Use of Banana Waste as a Source for Bioelectricity Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Banana Waste
2.2. Construction of Microbial Fuel Cells
2.3. Characterization of Microbial Fuel Cell
2.4. Isolation of Electrogenic Microorganisms from the Anodic Chamber
2.5. Molecular Identification of Bacteria and Fungi
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segundo, R.F.; La Cruz-Noriega, D.; Milly Otiniano, N.; Benites, S.M.; Esparza, M.; Nazario-Naveda, R. Use of Onion Waste as Fuel for the Generation of Bioelectricity. Molecules 2022, 27, 625. [Google Scholar] [CrossRef] [PubMed]
- Kondaveeti, S.; Bisht, A.; Pagolu, R.; Lai, C.; Lestari, R.; Kumar, A.; Das, D.; Kalia, V.C.; Lee, J.K. Mild Alkaline Pretreatment of Rice Straw as a Feedstock in Microbial Fuel Cells for Generation of Bioelectricity. Indian J. Microbiol. 2022, 1–9. [Google Scholar] [CrossRef]
- Nazario-Naveda, R.R.; Rojas-Flores, S.J.; Angelats-Silva, L.; Gallozzo-Cardenas, M.M.; Valverde-Diaz, E.I. Películas biodegradables de almidón de papa reforzadas con extracto acuoso de piel de mango para su uso como envase activo. In Proceedings of the 19th LACCEI International Multi-Conference for Engineering, Education, and Technology, Buenos Aires, Argentina, 21–23 July 2021. [Google Scholar]
- Kitafa, A.B.; Obaid Al-saned, J.A. A Review on Microbial Fuel Cells. Eng. Technol. J. 2021, 39, 1–8. [Google Scholar] [CrossRef]
- Cui, Y.; Lai, B.; Tang, X. Microbial fuel cell-based biosensors. Biosensors 2019, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Flores, S.; Benites, S.M.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Valdiviezo-Dominguez, F.; Quezada Álvarez, M.A.; Vega-Ybañez, V.; Angelats-Silva, L. Bioelectricity Production from Blueberry Waste. Processes 2021, 9, 1301. [Google Scholar] [CrossRef]
- Di Fonzo, A.; Nardone, V.; Fathinejad, N.; Russo, C. The Impact of Plant Variety Protection Regulations on the Governance of Agri-Food Value Chains. Soc. Sci. 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Atelge, M.R.; Krisa, D.; Kumar, G.; Eskicioglu, C.; Nguyen, D.D.; Chang, S.W.; Atabani, A.E.; Al-Muhtaseb, A.H.; Unalan, S. Biogas production from organic waste: Recent progress and perspectives. Waste Biomass Valorization 2020, 11, 1019–1040. [Google Scholar] [CrossRef]
- Singh, G.P.; Aggarwal, S. Sawi transform for population growth and decay problems. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2019, 8, 157–162. [Google Scholar]
- Zhen, J.; Lazarovitch, N.; Tripler, E. Effects of fruit load intensity and irrigation level on fruit quality, water productivity and net profits of date palms. Agric. Water Manag. 2020, 241, 106385. [Google Scholar] [CrossRef]
- Spengler, J.J. The Economics of Population Growth. In The Population Crisis and the Use of World Resources; Springer: Dordrecht, The Netherlands, 1964; pp. 73–93. [Google Scholar]
- Katiyar, A.; Gaur, A.; Shrivastava, A.; Khan, M.A.; Singh, N.P.; Saini, R.; Kaur, M.G. Design and Construction of a Shredding Machine for Recycling and Management of Organic Waste. Int. J. Trend Sci. Res. Dev. 2019, 3, 707–712. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M. Prospects of banana waste utilization in wastewater treatment: A review. J. Environ. Manag. 2018, 206, 330–348. [Google Scholar] [CrossRef] [PubMed]
- Falcomer, A.L.; Riquette RF, R.; de Lima, B.R.; Ginani, V.C.; Zandonadi, R.P. Health benefits of green banana consumption: A systematic review. Nutrients 2019, 11, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florian TD, M.; Villani, N.; Aguedo, M.; Jacquet, N.; Thomas, H.G.; Gerin, P.; Magali, D.; Richel, A. Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind. Crops Prod. 2019, 132, 269–274. [Google Scholar] [CrossRef]
- Varma, V.; Bebber, D.P. Climate change impacts on banana yields around the world. Nat. Clim. Chang. 2019, 9, 752–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltro, L.; Karaski, T.U. Environmental indicators of banana production in Brazil: Cavendish and Prata varieties. J. Clean. Prod. 2019, 207, 363–378. [Google Scholar] [CrossRef]
- Flores, S.J.R.; Benites, S.M.; Rosa, A.L.R.A.L.; Zoilita, A.L.Z.A.L.; Luis, A.S.L. The Using Lime (Citrus × aurantiifolia), Orange (Citrus × sinensis), and Tangerine (Citrus reticulata) Waste as a Substrate for Generating Bioelectricity: Using lime (Citrus × aurantiifolia), orange (Citrus × sinensis), and tangerine (Citrus reticulata) waste as a substrate for generating bioelectricity. Environ. Res. Eng. Manag. 2020, 76, 24–34. [Google Scholar]
- Rahman, W.; Yusup, S.; Mohammad, S.A. Screening of fruit waste as substrate for microbial fuel cell (MFC). AIP Conf. Proc. 2021, 2332, 020003. [Google Scholar]
- Toding OS, L.; Virginia, C.; Suhartini, S. Conversion banana and orange peel waste into electricity using a microbial fuel cell. IOP Conf. Ser. Earth Environ. Sci. 2018, 209, 012049. [Google Scholar]
- Chen, C.Y.; Tsai, T.H.; Wu, P.S.; Tsao, S.E.; Huang, Y.S.; Chung, Y.C. Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater. J. Environ. Sci. Health Part A 2018, 53, 108–115. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Pérez-Delgado, O.; Nazario-Naveda, R.; Rojales-Alfaro, H.; Benites, S.M.; La Cruz-Noriega, D.; Otiniano, N.M. Potential Use of Papaya Waste as a Fuel for Bioelectricity Generation. Processes 2021, 9, 1799. [Google Scholar] [CrossRef]
- Sacco, N.J.; Bonetto, M.C.; Cortón, E. Isolation and characterization of a novel electrogenic bacterium, Dietzia sp. RNV-4. PLoS ONE 2017, 12, e0169955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, S.H.; Abd el Nasser, A.Z.; Kassim, R.M. Electricity generation from sugarcane molasses using microbial fuel cell technologies. Energy 2019, 178, 538–543. [Google Scholar] [CrossRef]
- De La Cruz-Noriega, M.; Rojas-Flores, S.; Benites, S.M.; Álvarez, M.Q.; García, N.O.; Yupanqui, M.R. Use of Leuconostoc Mesenteroides to Produce a Dextran Bioflocculant. Environ. Res. Eng. Manag. 2022, 78, 38–45. [Google Scholar] [CrossRef]
- Zhao, N.; Jiang, Y.; Alvarado-Morales, M.; Treu, L.; Angelidaki, I.; Zhang, Y. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry 2018, 123, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Huang, W.; Liu, Y.; Tang, M.; Zhang, L.; Sun, J. Biodegradation of oxytetracycline and electricity generation in a microbial fuel cell within situ dual graphene-modified bioelectrode. Bioresour. Technol. 2018, 270, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.; Kumar, S. Algal growth in photosynthetic algal microbial fuel cells and its subsequent utilization for biofuels. Renew. Sustain. Energy Rev. 2018, 82, 402–414. [Google Scholar] [CrossRef]
- Leiva, E.; Leiva-Aravena, E.; Rodríguez, C.; Serrano, J.; Vargas, I. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. Sci. Total Environ. 2018, 645, 471–481. [Google Scholar] [CrossRef]
- Gadkari, S.; Fontmorin, J.M.; Yu, E.; Sadhukhan, J. Influence of temperature and other system parameters on microbial fuel cell performance: Numerical and experimental investigation. Chem. Eng. J. 2020, 388, 124176. [Google Scholar] [CrossRef]
- Lang, Y.; Yu, Y.; Zou, H.; Ye, J.; Zhang, S.; Chen, J. Flavin mononucleotide-stimulated microbial fuel cell for efficient gaseous toluene abatement. Chemosphere 2022, 287, 132247. [Google Scholar] [CrossRef]
- Pazmiño-Hernandez, M.; Moreira, C.M.; Pullammanappallil, P. Feasibility assessment of waste banana peduncle as feedstock for biofuel production. Biofuels 2019, 10, 473–484. [Google Scholar] [CrossRef]
- Tremouli, A.; Karydogiannis, I.; Pandis, P.K.; Papadopoulou, K.; Argirusis, C.; Stathopoulos, V.N.; Lyberatos, G. Bioelectricity production from fermentable household waste extract using a single chamber microbial fuel cell. Energy Procedia 2019, 161, 2–9. [Google Scholar] [CrossRef]
- Yu, B.; Feng, L.; He, Y.; Yang, L.; Xun, Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J. Hazard. Mater. 2021, 401, 123394. [Google Scholar] [CrossRef] [PubMed]
- Lawson, K.; Rossi, R.; Regan, J.M.; Logan, B.E. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Bioresour. Technol. 2020, 316, 123919. [Google Scholar] [CrossRef]
- Kebaili, H.; Kameche, M.; Innocent, C.; Benayyad, A.; Kosimaningrum, W.E.; Sahraoui, T. Scratching and transplanting of electro-active biofilm in fruit peeling leachate by ultrasound: Re-inoculation in a new microbial fuel cell for enhancement of bio-energy production and organic matter detection. Biotechnol. Lett. 2020, 42, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Kondaveeti, S.; Mohanakrishna, G.; Kumar, A.; Lai, C.; Lee, J.K.; Kalia, V.C. Exploitation of citrus peel extract as a feedstock for power generation in Microbial Fuel Cell (MFC). Indian J. Microbiol. 2019, 59, 476–481. [Google Scholar] [CrossRef]
- Saragih, B.; Saragih NA, D. FTIR (Fourier Transform Infra-Red) profile of banana corm flour, nutritional value, and sensory properties of resulting brownies. J. Phys. Conf. Ser. 2021, 1882, 012112. [Google Scholar] [CrossRef]
- El-Din, G.A.; Amer, A.A.; Malsh, G.; Hussein, M. Study on the use of banana peels for oil spill removal. Alex. Eng. J. 2018, 57, 2061–2068. [Google Scholar] [CrossRef]
- Tahir, M.H.; Zhao, Z.; Ren, J.; Rasool, T.; Naqvi, S.R. Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass Bioenergy 2019, 122, 193–201. [Google Scholar] [CrossRef]
- Valenzuela-González, F.; Casillas-Hernández, R.; Villalpando, E.; Vargas-Albores, F. El gen ARNr 16S en el estudio de comunidades microbianas marinas [The 16S rRNA Gene in the Study of Marine Microbial Communities]. Cienc. Mar. 2015, 41, 297–313. [Google Scholar] [CrossRef] [Green Version]
- Paz-Zarza, V.M.; Mangwani-Mordani, S.; Martínez-Maldonado, A.; Álvarez-Hernández, D.; Solano-Gálvez, S.G.; Vázquez-López, R. Pseudomonas aeruginosa: Patogenicidad y resistencia antimicrobiana en la infección urinaria [Pseudomonas aeruginosa: Pathogenicity and Antimicrobial Resistance in Urinary Tract Infection]. Rev. Chil. Infectología 2019, 36, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial resistance. J. Med. Microbiol. 2009, 58, 1133–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousaf, S.; Anam, M.; Ali, N. Evaluating the production and bio-stimulating effect of 5-methyl 1, hydroxy phenazine on microbial fuel cell performance. Int. J. Environ. Sci. Technol. 2017, 14, 1439–1450. [Google Scholar] [CrossRef]
- Ali, N.; Anam, M.; Yousaf, S.; Maleeha, S.; Bangash, Z. Characterization of the Electric Current Generation Potential of the Pseudomonas aeruginosa Using Glucose, Fructose, and Sucrose in Double Chamber Microbial Fuel Cell. Iran. J. Biotechnol. 2017, 15, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Kimura, K.; Yokoyama, S.; Jin, W.; Wachino, J.; Yamada, K.; Suematsu, H.; Yamagishi, Y.; Mikamo, H.; Arakawa, Y. Characterization of Piperacillin/Tazobactam-Resistant Klebsiella oxytoca Recovered from a Nosocomial Outbreak. PLoS ONE 2015, 10, e0142366. [Google Scholar] [CrossRef] [PubMed]
- Higashi, B.; Mariano, T.B.; de Abreu Filho, B.A.; Gonçalves RA, C.; de Oliveira AJ, B. Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohydr. Polym. 2020, 248, 116832. [Google Scholar] [CrossRef] [PubMed]
- Tahir, C.A.; Pásztory, Z.; Agarwal, C.; Csóka, L. Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell. In Application of Microbes in Environmental and Microbial Biotechnology; Springer: Singapore, 2022; pp. 235–261. [Google Scholar]
- Moon, J.-Y.; Lim, J.-M.; Ahn, J.-H.; Weon, H.-Y.; Kwon, S.-W.; Kim, S.-J. Paenalcaligenes suwonensis sp. nov., isolated from spent mushroom compost. Int. J. Syst. Evol. Microbiol. 2014, 64 Pt 3, 882–886. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, X.; Xu, Z.; Ying, C.; Yu, W.; Xiao, Y. Identification of Raoultella terrigena as a Rare Causative Agent of Subungual Abscess Based on 16S rRNA and Housekeeping Gene Sequencing. Can. J. Infect. Dis. Med. Microbiol. 2016, 2016, 1–4. [Google Scholar] [CrossRef] [Green Version]
Sample Identification | BLAST Characterization | Length of Consensus Sequence (nt) | % Maximum Identity | Accession Number | Phylogeny |
---|---|---|---|---|---|
BANANA | Pseudomonas aeruginosa | 1442 | 100.00 | MT633047.1 | Cellular organisms; Bacterium; Proteobacterium; Gammaproteobacterium; Pseudomonadales; Pseudomonadaceae; Pseudomonas; Pseudomonas aeruginosa group |
BANANA | Paenalcaligenes suwonensis | 1468 | 99.09 | NR_133804.1 | Cellular organisms; Bacterium; Proteobacterium; Betaproteobacteria; Burkholderiales; Alcaligenaceae; Paenalcaligenes |
BANANA | Klebsiella oxytoca | 1468 | 99.39 | NR_118853.1 | Cellular organisms; Bacterium; Proteobacterium; Gammaproteobacterium; Enterobacter; Enterobacteriaceae; Klebsiella |
BANANA | Raoultella terrigena | 1475 | 99.80 | LR131271.1 | Cellular organisms; Bacterium; Proteobacterium; Gammaproteobacterium; Enterobacter; Enterobacteriaceae; Raoultella |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Flores, S.; De La Cruz-Noriega, M.; Nazario-Naveda, R.; Benites, S.M.; Delfín-Narciso, D.; Angelats-Silva, L.; Murga-Torres, E. Use of Banana Waste as a Source for Bioelectricity Generation. Processes 2022, 10, 942. https://doi.org/10.3390/pr10050942
Rojas-Flores S, De La Cruz-Noriega M, Nazario-Naveda R, Benites SM, Delfín-Narciso D, Angelats-Silva L, Murga-Torres E. Use of Banana Waste as a Source for Bioelectricity Generation. Processes. 2022; 10(5):942. https://doi.org/10.3390/pr10050942
Chicago/Turabian StyleRojas-Flores, Segundo, Magaly De La Cruz-Noriega, Renny Nazario-Naveda, Santiago M. Benites, Daniel Delfín-Narciso, Luis Angelats-Silva, and Emzon Murga-Torres. 2022. "Use of Banana Waste as a Source for Bioelectricity Generation" Processes 10, no. 5: 942. https://doi.org/10.3390/pr10050942
APA StyleRojas-Flores, S., De La Cruz-Noriega, M., Nazario-Naveda, R., Benites, S. M., Delfín-Narciso, D., Angelats-Silva, L., & Murga-Torres, E. (2022). Use of Banana Waste as a Source for Bioelectricity Generation. Processes, 10(5), 942. https://doi.org/10.3390/pr10050942