Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review
Abstract
:1. Introduction
2. Composition of Oilseeds
2.1. Oilseeds
2.1.1. Soybean
2.1.2. Rapeseed
2.1.3. Sunflower
2.1.4. Flaxseed
2.2. Key Nutriments
2.2.1. Lipids
2.2.2. Proteins
2.2.3. Anti-Nutriments
Phenolic Compounds
Glucosinolates
Phytic Acid
Linatine
Cyanogenic Glycosides
Other Anti-Nutritional Factors
3. Bio-Refinery of Oilseeds
4. Alternative Solvents/Processes for Lipid Extraction
4.1. Alcohols
4.2. 2-MeTHF
4.3. Terpenes
4.4. Other Organic Solvents
4.5. Supercritical and Subcritical Fluids
4.6. Ionic Liquids
4.7. Ultrasound
5. Alternative Solvents/Processes for Secondary Metabolite Extraction
5.1. Alcohols
5.2. Deep Eutectic Solvents
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2-MeTHF | 2-MethylTetraHydroFuran |
ALA | α-Linolenic Acid |
ADF | Acid Detergent Fibre |
CMR | Carcinogenic, Mutagenic and Reprotoxic |
COSMO-RS | Conductor-like Screening Model for Realistic Solvents |
CPME | Cyclopentyl Methyl Ether |
DAG | Diacylglycerols (Diglycerides) |
DDM | Defatted Dry Matter |
DES | Deep Eutectic Solvents |
DM | Dry Matter |
DMC | Dimethyl Carbonate |
EA | Ethyl Acetate |
FAME | Fatty Acid Methyl Ester |
FFA | Free Fatty Acid |
GSL | Glucosinolates |
GS | Green Solvents |
HBA | Hydrogen Bond Acceptor |
HBD | Hydrogen Bond Donor |
HCN | Hydrogen Cyanide |
HSP | Hansen Solubility Parameters |
IL | Ionic Liquids |
LDL | Low Density Lipoprotein |
MAG | Monoacylglycerols (Mono-glycerides) |
NADES | Natural Deep Eutectic Solvents |
NDF | Neutral Detergent Fibre |
Pc | Critical Pressure |
PC | Phenolic Compounds |
PL | Phospholipids |
SA | Sinapic Acid |
SFE | Supercritical Fluid Extraction |
SG | Sinapoyl Glucose |
SHS | Switchable-Hydrophilicity Solvents |
SP | Sinapine |
SPS | Switchable-Polarity Solvents |
SS | Switchable Solvents |
SubFE | Subcritical Fluid Extraction |
TAG | Triacylglycerols (Triglycerides) |
Tc | Critical Temperature |
TP | Total Phenolics |
UAE | Ultrasound Assisted Extraction |
US | Ultrasound |
VOC | Volatile Organic Compounds |
References
- Boye, J.I.; Arcand, Y. Current Trends in Green Technologies in Food Production and Processing. In Sustainable Food and Beverage Industries; Apple Academic Press: Cambridge, MA, USA, 2016; ISBN 978-0-429-18378-2. [Google Scholar]
- Özilgen, S.; Özilgen, M. General Template for the FMEA Applications in Primary Food Processing. In Measurement, Modeling and Automation in Advanced Food Processing; Hitzmann, B., Ed.; Advances in Biochemical Engineering/Biotechnology; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–69. ISBN 978-3-319-60111-3. [Google Scholar]
- U.S. Congress, Office of Technology Assessment. Technologies Supporting Agricultural, Aquacultural, and Fisheries Development (Chapter 8). In Integrated Renewable Resource Management for U.S. Insular Areas; OTA-F-325; Government Printing Office: Washington, DC, USA, 1987; pp. 273–315. [Google Scholar]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.-C.; Fine, F. Rapeseed and Sunflower Meal: A Review on Biotechnology Status and Challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.W.; Charlton, A. A Comparison in Protein Extraction from Four Major Crop Residues in Europe Using Chemical and Enzymatic Processes-a Review. Innov. Food Sci. Emerg. Technol. 2020, 59, 102239. [Google Scholar] [CrossRef]
- Preece, K.E.; Hooshyar, N.; Zuidam, N.J. Whole Soybean Protein Extraction Processes: A Review. Innov. Food Sci. Emerg. Technol. 2017, 43, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed Proteins–Properties and Application as a Food Ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Phan, L.; Brown, H.; White, J.; Hodgson, A.; Jessop, P.G. Soybean Oil Extraction and Separation Using Switchable or Expanded Solvents. Green Chem. 2009, 11, 53–59. [Google Scholar] [CrossRef]
- Rapinel, V.; Claux, O.; Abert-Vian, M.; McAlinden, C.; Bartier, M.; Patouillard, N.; Jacques, L.; Chemat, F. 2-Methyloxolane (2-MeOx) as Sustainable Lipophilic Solvent to Substitute Hexane for Green Extraction of Natural Products. Properties, Applications, and Perspectives. Molecules 2020, 25, 3417. [Google Scholar] [CrossRef]
- Cheng, M.-H.; Dien, B.S.; Singh, V. Economics of Plant Oil Recovery: A Review. Biocatal. Agric. Biotechnol. 2019, 18, 101056. [Google Scholar] [CrossRef]
- Carré, P.; Pouzet, A. Rapeseed Market, Worldwide and in Europe. OCL 2014, 21, D102. [Google Scholar] [CrossRef]
- Vinnichek, L.; Pogorelova, E.; Dergunov, A. Oilseed Market: Global Trends. IOP Conf. Ser. Earth Environ. Sci. 2019, 274, 012030. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 November 2021).
- Codex Alimentarius Commission. Standard For Named Vegetable Oils Cxs 210-1999. In Fats, Oils and Related Products; Joint FAO/WHO Food Standards Programme Codex Committee: Rome, Italy, 1999. [Google Scholar]
- Gosselet, N. The Global Market for Oilseeds: Prospects and Challenges for Morocco. OCL 2014, 21, D204. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) Foreign Agricultural Service. USDA, PSD Online. Available online: https://apps.fas.usda.gov/psdonline (accessed on 23 November 2021).
- Hymowitz, T. The History of the Soybean. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 1–31. ISBN 978-1-893997-64-6. [Google Scholar]
- Orf, J.H. Breeding, Genetics, and Production of Soybeans. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 33–65. ISBN 978-1-893997-64-6. [Google Scholar]
- Wolf, W.J.; Staff, U. by Soybeans and Other Oilseeds. In Kirk-Othmer Encyclopedia of Chemical Technology; American Cancer Society: Atlanta, GA, USA, 2007; ISBN 978-0-471-23896-6. [Google Scholar]
- Salgado, J.; Donado-Pestana, C. Soy as a Functional Food. In Soybean and Nutrition; InTech: London, UK, 2011; ISBN 978-953-307-536-5. [Google Scholar]
- Burssens, S.; Pertry, I.; Diasolua Ngudi, D.; Kuo, Y.-H.; Van Montagu, M.; Lambein, F. Soya, Human Nutrition and Health. In Soybean and Nutrition; InTech: London, UK, 2011; pp. 157–180. ISBN 978-953-307-536-5. [Google Scholar]
- Hoffman, J.R.; Falvo, M.J. Protein–Which Is Best? J. Sports Sci. Med. 2004, 3, 118–130. [Google Scholar] [PubMed]
- Kang, J.; Badger, T.M.; Ronis, M.J.J.; Wu, X. Non-Isoflavone Phytochemicals in Soy and Their Health Effects. J. Agric. Food Chem. 2010, 58, 8119–8133. [Google Scholar] [CrossRef] [PubMed]
- Gerde, J.A.; White, P.J. Lipids. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 193–227. ISBN 978-1-893997-64-6. [Google Scholar]
- Hitoshi, K.; Kozo, H.; Shingu, T.; Yoshio, K.; Ohtani, H.; Okura, Y.; Tanaka, K.; Yasunobu, Y.; Nomura, K.; Kajiyama, G. Opposite Effects on Cholesterol Metabolism and Their Mechanisms Induced by Dietary Oleic Acid and Palmitic Acid in Hamsters. Biochim. Biophys. Acta-Lipids Lipid Metab. 1995, 1258, 251–256. [Google Scholar] [CrossRef]
- Messina, M.; Shearer, G.; Petersen, K. Soybean Oil Lowers Circulating Cholesterol Levels and Coronary Heart Disease Risk, and Has No Effect on Markers of Inflammation and Oxidation. Nutrition 2021, 89, 111343. [Google Scholar] [CrossRef]
- Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J.H. Evidence of Health Benefits of Canola Oil. Nutr. Rev. 2013, 71, 370–385. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F. Rapeseed and Canola: Global Production and Distribution. In Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology; Shahidi, F., Ed.; Springer US: Boston, MA, USA, 1990; pp. 3–13. ISBN 978-1-4615-3912-4. [Google Scholar]
- Abbott, P.; Baines, J.; Fox, P.; Graf, L.; Kelly, L.; Stanley, G.; Tomaska, L. Review of the Regulations for Contaminants and Natural Toxicants. Food Control 2003, 14, 383–389. [Google Scholar] [CrossRef]
- Vetter, W.; Darwisch, V.; Lehnert, K. Erucic Acid in Brassicaceae and Salmon—An Evaluation of the New Proposed Limits of Erucic Acid in Food. NFS J. 2020, 19, 9–15. [Google Scholar] [CrossRef]
- Olsen, O.; Soerensen, H. Sinalbin and Other Glucosinolates in Seeds of Double Low Rape Species and Brassica Napus Cv Bronowski. J. Agric. Food Chem. 1980, 28, 43–48. [Google Scholar] [CrossRef]
- Chew, S.C. Cold-Pressed Rapeseed (Brassica Napus) Oil: Chemistry and Functionality. Food Res. Int. 2020, 131, 108997. [Google Scholar] [CrossRef]
- Oplinger, E.S.; Hardman, L.L.; Gritton, E.T.; Doll, J.D.; Kelling, K.A. Canola (Rapeseed); University of Minnesota: Saint Paul, MN, USA, 1989; Available online: https://hort.purdue.edu/newcrop/afcm/canola.html (accessed on 16 November 2021).
- Eriksson, I.; Westerlund, E.; Åman, P. Chemical Composition in Varieties of Rapeseed and Turnip Rapeseed, Including Several Samples of Hull and Dehulled Seed. J. Sci. Food Agric. 1994, 66, 233–240. [Google Scholar] [CrossRef]
- Fenwick, G.R.; Curtis, R.F. Rapeseed Meal in Rations for Laying Hens: A Review of the Effect on Egg Quality. J. Sci. Food Agric. 1980, 31, 515–525. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, F.; Xu, S.; Wu, B.; Zheng, C.; Lv, X.; Wu, Z.; Chen, H.; Huang, F. Profiling and Quantification of Lipids in Cold-Pressed Rapeseed Oils Based on Direct Infusion Electrospray Ionization Tandem Mass Spectrometry. Food Chem. 2019, 285, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zheng, C.; Zhou, Q.; Huang, F.; Liu, C.; Wang, H. Minor Components and Oxidative Stability of Cold-Pressed Oil from Rapeseed Cultivars in China. J. Food Compos. Anal. 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Wongsirichot, P.; Gonzalez-Miquel, M.; Winterburn, J. Holistic Valorization of Rapeseed Meal Utilizing Green Solvents Extraction and Biopolymer Production with Pseudomonas Putida. J. Clean. Prod. 2019, 230, 420–429. [Google Scholar] [CrossRef]
- Tranchino, L.; Costantino, R.; Sodini, G. Food Grade Oilseed Protein Processing: Sunflower and Rapeseed. Plant Food Hum. Nutr. 1983, 32, 305–334. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed Crop Sunflower (Helianthus Annuus) as a Source of Food: Nutritional and Health Benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Jocić, S.; Miladinović, D.; Kaya, Y. Breeding and Genetics of Sunflower. In Sunflower; Martínez-Force, E., Dunford, N.T., Salas, J.J., Eds.; AOCS Press: Urbana, IL, USA, 2015; pp. 1–25. ISBN 978-1-893997-94-3. [Google Scholar]
- Muhammad Anjum, F.; Nadeem, M.; Issa Khan, M.; Hussain, S. Nutritional and Therapeutic Potential of Sunflower Seeds: A Review. Br. Food J. 2012, 114, 544–552. [Google Scholar] [CrossRef]
- Mashwani, Z.-R.; Bashir, T.; Zahara, K.; Haider, S.; Tabassum, S.; Mudrikah, M. Chemistry, Pharmacology and Ethnomedicinal Uses of Helianthus Annuus (Sunflower): A Review. Pure Appl. Biol. 2015, 4, 226–235. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Egea, M.B. Sunflower Seed Byproduct and Its Fractions for Food Application: An Attempt to Improve the Sustainability of the Oil Process. J. Food Sci. 2021, 86, 1497–1510. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) Bioactive Compounds and Peptide Nomenclature: A Review. Trends Food Sci. Technol. 2014, 38, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Tulbek, M.C.; Xu, Y. Flaxseed. Adv. Food Nutr Res. 2006, 51, 1–97. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Kanakraj, S.; Rehman, A. Linseed Oil as a Potential Resource for Bio-Diesel: A Review. Renew. Sustain. Energy Rev. 2012, 16, 4415–4421. [Google Scholar] [CrossRef]
- Farag, M.A.; Elimam, D.M.; Afifi, S.M. Outgoing and Potential Trends of the Omega-3 Rich Linseed Oil Quality Characteristics and Rancidity Management: A Comprehensive Review for Maximizing Its Food and Nutraceutical Applications. Trends Food Sci. Technol. 2021, 114, 292–309. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Wang, L.-J.; Li, D.; Li, S.-J.; Özkan, N. Characteristics of Flaxseed Oil from Two Different Flax Plants. Int. J. Food Prop. 2011, 14, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Wang, H.; Guo, Y.; Long, S.; Wang, Y.; Abbasi, A.M.; Guo, X.; Jarvis, D.I. Comparison of Fatty Acid Composition, Phytochemical Profile and Antioxidant Activity in Four Flax (Linum usitatissimum L.) Varieties. Oil Crop Sci. 2020, 5, 136–141. [Google Scholar] [CrossRef]
- Oomah, B.D.; Mazza, G. Flaxseed Proteins—A Review. Food Chem. 1993, 48, 109–114. [Google Scholar] [CrossRef]
- Liu, J.; Shim, Y.Y.; Tse, T.J.; Wang, Y.; Reaney, M.J.T. Flaxseed Gum a Versatile Natural Hydrocolloid for Food and Non-Food Applications. Trends Food Sci. Technol. 2018, 75, 146–157. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Herchi, W.; Arráez-Román, D.; Trabelsi, H.; Bouali, I.; Boukhchina, S.; Kallel, H.; Segura-Carretero, A.; Fernández-Gutierrez, A. Phenolic Compounds in Flaxseed: A Review of Their Properties and Analytical Methods. An Overview of the Last Decade. J. Oleo Sci. 2014, 63, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Shim, Y.Y.; Gui, B.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) Oil Processing and Selected Products. Trends Food Sci. Technol. 2015, 43, 162–177. [Google Scholar] [CrossRef]
- Pradhan, R.C.; Meda, V.; Rout, P.K.; Naik, S.; Dalai, A.K. Supercritical CO2 Extraction of Fatty Oil from Flaxseed and Comparison with Screw Press Expression and Solvent Extraction Processes. J. Food Eng. 2010, 98, 393–397. [Google Scholar] [CrossRef]
- Tang, Z.; Ying, R.-F.; Lv, B.-F.; Yang, L.-H.; Xu, Z.; Yan, L.-Q.; Bu, J.-Z.; Wei, Y.-S. Flaxseed Oil: Extraction, Health Benefits and Products. Qual. Assur. Saf. Crops Foods 2021, 13, 1–19. [Google Scholar] [CrossRef]
- Bernard, J. Oilseed and Oilseed Meals. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Velasco, L.; Möllers, C.; Becker, H.C. Estimation of Seed Weight, Oil Content and Fatty Acid Composition in Intact Single Seeds of Rapeseed (Brassica napus L.) by near-Infrared Reflectance Spectroscopy. Euphytica 1999, 106, 79–85. [Google Scholar] [CrossRef]
- INRAE CIRAD AFZ. Legumes and Oilseeds, Main Constituents. Available online: https://feedtables.com/content/table-as-fed (accessed on 24 September 2021).
- Arrutia, F.; Binner, E.; Williams, P.; Waldron, K.W. Oilseeds beyond Oil: Press Cakes and Meals Supplying Global Protein Requirements. Trends Food Sci. Technol. 2020, 100, 88–102. [Google Scholar] [CrossRef]
- INRAE CIRAD AFZ. Oil Byproducts, Main Constituents. Available online: https://feedtables.com/content/table-as-fed (accessed on 24 September 2021).
- Ramachandran, S.; Singh, S.K.; Larroche, C.; Soccol, C.R.; Pandey, A. Oil Cakes and Their Biotechnological Applications—A Review. Bioresour. Technol. 2007, 98, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- de Castro, A.M.; dos Castilho, L.R.; Freire, D.M.G. Characterization of Babassu, Canola, Castor Seed and Sunflower Residual Cakes for Use as Raw Materials for Fermentation Processes. Ind. Crops Prod. 2016, 83, 140–148. [Google Scholar] [CrossRef]
- Banaszkiewicz, T. Nutritional Value of Soybean Meal. In Soybean and Nutrition; InTech: London, UK, 2011; ISBN 978-953-307-536-5. [Google Scholar]
- Oxford Dictionary of Biochemistry and Molecular Biology; Smith, A.D.; Datta, S.P.; Smith, G.H.; Campbell, P.N.; Bentley, R.; McKenzie, H.A. (Eds.) Oxford University Press: Oxford, UK; New York, NY, USA, 1997; ISBN 978-0-19-854768-6. [Google Scholar]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid Classification, Structures and Tools. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2011, 1811, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.O.; Dennis, E.A. Update of the LIPID MAPS Comprehensive Classification System for Lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [Green Version]
- Perez, B.; Li, J.; Guo, Z. Chemistry and Properties of Lipids and Phospholipids. In Food Lipids: Chemistry, Nutrition, and Biotechnology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 37–72. ISBN 978-1-4987-4485-0. [Google Scholar]
- Gurr, M.I.; Harwood, J.L.; Frayn, K.N.; Murphy, D.J.; Michell, R.H. Lipids: Biochemistry, Biotechnology and Health; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-50113-9. [Google Scholar]
- O’Keefe, S.; Sarnoski, P. Nomenclature and Classification of Lipids. In Food Lipids: Chemistry, Nutrition, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–36. ISBN 978-1-4987-4485-0. [Google Scholar]
- de Jesus, S.S.; Filho, R.M. Recent Advances in Lipid Extraction Using Green Solvents. Renew. Sustain. Energy Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Mailer, R.J. Oilseeds: Overview. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 221–227. ISBN 978-0-12-394786-4. [Google Scholar]
- Guan, M.; Chen, H.; Xiong, X.; Lu, X.; Li, X.; Huang, F.; Guan, C. A Study on Triacylglycerol Composition and the Structure of High-Oleic Rapeseed Oil. Engineering 2016, 2, 258–262. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, M.T.; Gerbaud, V.; Roux, G.A.C.L. Beyond Biofuels: Economic Opportunities, Recent Advances and Challenges in Property Modeling for Vegetable Oils. Green Process. Synth. 2014, 3, 401–410. [Google Scholar] [CrossRef]
- Teles dos Santos, M.; Gerbaud, V.; Le Roux, G.A.C. Solid Fat Content of Vegetable Oils and Simulation of Interesterification Reaction: Predictions from Thermodynamic Approach. J. Food Eng. 2014, 126, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Koshland, D.E.; Haurowitz, F. Protein: Definition, Structure, & Classification. Available online: https://www.britannica.com/science/protein (accessed on 2 December 2021).
- Damodaran, S. Protein: Denaturation. In Handbook of Food Science, Technology, and Engineering-4 Volume Set; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Rodwell, V.W.; Kennelly, P.J. Proteins: Higher Orders of Structure. In Harper’s Illustrated Biochemistry; McGraw-Hill: New York, NY, USA, 2003; pp. 30–39. ISBN 0-07-138901-6. [Google Scholar]
- Shahidi, F. North American Production of Canola. In Canola and Rapeseed: Production, Chemistry, Nutrition and Processing Technology; Shahidi, F., Ed.; Springer US: Boston, MA, USA, 1990; pp. 15–23. ISBN 978-1-4615-3912-4. [Google Scholar]
- Lammens, T.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M. Availability of Protein-Derived Amino Acids as Feedstock for the Production of Bio-Based Chemicals. Biomass Bioenergy 2012, 44, 168–181. [Google Scholar] [CrossRef]
- Fetuga, B.L.; Babatunde, G.M.; Oyenuga, V.A. Protein Quality of Some Unusual Protein Foodstuffs. Studies on the African Locust-Bean Seed (Parkia Filicoidea Welw.). Br. J. Nutr. 1974, 32, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Arowora, K.; STEPHEN, E.; Imo, C.; Emmanuel, U. Quantification of Protein and Amino Acid Composition in Some Oilseeds. Biochem. Mol. Biol. 2017, 2, 8–11. [Google Scholar]
- Bhatty, R.S.; Cherdkiatgumchai, P. Compositional Analysis of Laboratory-Prepared and Commercial Samples of Linseed Meal and of Hull Isolated from Flax. J. Am. Oil Chem. Soc. 1990, 67, 79–84. [Google Scholar] [CrossRef]
- Carré, P. Reinventing the Oilseeds Processing to Extract Oil While Preserving the Protein. OCL 2021, 28, 13. [Google Scholar] [CrossRef]
- Khattab, R.; Eskin, M.; Aliani, M.; Thiyam, U. Determination of Sinapic Acid Derivatives in Canola Extracts Using High-Performance Liquid Chromatography. J. Am. Oil Chem. Soc. 2010, 87, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Das Purkayastha, M.; Das, S.; Manhar, A.K.; Deka, D.; Mandal, M.; Mahanta, C.L. Removing Antinutrients from Rapeseed Press-Cake and Their Benevolent Role in Waste Cooking Oil-Derived Biodiesel: Conjoining the Valorization of Two Disparate Industrial Wastes. J. Agric. Food Chem. 2013, 61, 10746–10756. [Google Scholar] [CrossRef]
- Zardo, I.; Rodrigues, N.P.; Sarkis, J.R.; Marczak, L.D. Extraction and Identification by Mass Spectrometry of Phenolic Compounds from Canola Seed Cake. J. Sci. Food Agric. 2020, 100, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, Y.; Xie, T.; Rong, H.; Li, A.; Fang, Y.; Wang, Y. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica Napus–Sinapis Alba Hybrids. Molecules 2015, 20, 21204–21213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wnukowski, P.; Smolders, G.J.F.; Veerman, C. Protein Isolation from Oil Seeds. Patent number WO2013013949A1, 31 January 2013. [Google Scholar]
- Bell, J.M. Factors Affecting the Nutritional Value of Canola Meal: A Review. Can. J. Anim. Sci. 1993, 73, 689–697. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Claux, O.; Rapinel, V.; Goupy, P.; Patouillard, N.; Vian, M.A.; Jacques, L.; Chemat, F. Dry and Aqueous 2-Methyloxolane as Green Solvents for Simultaneous Production of Soybean Oil and Defatted Meal. ACS Sustain. Chem. Eng. 2021, 9, 7211–7223. [Google Scholar] [CrossRef]
- Cederroth, C.R.; Zimmermann, C.; Nef, S. Soy, Phytoestrogens and Their Impact on Reproductive Health. Mol. Cell. Endocrinol. 2012, 355, 192–200. [Google Scholar] [CrossRef]
- Boudet, A.-M. Evolution and Current Status of Research in Phenolic Compounds. Phytochemistry 2007, 68, 2722–2735. [Google Scholar] [CrossRef]
- Hooper, L.; Ryder, J.J.; Kurzer, M.S.; Lampe, J.W.; Messina, M.J.; Phipps, W.R.; Cassidy, A. Effects of Soy Protein and Isoflavones on Circulating Hormone Concentrations in Pre- and Post-Menopausal Women: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2009, 15, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein–Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Reau, R.; Bodet, J.-M.; Bordes, J.-P.; Dore, T.; Ennaifar, S.; Moussart, A.; Nicolardot, B.; Pellerin, S.; Plenchette, C.; Quinsac, A.; et al. Effets allélopathiques des Brassicacées via leurs actions sur les agents pathogènes telluriques et les mycorhizes: Analyse bibliographique. Partie 1. OCL 2005, 12, 261–271. [Google Scholar] [CrossRef]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate Structural Diversity, Identification, Chemical Synthesis and Metabolism in Plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in Animal Nutrition: A Review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- Stein, H.H.; Berger, L.L.; Drackley, J.K.; Fahey, G.C.; Hernot, D.C.; Parsons, C.M. Nutritional Properties and Feeding Values of Soybeans and Their Coproducts. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Urbana, IL, USA, 2008; pp. 613–660. ISBN 978-1-893997-64-6. [Google Scholar]
- Koubaa, M.; Mhemdi, H.; Barba, F.J.; Roohinejad, S.; Greiner, R.; Vorobiev, E. Oilseed Treatment by Ultrasounds and Microwaves to Improve Oil Yield and Quality: An Overview. Food Res. Int. 2016, 85, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A. Recovery, Refining, Converting, and Stabilizing Edible Fats and Oils. In Food Lipids: Chemistry, Nutrition, and Biotechnology; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 205–241. ISBN 978-1-4200-4664-9. [Google Scholar]
- Matthäus, B. Oil Technology. In Advances in Botanical Research; Rapeseed Breeding; Academic Press: Cambridge, MA, USA, 2007; Volume 45. [Google Scholar]
- Cunha, S.C.; Fernandes, J.O. Extraction Techniques with Deep Eutectic Solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Uitterhaegen, E.; Evon, P. Twin-Screw Extrusion Technology for Vegetable Oil Extraction: A Review. J. Food Eng. 2017, 212, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Mouloungui, Z.; Valentin, R.; Candy, L.; Fabre, J.-F.; Lacroux, É.; Merah, O.; Cerny, M.; Giacinti, G.; de Caro, P.; Thiebaud-Roux, S. Huiles alimentaires et lipochimie. In Chimie Verte et Industries Agroalimentaires: Vers une Bioéconomie Durable; Editions Lavoisier: Paris Cedex, France, 2020; ISBN 978-2-7430-2513-7. [Google Scholar]
- Lacaze-Dufaure, C.; Leyris, J.; Rigal, L.; Mouloungui, Z. A Twin-Screw Extruder for Oil Extraction: I. Direct Expression of Oleic Sunflower Seeds. J. Am. Oil Chem. Soc. 1999, 76, 1073–1079. [Google Scholar] [CrossRef]
- Amalia Kartika, I.; Pontalier, P.Y.; Rigal, L. Extraction of Sunflower Oil by Twin Screw Extruder: Screw Configuration and Operating Condition Effects. Bioresour. Technol. 2006, 97, 2302–2310. [Google Scholar] [CrossRef]
- Uitterhaegen, E.; Nguyen, Q.; Sampaio, K.; Stevens, C.; Merah, O.; Talou, T.; Rigal, L.; Evon, P. Extraction of Coriander Oil Using Twin-Screw Extrusion: Feasibility Study and Potential Press Cake Applications. J. Am. Oil Chem. Soc. 2015, 92, 1219–1233. [Google Scholar] [CrossRef] [Green Version]
- Evon, P.; Kartika, I.A.; Cerny, M.; Rigal, L. Extraction of Oil from Jatropha Seeds Using a Twin-Screw Extruder: Feasibility Study. Ind. Crops Prod. 2013, 47, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Vandenbossche, V.; Candy, L.; Evon, P.; Rouilly, A.; Pontalier, P.-Y. Extrusion. In Green Food Processing Techniques; Chemat, F., Vorobiev, E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 289–314. ISBN 978-0-12-815353-6. [Google Scholar]
- Dufaure, C.; Mouloungui, Z.; Rigal, L. A Twin-Screw Extruder for Oil Extraction: II. Alcohol Extraction of Oleic Sunflower Seeds. J. Am. Oil Chem. Soc. 1999, 76, 1081–1086. [Google Scholar] [CrossRef]
- Kartika, I.A.; Pontalier, P.-Y.P.-Y.; Rigal, L. Twin-Screw Extruder for Oil Processing of Sunflower Seeds: Thermo-Mechanical Pressing and Solvent Extraction in a Single Step. Ind. Crops Prod. 2010, 32, 297–304. [Google Scholar] [CrossRef]
- Evon, P.; Vandenbossche, V.; Pontalier, P.Y.; Rigal, L. Direct Extraction of Oil from Sunflower Seeds by Twin-Screw Extruder According to an Aqueous Extraction Process: Feasibility Study and Influence of Operating Conditions. Ind. Crops Prod. 2007, 26, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Evon, P.; Vandenbossche, V.; Pontalier, P.Y.; Rigal, L. Aqueous Extraction of Residual Oil from Sunflower Press Cake Using a Twin-Screw Extruder: Feasibility Study. Ind. Crops Prod. 2009, 29, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Bertouche, S.; Tomao, V.; Hellal, A.; Boutekedjiret, C.; Chemat, F. First Approach on Edible Oil Determination in Oilseeds Products Using Alpha-Pinene. J. Essent. Oil Res. 2013, 25, 439–443. [Google Scholar] [CrossRef]
- Sicaire, A.-G.; Vian, M.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Experimental Approach versus COSMO-RS Assisted Solvent Screening for Predicting the Solubility of Rapeseed Oil. OCL 2015, 22, D404. [Google Scholar] [CrossRef] [Green Version]
- Office of Air and Radiation. The Clean Air Act Amendments of 1990. Available online: https://www3.epa.gov/airtoxics/smbus.pdf (accessed on 25 October 2021).
- European Parliament, Council of 23 April 2009. Directive 2009/32/EC on the Approximation of the Laws of the Member States on Extraction Solvents Used in the Production of Foodstuffs and Food Ingredients. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0032#ntr4-L_2009141EN.01000801-E0004 (accessed on 3 June 2021).
- Li, Y.; Fine, F.; Fabiano-Tixier, A.-S.; Abert-Vian, M.; Carre, P.; Pages, X.; Chemat, F. Evaluation of Alternative Solvents for Improvement of Oil Extraction from Rapeseeds. Comptes Rendus Chim. 2014, 17, 242–251. [Google Scholar] [CrossRef]
- Sicaire, A.-G.; Vian, M.; Fine, F.; Joffre, F.; Carré, P.; Tostain, S.; Chemat, F. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing. Int. J. Mol. Sci. 2015, 16, 8430–8453. [Google Scholar] [CrossRef]
- Sicaire, A.-G.; Vian, M.A.; Fine, F.; Carré, P.; Tostain, S.; Chemat, F. Ultrasound Induced Green Solvent Extraction of Oil from Oleaginous Seeds. Ultrason. Sonochem. 2016, 31, 319–329. [Google Scholar] [CrossRef]
- Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E. Effect of Ultrasound and Green Solvents Addition on the Oil Extraction Efficiency from Rapeseed Flakes. Ultrason. Sonochem. 2017, 39, 58–65. [Google Scholar] [CrossRef]
- Lohani, U.C.; Fallahi, P.; Muthukumarappan, K. Comparison of Ethyl Acetate with Hexane for Oil Extraction from Various Oilseeds. J. Am. Oil Chem. Soc. 2015, 92, 743–754. [Google Scholar] [CrossRef]
- Yara-Varón, E.; Selka, A.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Touaibia, M.; Chemat, F. Solvent from Forestry Biomass. Pinane a Stable Terpene Derived from Pine Tree Byproducts to Substitute n -Hexane for the Extraction of Bioactive Compounds. Green Chem. 2016, 18, 6596–6608. [Google Scholar] [CrossRef]
- Madji, S.; Hilali, S.; Fabiano-Tixier, A.-S.; Tenon, M.; Bily, A.; Laguerre, M.; Chemat, F. Para-Menthane as a Stable Terpene Derived from Orange By-Products as a Novel Solvent for Green Extraction and Solubilization of Natural Substances. Molecules 2019, 24, 2170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapinel, V.; Rombaut, N.; Rakotomanomana, N.; Vallageas, A.; Cravotto, G.; Chemat, F. An Original Approach for Lipophilic Natural Products Extraction: Use of Liquefied n-Butane as Alternative Solvent to n-Hexane. LWT Food Sci. Technol. 2017, 85, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Z.-S.; Zhang, T.-F.; Wang, X. Extraction and Characterization of Flaxseed Oil Obtained with Subcritical N-Butane. J. Oleo Sci. 2020, 69, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Starmans, D.A.J.; Nijhuis, H.H. Extraction of Secondary Metabolites from Plant Material: A Review. Trends Food Sci. Technol. 1996, 7, 191–197. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Nandasiri, R.; Eskin, N.A.M.; Eck, P.; Thiyam-Höllander, U. Application of Green Technology on Extraction of Phenolic Compounds in Oilseeds (Canola). In Cold Pressed Oils; Ramadan, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 81–96. ISBN 978-0-12-818188-1. [Google Scholar]
- Häckl, K.; Kunz, W. Some Aspects of Green Solvents. Comptes Rendus. Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.T.; Kirchhoff, M.M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Abreu, C.M.R.; Maximiano, P.; Guliashvili, T.; Nicolas, J.; Serra, A.C.; Coelho, J.F.J. Cyclopentyl Methyl Ether as a Green Solvent for Reversible-Addition Fragmentation Chain Transfer and Nitroxide-Mediated Polymerizations. RSC Adv. 2016, 6, 7495–7503. [Google Scholar] [CrossRef]
- Citeau, M.; Regis, J.; Carré, P.; Fine, F. Value of Hydroalcoholic Treatment of Rapeseed for Oil Extraction and Protein Enrichment. OCL 2019, 26, 1. [Google Scholar] [CrossRef] [Green Version]
- Sawada, M.M.; Venâncio, L.L.; Toda, T.A.; Rodrigues, C.E.C. Effects of Different Alcoholic Extraction Conditions on Soybean Oil Yield, Fatty Acid Composition and Protein Solubility of Defatted Meal. Food Res. Int. 2014, 62, 662–670. [Google Scholar] [CrossRef]
- Pederssetti, M.M.; Palú, F.; da Silva, E.A.; Rohling, J.H.; Cardozo-Filho, L.; Dariva, C. Extraction of Canola Seed (Brassica Napus) Oil Using Compressed Propane and Supercritical Carbon Dioxide. J. Food Eng. 2011, 102, 189–196. [Google Scholar] [CrossRef]
- Nimet, G.; da Silva, E.A.; Palú, F.; Dariva, C.; dos Freitas, L.S.; Neto, A.M.; Filho, L.C. Extraction of Sunflower (Heliantus Annuus L.) Oil with Supercritical CO2 and Subcritical Propane: Experimental and Modeling. Chem. Eng. J. 2011, 168, 262–268. [Google Scholar] [CrossRef]
- Zanqui, A.B.; de Morais, D.R.; da Silva, C.M.; Santos, J.M.; Gomes, S.T.M.; Visentainer, J.V.; Eberlin, M.N.; Cardozo-Filho, L.; Matsushita, M. Subcritical Extraction of Flaxseed Oil with N-Propane: Composition and Purity. Food Chem. 2015, 188, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Beckel, A.C.; Belter, P.A.; Smith, A.K. Solvent Effects on the Products of Soybean Oil Extraction. J. Am. Oil Chem. Soc. 1948, 25, 7–9. [Google Scholar] [CrossRef]
- Rao, R.K.; Arnold, L.K. Alcoholic Extraction of Vegetable Oils. III. Solubilities of Babassu, Coconut, Olive, Palm, Rapeseed, and Sunflower Seed Oils in Aqueous Ethanol. J. Am. Oil Chem. Soc. 1956, 33, 389–391. [Google Scholar] [CrossRef]
- Kanth Rao, R.; Arnold, L.K. Alcoholic Extraction of Vegetable Oils. Part IV. Solubilities of Vegetable Oils in Aqueous 2-Propanol. J. Am. Oil Chem. Soc. 1957, 34, 401–404. [Google Scholar] [CrossRef]
- Rao, R.K.; Arnold, L.K. Alcoholic Extraction of Vegetable Oils. V. Pilot Plant Extraction of Cottonseed by Aqueous Ethanol. J. Am. Oil Chem. Soc. 1958, 35, 277–281. [Google Scholar] [CrossRef]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of Bio-Based Solvents for Phenolic Acids Extraction from Aqueous Matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Pace, V.; Hoyos, P.; Castoldi, L.; de Domínguez María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A Biomass-Derived Solvent with Broad Application in Organic Chemistry. ChemSusChem 2012, 5, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Sicaire, A.-G.; Vian, M.A.; Filly, A.; Li, Y.; Bily, A.; Chemat, F. 2-Methyltetrahydrofuran: Main Properties, Production Processes, and Application in Extraction of Natural Products. In Alternative Solvents for Natural Products Extraction; Chemat, F., Vian, M.A., Eds.; Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 253–268. ISBN 978-3-662-43628-8. [Google Scholar]
- Antonucci, V.; Coleman, J.; Ferry, J.B.; Johnson, N.; Mathe, M.; Scott, J.P.; Xu, J. Toxicological Assessment of 2-Methyltetrahydrofuran and Cyclopentyl Methyl Ether in Support of Their Use in Pharmaceutical Chemical Process Development. Org. Process Res. Dev. 2011, 15, 939–941. [Google Scholar] [CrossRef]
- Tundo, P.; Selva, M. The Chemistry of Dimethyl Carbonate. Acc. Chem. Res. 2002, 35, 706–716. [Google Scholar] [CrossRef]
- Eggersdorfer, M. Terpenes. In Ullmann’s Encyclopedia of Industrial Chemistry; American Cancer Society: Atlanta, GA, USA, 2000; ISBN 978-3-527-30673-2. [Google Scholar]
- Davis, E.M.; Croteau, R. Cyclization Enzymes in the Biosynthesis of Monoterpenes, Sesquiterpenes, and Diterpenes. In Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids; Leeper, F.J., Vederas, J.C., Eds.; Topics in Current Chemistry; Springer: Berlin/Heidelberg, German, 2000; pp. 53–95. ISBN 978-3-540-48146-1. [Google Scholar]
- Paduch, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances Useful in Human Healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315. [Google Scholar] [CrossRef]
- Rodríguez-Llorente, D.; Cañada-Barcala, A.; Álvarez-Torrellas, S.; Águeda, V.I.; García, J.; Larriba, M. A Review of the Use of Eutectic Solvents, Terpenes and Terpenoids in Liquid–Liquid Extraction Processes. Processes 2020, 8, 1220. [Google Scholar] [CrossRef]
- Virot, M.; Tomao, V.; Ginies, C.; Chemat, F. Total Lipid Extraction of Food Using D-Limonene as an Alternative to n-Hexane. Chroma 2008, 68, 311–313. [Google Scholar] [CrossRef]
- Virot, M.; Tomao, V.; Ginies, C.; Visinoni, F.; Chemat, F. Green Procedure with a Green Solvent for Fats and Oils’ Determination: Microwave-Integrated Soxhlet Using Limonene Followed by Microwave Clevenger Distillation. J. Chromatogr. A 2008, 1196–1197, 147–152. [Google Scholar] [CrossRef]
- Dejoye Tanzi, C.; Abert Vian, M.; Ginies, C.; Elmaataoui, M.; Chemat, F. Terpenes as Green Solvents for Extraction of Oil from Microalgae. Molecules 2012, 17, 8196–8205. [Google Scholar] [CrossRef] [Green Version]
- Adesina, A.Y.; Obot, I.B.; Sorour, A.; Mtongana, S.; Mamilla, S.B.; Almathami, A.A. Corrosion Challenges and Prevention in Ethyl Acetate (EA) Production and Related Processes—An Overview. Eng. Fail. Anal. 2021, 127, 105511. [Google Scholar] [CrossRef]
- Pyo, S.-H.; Park, J.H.; Chang, T.-S.; Hatti-Kaul, R. Dimethyl Carbonate as a Green Chemical. Curr. Opin. Green Sustain. Chem. 2017, 5, 61–66. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Alcántara, A.R.; de Domínguez María, P. Cyclopentyl Methyl Ether (CPME): A Versatile Eco-Friendly Solvent for Applications in Biotechnology and Biorefineries. ChemSusChem 2019, 12, 2083–2097. [Google Scholar] [CrossRef]
- Azzena, U.; Carraro, M.; Pisano, L.; Monticelli, S.; Bartolotta, R.; Pace, V. Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem 2019, 12, 40–70. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Yamagiwa, N.; Torisawa, Y. Cyclopentyl Methyl Ether as a New and Alternative Process Solvent. Org. Process Res. Dev. 2007, 11, 251–258. [Google Scholar] [CrossRef]
- Reverchon, E.; de Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Tres, M.V.; Racoski, J.C.; Di Luccio, M.; Oliveira, J.V.; Treichel, H.; de Oliveira, D.; Mazutti, M.A. Separation of Soybean Oil/n-Hexane and Soybean Oil/n-Butane Mixtures Using Ceramic Membranes. Food Res. Int. 2014, 63, 33–41. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Qian, L.; Liu, Y. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation. Molecules 2016, 21, 1675. [Google Scholar] [CrossRef] [Green Version]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which Is the Best Food Emerging Solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Passos, H.; Freire, M.G.; Coutinho, J.A.P. Ionic Liquid Solutions as Extractive Solvents for Value-Added Compounds from Biomass. Green Chem. 2014, 16, 4786–4815. [Google Scholar] [CrossRef] [Green Version]
- Kentish, S.; Ashokkumar, M. The Physical and Chemical Effects of Ultrasound. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2010; pp. 1–12. ISBN 978-1-4419-7471-6. [Google Scholar]
- Chemat, F.; Zill-e-Huma; Khan, M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Luque-García, J.L.; de Luque Castro, M.D. Ultrasound-Assisted Soxhlet Extraction: An Expeditive Approach for Solid Sample Treatment: Application to the Extraction of Total Fat from Oleaginous Seeds. J. Chromatogr. A 2004, 1034, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Zdanowska, P.; Dróżdż, B.; Janakowski, S.; Derewiaka, D. Impact of Preliminary Ultrasound Treatment of Rape Seeds on the Pressing Process and Selected Oil Characteristics. Ind. Crops Prod. 2019, 138, 111572. [Google Scholar] [CrossRef]
- Berot, S.; Briffaud, J. Parameters for Obtaining Concentrates from Rapeseed and Sunflower Meal. Plant Food Hum. Nutr. 1983, 33, 237–242. [Google Scholar] [CrossRef]
- Guthrie, F. LII. On Eutexia. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1884, 17, 462–482. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.Q.; Abbasi, N.M.; Anderson, J.L. Deep Eutectic Solvents in Separations: Methods of Preparation, Polarity, and Applications in Extractions and Capillary Electrochromatography. J. Chromatogr. A 2020, 1633, 461613. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep Eutectic Solvents and Their Applications as Green Solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sze, L.L.; Pandey, S.; Ravula, S.; Pandey, S.; Zhao, H.; Baker, G.A.; Baker, S.N. Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustain. Chem. Eng. 2014, 2, 2117–2123. [Google Scholar] [CrossRef]
- Gomez, A.; Biswas, A.; Tadini, C.; Furtado, R.; Alves, C.; Cheng, H. Use of Natural Deep Eutectic Solvents for Polymerization and Polymer Reactions. J. Braz. Chem. Soc. 2019, 30, 717–726. [Google Scholar] [CrossRef]
Oil Production (in Kilo Ton) | Percentage Increase in Production (%) | ||||||
---|---|---|---|---|---|---|---|
Year | Rapeseed Oil | Sunflower Oil | Soybean Oil | Flaxseed Oil | Sesame Oil | Flaxseed Oil | Sesame Oil |
2010 | 1897.8 | 568.1 | 91.3 | 0.66 | 4.59 | - | - |
2011 | 1788.8 | 644.6 | 117.2 | 0.66 | 4.70 | 0 | 2.33 |
2012 | 1987.7 | 590.8 | 116.6 | 0.66 | 4.74 | 0 | 0.77 |
2013 | 1912.9 | 578.8 | 98.0 | 0.66 | 4.95 | 0 | 4.41 |
2014 | 2044.0 | 568.0 | 105.0 | 4.30 | 4.60 | 551.52 | −6.90 |
2015 | 2054.9 | 566.3 | 128.3 | 4.10 | 4.89 | −4.65 | 6.23 |
2016 | 1916.4 | 496.7 | 145.1 | 5.50 | 4.79 | 34.15 | −2.11 |
2017 | 1861.0 | 529.8 | 152.6 | 7.60 | 5.44 | 38.18 | 13.64 |
2018 | 1782.7 | 615.0 | 149.6 | 10.00 | 5.73 | 31.58 | 5.24 |
Production (Mt) | Rapeseed | Soybean | Sunflower | Flaxseed |
---|---|---|---|---|
2010 a | 59.8 | 265.1 | 31.5 | 1.8 |
2011 a | 62.8 | 261.6 | 40.1 | 2.2 |
2012 a | 62.6 | 241.3 | 36.6 | 2.0 |
2013 a | 73.1 | 277.7 | 45.3 | 2.3 |
2014 a | 74.5 | 306.3 | 42.6 | 2.7 |
2015 a | 70.3 | 323.3 | 44.3 | 3.1 |
2016 a | 68.2 | 335.9 | 47.5 | 2.9 |
2017 a | 76.6 | 359.5 | 48.6 | 2.9 |
2018 a | 75.2 | 344.6 | 51.9 | 3.0 |
2019 a | 70.5 | 333.7 | 56.1 | 3.1 |
2018/2019 b | 72.9 | 361.3 | 50.7 | - |
2019/2020 b | 69.2 | 339.9 | 53.9 | - |
2020/2021 b | 72.7 | 366.2 | 49.1 | - |
2021/2022 b | 67.5 | 384.0 | 56.0 | - |
Production of Oil (Mt) | Rapeseed | Soybean | Sunflower | Flaxseed |
---|---|---|---|---|
2010 a | 22.83 | 40.71 | 12.59 | 0.55 |
2011 a | 23.09 | 42.33 | 13.29 | 0.55 |
2012 a | 24.03 | 42.19 | 15.05 | 0.61 |
2013 a | 24.34 | 42.85 | 13.69 | 0.59 |
2014 a | 26.26 | 45.95 | 16.13 | 0.63 |
2015 a | 26.14 | 49.99 | 15.33 | 0.69 |
2016 a | 24.43 | 51.81 | 16.10 | 0.76 |
2017 a | 24.20 | 56.43 | 18.30 | 0.77 |
2018 a | 24.58 | 56.91 | 18.41 | 0.75 |
2018/2019 b | 27.83 | 56.01 | 19.62 | - |
2019/2020 b | 28.08 | 58.54 | 21.20 | - |
2020/2021 b | 29.19 | 59.32 | 19.16 | - |
2021/2022 b | 27.42 | 61.74 | 21.80 | - |
Composition (%) | Rapeseed | Soybean | Sunflower | Flaxseed |
---|---|---|---|---|
Moisture | 7.6–10.1 | 5.6–11.5 | 7.2–8.2 | 4–8 |
Dry matter | 89.9–92.4 | 88.5–94.4 | 91.8–92.8 | 92 |
Crude lipids | 28.5–54.9 | 15.5–24.7 | 44.5–54.46 | 30–47 |
Crude proteins | 18.43–18.6 | 32–43.6 | 14.8–20.78 | 20.7 |
Ash | 4 | 4.5–6.4 | 3.02–3.2 | 3–4 |
Crude fibre | 8.5 | 5.6–31.9 | 8.6–15.9 | 9.1 |
Total sugars | 5.4 | 7.5 | 2.5 | 2.7 |
Starch | 3.5 | 5.3 | 1.2 | 5.5 |
NDF 1 | 16.0–18.5 | 10–14.9 | 22.03–28.8 | 23.8 |
ADF 2 | 10.43–13 | 7–11.1 | 15.3–19 | 12.9 |
Lignin | 5.9 | 0.9 | 6 | 5.3 |
Ref. | [59,60,61] | [61,62] | [43,59,61] | [48,54,61] |
Composition (%) | Rapeseed | Soybean | Sunflower | Flaxseed |
---|---|---|---|---|
Moisture | 8 | 6.8–15.2 | 7.6–9 | 8.8 |
Dry matter | 90–92 | 84.8–93.2 | 91–92.4 | 91.2 |
Crude lipids | 11.8–13.1 | 8.9 | 14.6–30.2 | 9.8 |
Crude proteins | 31–34.9 | 43.8–47.5 | 23.9–34.1 | 32.3 |
Ash | 5.1–6.2 | 6.1–6.4 | 5.2–7.5 | 5.7 |
Crude fibre | 9.7–11.6 | 5.1–6 | 8.6–25.4 | 8.8 |
Total sugars | 9.2 | 8.7 | 5.8 | 3.9 |
Starch | 6 | 4.7 | 3.6 | 6.6 |
NDF | 16.8–26.9 | 12.7 | 41 | 21.6 |
ADF | 14.7–18 | 7.4 | 29.1 | 13.6 |
Lignin | 6.5–8.3 | 0.7 | 9.8 | 5.7 |
Ref. | [63,64,65] | [63,64] | [43,63,64] | [63] |
Composition (%) | Rapeseed | Soybean | Sunflower | Flaxseed |
---|---|---|---|---|
Moisture | 8.7–11 | 10.4–12 | 5.6–11.1 | 12.1 |
Dry matter | 89–91.3 | 88–89.6 | 88.9–94.4 | 87.9 |
Crude lipids | 2.2–3.2 | 1.5–2.2 | 1.5–2.75 | 3.4 |
Crude proteins | 33.9–37 | 41.5–48.5 | 23.7–32.0 | 32 |
Ash | 6.3–7 | 6.4–6.7 | 5.3–6.5 | 5.7 |
Crude fibre | 11.5–12.7 | 3.9–6.8 | 26.2–41.0 | 10 |
Total sugars | 9.4–9.5 | 9.5 | 5.3 | 4.5 |
Starch | 5.6–6.8 | 5.5 | 3.3 | 8.2 |
NDF | 25.1–28.1 | 8.8–26.4 | 26.8–41.7 | 21.8 |
ADF | 16.4–18.5 | 5–9.5 | 22.4–29.9 | 13.7 |
Lignin | 7.4–8.6 | 0.4 | 7.7–26.8 | 5.9 |
Ref. | [5,59,63] | [59,63,66] | [5,59,63,65] | [63] |
Fatty Acids | RAPESEED Oil | Soybean Oil | Sunflower Oil | Flaxseed Oil | |
---|---|---|---|---|---|
C6:0 | Caproic acid | ND | ND | ND | ND |
C8:0 | Caprylic acid | ND | ND | ND | ND |
C10:0 | Capric acid | ND | ND | ND | ND |
C12:0 | Lauric acid | ND | ND–0.1 | ND–0.1 | ND–0.3 |
C14:0 | Myristic acid | ND–0.2 | NA | ND–0.2 | ND–0.2 |
C16:0 | Palmitic acid | 2.5–7.0 | 6–13.5 | 2.6–7.6 | 4.0–11.3 |
C16:1 | Palmitoleic acid | ND–0.6 | ND–0.3 | ND–0.3 | ND–0.5 |
C17:0 | Margaric acid | ND–0.3 | ND–0.1 | ND–0.2 | ND–0.1 |
C17:1 | Heptadecenoic acid | ND–0.3 | ND–0.1 | ND–0.1 | ND–0.1 |
C18:0 | Stearic acid | 0.8–3.0 | 2.0–5.4 | 2.1–6.5 | 2.0–8.0 |
C18:1 | Oleic acid | 51–76 | 17–30 a 84 b | 14.0–39.4 c 43.1–75 d 75–90.7 e | 9.8–36.0 |
C18:2 | Linoleic acid | 13–30 | 48.0–59.0 a 2 b | 48.3–74 c 8.7–45.3 d 2.1–17 e | 8.3–30.0 f 73 g |
C18:3 | Linolenic acid | 5.0–14.0 | 4–11.0 | ND–1 | 43.8–70.0 f 2–3 g |
C20:0 | Arachidic acid | 0.2–1.2 | 0.1–0.6 | 0.1–0.5 | ND–1.0 |
C20:1 | Gadoleic acid | 0.1–4.3 | ND–0.5 | ND–0.5 | ND–1.2 |
C20:2 | Eicosadienoic acid | ND–0.1 | ND–0.1 | ND | ND |
C20:4 | Arachidonic acid | 0.1 | NA | NA | NA |
C22:0 | Behenic acid | ND–0.6 | ND–0.7 | 0.3–1.6 | ND–0.5 |
C22:1 | Erucic acid | ND–2.0 | ND–0.3 | ND–0.3 | ND–1.2 |
C22:2 | Docosadienoic acid | ND–0.1 | ND | ND–0.3 | ND |
C22:6 | Docosahexaenoic acid | 0.1 | NA | NA | NA |
C24:0 | Lignoceric acid | ND–0.3 | ND–0.5 | ND–0.5 | NA |
C24:1 | Nervonic acid | ND–0.4 | ND | ND | NA |
Amino Acid | Rapeseed | Soybean | Sunflower | Flaxseed | |
---|---|---|---|---|---|
Ala | Alanine | 3.9–4.5 | 3.6–4.6 | 4.1 | 4.3–5.4 |
Arg | Arginine | 5.6–6.8 | 6.2–7.8 | 8.5–9.1 | 9.2–11.8 |
Asp | Aspartic acid | 6.2–7.2 | 7.1–11.9 | 8.7–10.2 | 9.3–12.5 |
Cys | Cystine | 1.7–2.8 | 1.1–2.1 | 1.8–2.2 | 1.1–3.8 |
Glu | Glutamic acid | 16.6–20.2 | 9.1–19.7 | 21.0–21.9 | 19.6–26.3 |
Gly | Glycine | 4.3–5.5 | 3.7–4.5 | 5.1–5.6 | 4.8–7.0 |
His | Histidine | 2.6–2.8 | 2.3–3.0 | 2.4–2.8 | 1.4–2.9 |
Ile | Isoleucine | 3.7–4.2 | 4.5–5.3 | 3.9–4.5 | 4–6 |
Leu | Leucine | 6.3–7.4 | 7.1–7.8 | 6.1–6.9 | 3.5–6.8 |
Lys | Lysine | 5.8 | 5.8–6.4 | 3.5–3.9 | 1.8–4.1 |
Met | Methionine | 1.8–2.2 | 1.1–2.7 | 1.9–2.6 | 1.4–2.2 |
Phe | Phenylalanine | 3.5–4.2 | 3.9–5.5 | 4.6–5.1 | 4.6–5.9 |
Pro | Proline | 6.0–7.5 | 3.6–5.5 | 5.0–5.1 | 3.1–5.2 |
Ser | Serine | 3.7–4.4 | 4.9–6.4 | 3.9–4.2 | 4.5–5.8 |
Thr | Threonine | 3.8–4.6 | 3.7–4.0 | 3.2–3.8 | 3.6–4.9 |
Trp | Tryptophan | 1.2–1.3 | 1.3–7.6 | 1.1–1.4 | 1.8 |
Tyr | Tyrosine | 2.6–3.1 | 3.2–4.1 | 1.4–2.9 | 1.5–2.9 |
Val | Valine | 4.8–5.5 | 4.6–5.2 | 4.8–5.8 | 4.6–5.6 |
Ref. | [40,81,82] | [20,46,64,81,82,83,84] | [20,40,64,82] | [46,47,54,85] |
Secondary Metabolites | (%) | Rapeseed | Rapeseed Cake | Rapeseed Meal | |
Total Phenolics | 1.77–1.97 c [87] | 0.64–1.84 [88] 0.531–1.666 c [5,39,87] | |||
Phenolic acids (and derivatives) | Total | 1.31–1.5 [87] | 0.916–1.455 [87] | ||
Sinapic acid | 0.029–0.044 [87] | 0.032–0.041 [87] | |||
cis-Sinapic acid | 0.035 d [89] | 0.037–0.047 [90] | |||
trans-Sinapic acid | 0.03 d [89] | 0.444–0.871 [90] | |||
Sinapoyl glucose | 0.237–0.401 [87] | 0.135–0.199 [87] | |||
Sinapine | 1–1.5 [91] | 0.990–1.131 [87] 0.42 d [89] | 0.547–1.8 [39,87,90,92] | ||
Tannins | Total | 0.2–3 [88,92] | |||
Flavonoids | Isoquercetin | 0.049–0.0596 [90] | |||
Other Anti-Nutriments | GSL | 10–20 a [91] | |||
Phytic acid | 1–7 [88,91] | 3–6 [92] | |||
(%) | Soybean | Soybean Meal | |||
Total Phenolics | |||||
Phenolic acids (and derivatives) | Total | 1–25 b [20] | 0.0736 h [93] | ||
p-Hydroxybenzoic acid | 0.0139 h [93] | ||||
trans-Ferulic acid | 0.0157 h [93] | ||||
trans-p-Coumaric acid | 0.0094 h [93] | ||||
trans-Caffeic acid | 0.006 h [93] | ||||
Syringic acid | 0.0289 h [93] | ||||
Flavonoids | Total | 0.25 e [94] | 0.28 e [94] | ||
Isoflavones | 0.12–0.42 [20] | ||||
Other Anti-Nutriments | Phytic acid | 1.0–2.2 [20,95] | |||
Saponins | 0.09–6.16 [20,95] | ||||
(%) | Sunflower | Sunflower Meal | |||
Total Phenolics | 1–4 [62] | 3.5 [5] | |||
Phenolic acids (and derivatives) | Total | 1.0037 h [93] | |||
p-Hydroxybenzoic acid | 0.0074 h [93] | ||||
Chlorogenic acid | 0.5–2.8 g [62] | 2.7 [20] | |||
Ferulic acid | |||||
trans-Ferulic acid | 0.0072 h [93] | ||||
trans-p-Coumaric acid | 0.0056 h [93] | ||||
Vanillic acid | 0.0008 h [93] | ||||
Caffeic acid | 0.05–0.29 g [62] | 0.2 [20] | |||
trans-Caffeic acid | 0.9791 h [93] | ||||
Quinic acid | 0.12–0.25 g [62] | 0.38 [20] | |||
Other Anti-Nutriments | Phytic acid | 1.6–1.7 [20] | |||
(%) | Flaxseed | Flaxseed Meal | |||
Total Phenolics | 0.235–0.389 f [51] | ||||
Phenolic acids (and derivatives) | Total | 0.8–2.767 [48,54,55] | 8.44 [54], 0.0811 h [93] | ||
p-Hydroxybenzoic acid | 1.719 [54] | 6.454 [54], 0.0026 h [93] | |||
Chlorogenic acid | 0.72 [54] | 1.435 [54] | |||
Ferulic acid | 0.161 [54], 0.0015–0.0047 [51] | 0.313 [54] | |||
trans-Ferulic acid | 0.0376 h [93] | ||||
Coumaric acid | 0.087 [54], 0.00077–0.0011 [51] | 0.13 [54] | |||
trans-p-Coumaric acid | 0.0061 h [93] | ||||
Gallic acid | 0.029 [54] | 0.017 [54] | |||
Vanillin | 0.022 [54] | 0.042 [54] | |||
Vanillic acid | Traces [93] | ||||
Sinapic acid | 0.018 [54] | 0.027 [54] | |||
trans-Sinapic acid | 0.0291 h [93] | ||||
Protocatechuic acid | 0.007 [54] | 0.007 [54] | |||
Caffeic acid | 0.0011–0.004 [51,54] | 0.015 [54] | |||
trans-Caffeic acid | 0.0053 h [93] | ||||
Flavonoids | Total | 0.035–0.07 [48] | |||
Lignans | Total | 1.33 [53] | |||
SDG 1 | 0.0062–0.0145 [51] | ||||
SECO 2 | 0.0077–0.0244 [51] | ||||
Other Anti-Nutriments | Phytic acid | 0.80–1.50 [54] |
Solvent | Sample Conditioning | Process Conditions | Assisted Extraction | Oilseed | Yield of Extraction (%) | Ref. |
---|---|---|---|---|---|---|
n-Hexane | Coarsely ground (moisture 8.69%) | 8 h conventional Soxhlet extraction, L/S = 20 mL/g | Non | Rapeseed | 58.2 | [122] |
n-Hexane 1 | Rapeseed cake | Pilot Soxhlet extraction, five washings of 30 min with L/S = 1.5 kg/kg, 55 °C | Non | Rapeseed | 90.1 | [123] |
Hexane 2 | Rapeseed cake | Cellulose cartridge, 40 °C, L/S = 15 | US pre-treatment 7.7 W/cm2 | Rapeseed | 91.5 | [124] |
Non | 71.61 | |||||
Hexane 95% | Dried and flaked (moisture 3 wt.%) | Solvent extraction (stirred), L/S = 30, 50 °C, 2.5 h (including US) | Non | Rapeseed | ≈70 | [125] |
US treatment, 20 min, 12 kHz, 400 W | 80 | |||||
n-Hexane | Ground (moisture 7.5–9%) | Soxhlet extraction 8 h | Non | Rapeseed | 43.0 b | [126] |
Accelerated solvent extractor, 1500 psi, 120 °C, 90 min | 36.4 b | |||||
n-Hexane 1 | Coarsely ground (moisture 5.89%) | 8 h conventional Soxhlet extraction, L/S = 10 mL/g | Non | Rapeseed | 46.7 a | [119] |
n-Hexane 3 | Ground | Stirred (4000 rpm) maceration (1 h), room temperature, L/S = 10 mL/g | Non | Rapeseed | 43.2 a | [127] |
n-Hexane 3 | Ground | Stirred (4000 rpm) maceration (1 h), 25 °C, L/S = 10 mL/g | Non | Rapeseed | 38.4 a | [128] |
Soxhlet extraction 8 h, L/S = 8.5 mL/g | 39.5 a | |||||
Hexane | Ground | Conventional Soxhlet extraction of 8 h | Non | Soybean | 18.8 a | [94] |
n-Hexane 1 | Crushed seeds | Soxhlet extraction 8 h, L/S = 10 mL/g | Non | Soybean | 19.5 a | [118] |
Sunflower | 52.6 a | |||||
n-Hexane 1 | Ground | Reflux extraction 2 h, 68 °C, L/S = 10 mL/g | Non | Sunflower | 53.4 b | [129] |
n-Hexane 1 | Ground (moisture ca. 6%) | Soxhlet extraction 6 h, 70 °C, L/S = 5 mL/g | Non | Flaxseed | 27.5 b | [130] |
n-Hexane | Ground (moisture 7.5–9%) | Soxhlet extraction 8 h | Non | Flaxseed | 35.6 b | [126] |
Accelerated solvent extractor, 1500 psi, 120 °C, 90 min | 28.4 b |
Solvent | Sample Conditioning | Process Conditions | Assisted Extraction | Oilseed | Yield of Extraction (%) | Ref. |
---|---|---|---|---|---|---|
Alcohols | ||||||
Ethanol 95.6 wt.% | Crushed seeds in solvent, no mechanical pressing | Four stage cross-current extraction by immersion in preheated solvent (L/S: 15 g/g per stage; 10 min per stage, 42 rpm stirring, 50 °C) | Non | Rapeseed | 92.7 | [140] |
Ethanol 92.0 wt.% | 86.5 | |||||
Isopropanol 87.8 wt.% | 89.3 | |||||
Isopropanol 84.2 wt.% | 87.1 | |||||
Isopropanol 99% | Dried and flaked (moisture 3 wt%) | Solvent extraction (stirred) L/S = 30, 50 °C, 2.5 h (including US) | Non | Rapeseed | ≈63 | [125] |
Isopropanol 99% | US treatment, 20 min, 12 kHz, 400 W | 79 | ||||
Ethanol 96% | 51 | |||||
Isopropanol 1 | Coarsely ground (moisture 8.69%) | 8 h conventional Soxhlet extraction, L/S = 20 mL/g | Non | Rapeseed | 83.1 | [122] |
Ethanol 1 | 22.8 | |||||
Butanol 1 | 78.3 | |||||
Ethanol 2 | Coarsely ground (moisture 5.89%) | 8 h conventional Soxhlet extraction, L/S = 10 mL/g | Non | Rapeseed | 46.6 a | [119] |
Isopropanol 2 | 45.0 a | |||||
Ethanol 99.8 wt.% | Dehulled, flaked and expanded to form soybean collets, grounded | Batch extractions, 60 °C, L/S = 3 (mass), 175 rpm stirring | Non | Soybean | 90.3–93.4 | [141] |
Ethanol 99.8 wt.% | Batch extractions, 90 °C, L/S = 3 (mass), 175 rpm stirring | 89.0–92.5 | ||||
Ethanol 94.09 wt.% | Batch extractions, 60 °C, L/S = 3 (mass), 175 rpm stirring | 28.2–31.3 | ||||
Ethanol 94.09 wt.% | Batch extractions, 90 °C, L/S = 3 (mass), 175 rpm stirring | 92.5–96.0 | ||||
Ethanol 88.08 wt.% | Batch extractions, 60 °C, L/S = 3 (mass), 175 rpm stirring | 2.9–6.6 | ||||
Furan Derivatives | ||||||
2-MeTHF | Ground | Conventional Soxhlet extraction of 8 h | Non | Soybean | 23.5 a | [94] |
2-MeTHF 95.5% | 23.7 a | |||||
MeTHF 1 | Finely ground | 8 h Soxhlet extraction (standard ISO 659) | Non | Rapeseed | 46.0 a | [123] |
Rapeseed cake | Pilot Soxhlet extraction, five washings of 30 min with L/S = 1.5 kg/kg, 55 °C | 95.6 | ||||
2-MeTHF 2 | Coarsely ground (moisture 5.89%) | 8 h conventional Soxhlet extraction, L/S = 10 mL/g | Non | Rapeseed | 47.2 a | [119] |
Terpenes | ||||||
p-Cymene 1 | Coarsely ground (moisture 8.69%) | 8 h conventional Soxhlet extraction, L/S = 20 mL/g | Non | Rapeseed | 88.9 | [122] |
d-Limonene 1 | 80.8 | |||||
α-Pinene 1 | 65.5 | |||||
p-Cymene 2 | Coarsely ground (moisture 5.89%) | Soxhlet extraction 8 h, L/S = 10 mL/g | Non | Rapeseed | 39.7 a | [119] |
d-Limonene 2 | 37.0 a | |||||
α-Pinene 1 | Crushed seeds | Soxhlet extraction 8 h, L/S = 10 mL/g | Non | Soybean | 21.1 a | [118] |
Sunflower | 67.2 a | |||||
Pinane (cis/trans: 7:3) | Ground | Stirred (4000 rpm) maceration (1 h), room temperature, L/S = 10 mL/g | Non | Rapeseed | 42.5 a | [127] |
p-Menthane | Ground | Stirred (4000 rpm) maceration (1 h), 25 °C, L/S = 10 mL/g | Non | Rapeseed | 37.1 a | [128] |
Soxhlet extraction 8 h, L/S = 8.5 mL/g | 40.5 a | |||||
Esters | ||||||
Ethyl acetate 2 | Coarsely ground (moisture 5.89%) | 8 h conventional Soxhlet extraction, L/S = 10 mL/g | Non | Rapeseed | 42.8 a | [119] |
Ethyl acetate | Ground (moisture 7.5–9%) | Accelerated solvent extractor, 1500 psi, 120 °C, 90 min | Non | Rapeseed | 40.4 b | [126] |
Flaxseed | 33.3 b | |||||
Other Green Solvents | ||||||
CPME | Coarsely ground (moisture 5.89%) | 8 h conventional Soxhlet extraction, L/S = 10 mL/g | Non | Rapeseed | 41.5 a | [119] |
DMC2 | 42.8 a | |||||
Subcritical Alkanes | ||||||
n-Butane (95%) | Ground | Subcritical pilot plant unit (1.5 l liquified n-butane at 0.2 MPa and 20 °C), L/S = 20 mL/g, 2 h | SubFE, 0.2 MPa, 20 °C | Sunflower | 36.6 b | [129] |
SubFE, 0.37 MPa, 40 °C | 36.9 b | |||||
n-Butane (99.5%) | Ground (moisture ca. 6%) | Subcritical fluid system, L/S = 20 mL/g, 57 min | SubFE, 0.5 MPa, 54 °C | Flaxseed | 28.8 b | [130] |
Propane (99.5%) | Milled (moisture 2.8%) | Laboratory scale extractor, 85 min, 0.8 cm3/min solvent flow | SubFE, 8 MPa, 60 °C | Rapeseed | 62.5 c, 23.1 a | [142] |
SubFE, 12 MPa, 60 °C | 64.4 c, 23.8 a | |||||
SubFE, 10 MPa, 45 °C | 55.9 c, 20.7 a | |||||
Propane (99.5%) | Milled (moisture 2.3%) | Laboratory scale extractor, 40 min, 0.8 cm3/min solvent flow | SubFE, 8 MPa, 60 °C | Sunflower | 92.7 c | [143] |
SubFE, 12 MPa, 60 °C | 100 c | |||||
SubFE, 10 MPa, 45 °C | 90.2 c | |||||
n-Propane (99.5%) | Ground (moisture 6.50%) | Laboratory scale extractor, 30 g sample, 1 cm3/min solvent flow, 60 min | SubFE, 10 MPa, 45 °C | Flaxseed | 28.2 a | [144] |
SubFE, 8 MPa, 60 °C | 28.6 a | |||||
SubFE, 12 MPa, 60 °C | 28.8 a | |||||
Supercritical CO2 | ||||||
CO2 (99.5%) | Milled (moisture 2.8%) | Laboratory scale extractor, 480 min, 3 cm3/min solvent flow | SFE, 25 MPa, 40 °C | Rapeseed | 52.7 c, 19.5 a | [142] |
SFE, 25 MPa, 60 °C | 49.2 c, 18.2 a | |||||
SFE, 22.5 MPa, 50 °C | 48.1 c, 17.8 a | |||||
CO2 (99.5%) | Milled (moisture 2.3%) | Laboratory scale extractor, 600 min, 3 cm3/min solvent flow | SFE, 25 MPa, 40 °C | Sunflower | 100 c | [143] |
SFE, 25 MPa, 60 °C | 87.8 c | |||||
SFE, 22 MPa, 50 °C | 75.6 c | |||||
CO2 (99.9%) | Ground | SFE system, 3 h, 40 g/min solvent flow, 100 g sample | SFE, 30 MPa, 50 °C | Flaxseed | 35.3 b | [57] |
Solvent | Boiling Point (°C) | Reference |
---|---|---|
n-hexane | 68.5–69 | [118,122,123,126,127,160] |
d-limonene | 176–177 | [73,122,128,160] |
α-pinene | 155–158 | [73,118,122,160] |
p-cymene | 174–176 | [73,122,160] |
Pinane | 157 | [127] |
p-menthane | 170 | [128] |
Solvent | Sample Conditioning | Process Conditions | Assisted Extraction | Oilseed | Molecule | Yield of Extraction (%) | Ref. |
---|---|---|---|---|---|---|---|
Alcohols | |||||||
Ethanol 95.6 wt.% | Crushed seeds in solvent, no mechanical pressing | Four stage cross-current extraction by immersion in preheated solvent (L/S: 15 g/g per stage; 10 min per stage, 42 rpm stirring, 50 °C) | Non | Rapeseed | GSL | 44.1 | [140] |
Ethanol 92.0 wt.% | 58.8 | ||||||
Isopropanol 87.8 wt.% | 58.8 | ||||||
Isopropanol 84.2 wt.% | 79.4 | ||||||
Ethanol 45% | Pressed cake (moisture 7.9%) | L/S = 10 mL/g, 45 °C, 15 min | Non | Rapeseed | Total phenolic compounds | 93.7 | [89] |
US treatment, 15 min, 20 kHz, 750 W, 85 µm, 73 W·cm−2 | 89.4 | ||||||
L/S = 10 mL/g, 65 °C, 15 min | Non | 86.6 | |||||
US treatment, 15 min, 20 kHz, 750 W, 85 µm, 73 W·cm−2 | 91.5 | ||||||
Ethanol 35% | L/S = 20 mL/g, 65 °C, 3 min | Non | 96.3 | ||||
Methanol 60% v/v | Finely ground meal, dehulled, defatted by hexane Soxhlet extraction | 3 extractions with: L/S = 10 mL/g, Troom, 30 min of gentle stirring, pH 6, 5000 g centrifugation for 10 min | Non | Rapeseed | Polyphenols | 94.5 | [176] |
GSL 1 | 75.5 | ||||||
Sugars 2 | 94.7 | ||||||
Ethanol 60% v/v | Polyphenols | >99 | |||||
GSL 1 | 97.3 | ||||||
Sugars 2 | 98.0 | ||||||
Isopropanol 60% v/v | Polyphenols | 95.9 | |||||
GSL 1 | >99 | ||||||
Sugars 2 | 97.1 | ||||||
Methanol 50% v/v | Finely ground meal, dehulled, defatted by hexane Soxhlet extraction | 3 extractions with: L/S = 10 mL/g, Troom, 30 min of gentle stirring, pH 6, 5000 g centrifugation for 10 min | Non | Sunflower | Polyphenols | 94.4 | [176] |
Sugars 3 | 99.1 | ||||||
Ethanol 50% v/v | Polyphenols | 93.3 | |||||
Sugars 3 | 99.1 | ||||||
Propanol 50% v/v | Polyphenols | 97.8 | |||||
Sugars 3 | 99.6 | ||||||
Isopropanol 50% v/v | Polyphenols | 96.7 | |||||
Sugars 3 | 99.6 | ||||||
Isobutanol 50% v/v | Polyphenols | 87.8 | |||||
Sugars 3 | 99.1 | ||||||
Methanol 70% | Ground, sieved and defatted seeds | 3 extractions with: L/S = 9 mL/g, 1 min ultrasonication, 5000 g centrifugation for 10 min under refrigerated conditions | Non | Rapeseed | Sinapine | 10.3 a | [87] |
Sinapic acid | 1.2 a | ||||||
SG 4 | 0.1 a | ||||||
TP 5 | 12.0 a | ||||||
Ethanol 70% | Sinapine | 8.0 a | |||||
Sinapic acid | 0.9 a | ||||||
SG 4 | 0.1 a | ||||||
TP 5 | 8.8 a | ||||||
Isopropanol 70% | Sinapine | 7.1 a | |||||
Sinapic acid | 0.9 a | ||||||
SG 4 | 0.1 a | ||||||
TP 5 | 7.7 a | ||||||
DES | |||||||
ChCl: Gly6 (1:1) | Defatted RSM | 40 °C, 2 h, 1000 rpm (stirring), L/S = 10 mL/g | Non | Rapeseed | Polyphenols | 67.5 | [39] |
ChCl: Gly (1:1) | 60 °C, 2 h, 1000 rpm (stirring), L/S = 10 mL/g | 85.0 | |||||
ChCl: Gly (1:1) | Scale up (250 g RSM), L/S = 10 mL/g, 60 °C, 200 rpm (stirring) | 91.5 | |||||
ChCl:EG7 (1:1) | 40 °C, 2 h, 1000 rpm (stirring), L/S = 10 mL/g | 72.9 | |||||
ChCl: EG (1:1) | 60 °C, 2 h, 1000 rpm (stirring), L/S = 10 mL/g | 85.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nehmeh, M.; Rodriguez-Donis, I.; Cavaco-Soares, A.; Evon, P.; Gerbaud, V.; Thiebaud-Roux, S. Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes 2022, 10, 841. https://doi.org/10.3390/pr10050841
Nehmeh M, Rodriguez-Donis I, Cavaco-Soares A, Evon P, Gerbaud V, Thiebaud-Roux S. Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes. 2022; 10(5):841. https://doi.org/10.3390/pr10050841
Chicago/Turabian StyleNehmeh, Mohamad, Ivonne Rodriguez-Donis, Alexandre Cavaco-Soares, Philippe Evon, Vincent Gerbaud, and Sophie Thiebaud-Roux. 2022. "Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review" Processes 10, no. 5: 841. https://doi.org/10.3390/pr10050841
APA StyleNehmeh, M., Rodriguez-Donis, I., Cavaco-Soares, A., Evon, P., Gerbaud, V., & Thiebaud-Roux, S. (2022). Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes, 10(5), 841. https://doi.org/10.3390/pr10050841