S.; Usman, M.; Tsang, D.C.W.; O-Thong, S.; Angelidaki, I.; Zhu, X.; Zhang, S.; Luo, G. Hydrochar-Facilitated Anaerobic Digestion: Evidence for Direct Interspecies Electron Transfer Mediated through Surface Oxygen-Containing Functional Groups. Environ. Sci. Technol. 2020, 54, 5755–5766. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.; Park, K.Y. Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 2014, 130, 120–125. [Google Scholar] [CrossRef]
- Ahmed, M.; Andreottola, G.; Elagroudy, S.; Negm, M.S.; Fiori, L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. J. Environ. Manag. 2021, 281, 111910. [Google Scholar] [CrossRef] [PubMed]
- Gerin, P.A.; Vliegen, F.; Jossart, J.M. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour. Technol. 2008, 99, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Huber Technology. Available online: https://www.hubertec.it/ (accessed on 11 April 2022).
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
Parameter | SSD | OW | 90SSD + 10OW | 80SSD + 20OW | 50SSD + 50OW |
---|---|---|---|---|---|
TS [%] | 10.2 ± 0.3 | 16.4 ± 0.6 | 10.8 ± 0.5 | 11.2 ± 0.1 | 11.8 ± 0.3 |
TKN [g TKN L−1] | 7.4 ± 2.5 | 5.5 ± 2.2 | 6.8 ± 2.5 | 6.6 ± 0.5 | 6.4 ± 1.0 |
NH4-N [mg NH4-N L−1] | 2.0 ± 0.5 | 0.7 ± 0.3 | 1.6 ± 0.5 | 1.5 ± 0.3 | 1.3 ± 0.4 |
PO4-P [mg PO4-P L−1] | 700 ± 10 | 120 ± 7 | 600 ± 6 | 480 ± 5 | 350 ± 5 |
TP [g TP L−1] | 3.5 ± 0.3 | 0.8 ± 0.2 | 2.7 ± 0.4 | 2.4 ± 0.2 | 2.1 ± 0.4 |
sCOD [g sCOD L−1] | 13 ± 2 | 78 ± 9 | 27 ± 5 | 32 ± 3 | 40 ± 5 |
COD [g COD L−1] | 116 ± 15 | 227 ± 12 | 120 ± 12 | 134 ± 10 | 175 ± 17 |
Parameter | L_SSD | L_90SSD + 10OW | L_80 SSD + 20OW | L_50 SSD + 50OW | S_ SSD | S_90SSD + 10OW | S_80SSD + 20OW | S_50SSD + 50OW |
---|---|---|---|---|---|---|---|---|
TCOD [g TCOD L−1] | 41 ± 3 | 50 ± 7 | 72 ± 5 | 105± 3 | 96 ± 10 | 115 ± 7 | 125 ± 15 | 170 ± 10 |
TKN [g TKN L−1] | 5.8 ± 0.1 | 6.1 ± 0.2 | 6.0 ± 0.5 | 6.0 ± 0.1 | 4.8 ± 0.3 | 5.7 ± 0.2 | 5.8 ± 0.2 | 6.2 ± 0.2 |
NH4-N [g NH4-N L−1] | 1.4 ± 0.2 | 1.4 ± 0.2 | 1.3 ± 0.3 | 0.9 ± 0.3 | 1.4 ± 0.2 | 1.4 ± 0.2 | 1.3 ± 0.3 | 0.9 ± 0.3 |
TP [g TP L−1] | 0.15 ± 0.01 | 0.18 ± 0.01 | 0.13 ± 0.01 | 0.25 ± 0.01 | 3.4 ± 0.3 | 2.4 ± 0.2 | 2.2 ± 0.1 | 2.3 ± 0.3 |
PO4-P [g PO4-P L−1] | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.15 ± 0.01 | 0.22 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.15 ± 0.01 | 0.22 ± 0.01 |
TS [%] | 3.1 ± 0.1 | 3.4 ± 0.5 | 3.5 ± 0.2 | 4.1 ± 0.1 | 8.6 ± 0.1 | 9.0 ± 0.1 | 9.0 ± 0.1 | 8.9 ± 0.2 |
VS [% d.b.] | 78.5 ± 0.5 | 87.1 ± 0.1 | 86.7 ± 0.2 | 88.7 ± 0.5 | 70.1 ± 1.9 | 74.3 ± 1.2 | 77.6 ± 1.8 | 86.0 ± 1.1 |
Sample | SMP [mL CH4 g−1 CODadded] | CH4 [%] |
---|---|---|
SS | 45 ± 5 | 56 |
L_SSD | 67 ± 8 | 56 |
L_90SSD + 10OW | 69 ± 10 | 56 |
L_80SSD + 20OW | 79 ± 13 | 58 |
L_50SSD + 50OW | 98 ± 9 | 61 |
S_SSD | 91 ± 10 | 57 |
S_90SSD + 10OW | 104 ± 6 | 59 |
S_80SSD + 20OW | 119 ± 4 | 62 |
S_50SSD + 50OW | 151 ± 8 | 63 |
Sample | CST [s] | TS [g L] | CST/TS [s g−1 L] | |
---|---|---|---|---|
Untreated sample | SSD | 1930 ± 15 | 102 | 18.92 ± 0.15 |
90SSD + 10OW | 1750 ± 10 | 108 | 16.16 ± 0.21 | |
80SSD + 20OW | 1570 ± 20 | 112 | 14.00 ± 0.16 | |
50SSD + 50OW | 1030 ± 10 | 118 | 8.69 ± 0.11 | |
HTC slurry | SSD | 50 ± 4 | 86 | 0.58 ± 0.08 |
90SSD + 10OW | 48 ± 4 | 90 | 0.53 ± 0.12 | |
80SSD + 20OW | 41 ± 4 | 90 | 0.45 ± 0.06 | |
50SSD + 50OW | 24 ± 5 | 89 | 0.27 ± 0.05 |
SSD | 90SSD + 10OW | 80SSD + 20OW | 50SSD + 50OW | |||||
---|---|---|---|---|---|---|---|---|
(a) HTCL | (b) Slurry | (a) HTCL | (b) Slurry | (a) HTCL | (b) Slurry | (a) HTCL | (b) Slurry | |
Flow rate to AD1 [m3 d−1] | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Biogas production from AD1 [m3] | 59 | 59 | 59 | 59 | 59 | 59 | 59 | 59 |
Flow rate to AD2 [m3 d−1] | 18.2 | 22 | 19.4 | 22.8 | 21 | 24.6 | 28.3 | 34.3 |
Biogas production from AD2 [m3] | 50 | 186 | 67 | 273 | 99 | 366 | 291 | 880 |
Energy input for AD1 [kWh] | 148 | 148 | 148 | 148 | 148 | 148 | 148 | 148 |
Energy input for S/L separation [kWh] | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 |
Energy input for HTC [kWh] | 2530 | 2530 | 2714 | 2714 | 2921 | 2921 | 4140 | 4140 |
Energy input for AD2 [kWh] | 125 | 465 | 167 | 682 | 248 | 916 | 729 | 2200 |
Total energy output (from biogas) [kWh] | 1090 | 2450 | 1260 | 3320 | 1580 | 4250 | 3500 | 9400 |
Output/Input Ratio | 23% | 48% | 25% | 60% | 30% | 71% | 50% | 111% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrentino, R.; Langone, M.; Mattioli, D.; Fiori, L.; Andreottola, G. Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration. Processes 2022, 10, 777. https://doi.org/10.3390/pr10040777
Ferrentino R, Langone M, Mattioli D, Fiori L, Andreottola G. Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration. Processes. 2022; 10(4):777. https://doi.org/10.3390/pr10040777
Chicago/Turabian StyleFerrentino, Roberta, Michela Langone, Davide Mattioli, Luca Fiori, and Gianni Andreottola. 2022. "Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration" Processes 10, no. 4: 777. https://doi.org/10.3390/pr10040777
APA StyleFerrentino, R., Langone, M., Mattioli, D., Fiori, L., & Andreottola, G. (2022). Investigating the Enhancement in Biogas Production by Hydrothermal Carbonization of Organic Solid Waste and Digestate in an Inter-Stage Treatment Configuration. Processes, 10(4), 777. https://doi.org/10.3390/pr10040777