Quality Grade Evaluation of Niuhuang Qingwei Pills Based on UPLC and TCM Reference Drug—A Novel Principle of Analysis of Multiple Components in Ready-Made Chinese Herbal Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals and Reagents
2.3. Preparation of Standard Solutions
2.4. Preparation of Solutions of Sample, Reference Drugs, Negative Control, and Chinese Materia Medicas
2.5. Instrument and Operating Conditions
2.6. Method Validation
3. Results and Discussion
3.1. Development of the UPLC Method
3.2. Optimization of the Pretreatment Method
3.3. Verification of the UPLC Method
3.4. Simultaneous Determination of 7 Components in the Samples from Manufacturers
3.5. Grade Evaluation of Niuhuang Qingwei Pills
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.Y.; Zhou, H.; Wang, Y.F.; Sang, B.S.; Liu, L. Current policies and measures on the development of traditional Chinese medicine in China. Pharmacol. Res. 2021, 163, 105187. [Google Scholar] [CrossRef]
- Cyranoski, D. Why Chinese medicine is heading for clinics around the world. Nature 2018, 561, 448. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.Y.; Nie, L.X.; Da, I.Z.; Ma, S.C. Research progress on evaluation of quality grade of traditional Chinese medicine. Chin. J. Pharm. Anal. 2019, 39, 1724–1737. [Google Scholar]
- Duan, J.A.; Guo, S.; Yan, H.; Su, S.L.; Guo, L.P.; Zhao, R.H.; Huang, L.Q. Analysis of restrictive factors in establishing the mechanism of good price for high quality of Chinese medicinal materials and siscussion on its implementation path. Mod. Chin. Med. 2019, 21, 1283–1287. [Google Scholar]
- Lyu, H.F.; Ni, F.Y.; Bi, X.H.; Shi, J.; Shen, L. Grade evaluation of Polygoni Multiflori Caulis based on quality constant method. Chin. J. Exp. Tradit. Med. Form. 2020, 26, 133–138. [Google Scholar]
- Qiao, Y.L.; Liu, Z.; Shen, A.J.; Guo, Z.M.; Liu, Y.F.; Chen, X.Y.; Xu, Q.; Liang, X.M. Establishment of chromatographic fingerprint of Squama Manis and its applications in animal source identification and quality grade discrimination. Chin. J. Chromatogr. 2020, 38, 1440–1448. [Google Scholar]
- Jing, W.G.; Cheng, X.L.; Liu, A.; Ma, S.C.; Wei, F. Research on grade classification and high quality and superior effect of Magnolia officinalis decoction pieces based on “quality evaluation through morphological identification” and comprehensive evaluation index. Chin. Tradit. Herbal Drugs 2021, 52, 2285–2293. [Google Scholar]
- Nie, L.X.; Dai, Z.; Ma, S.C. Guideline principle and technical requirement for preparing traditional Chinese medicine reference. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 2017, 42, 3672–3675. [Google Scholar]
- WS3-B-0038-89; Standards for Chinese Patent Medicine. Ministry of Public Health: Beijing, China, 1989.
- Yu, C.Q.; Wang, Y.H.; Li, C.L.; Ye, J. Experimental study on primary pharmacodynamics of Niuhuang Qingwei wan. Chin. J. Chin. Mater. Med. 2007, 32, 957–960. [Google Scholar]
- Yu, W.C.; Gao, Y.T. Simultaneous determination of four components in Niuhuangqingwei Pills by HPLC. J. Jilin Inst. Chem. Technol. 2020, 37, 13–16. [Google Scholar]
- Liu, J.; Liu, H.; He, Y.; Dai, Z.; Ma, S.C. Detection of chemical dyes and analysis of natural pigment constituents in Niuhuang Qingwei Pills. Mod. Chin. Med. 2020, 22, 112–116. [Google Scholar]
- Liu, J.J.; Hu, X.R.; He, Y.; Dai, Z.; Ma, S.C. HPLC determination of four flavonoids of Aurantii Fructus Immaturus in Niuhuang Qingwei Pills and genetic analysis of medicinal materials. Chin. Exp. Tradit. Med. Form. 2019, 25, 155–159. [Google Scholar]
- Wang, F.; He, Y.; Yu, J.D.; Dai, Z.; Ma, S.C. Adulteration situation of Ophiopogonis radix in Niuhuang Qingwei Pills. Chin. Pharm. J. 2019, 54, 1332–1335. [Google Scholar]
- Zhang, Y. Determination of spearmint in Chinese patent medicine containing peppermint by GC-MS/MS. Drug. J. Pract. Tradit. Chin. Intern. Med. 2021, 35, 62–64. [Google Scholar]
- Nie, L.X.; Zha, Y.F.; Liu, Y.; Dai, Z.; Zhang, Y.; Ma, S.C. Rapid quality evaluation of Niuhuang Qingwei pills using near infrared spectroscopy. Chin. Pharm. Anal. 2019, 39, 1330–1335. [Google Scholar]
- Nie, L.X.; Zha, Y.F.; He, F.Y.; Liu, J.; Li, J.; Dai, Z.; Yu, J.D.; Ma, S.C. Establishment of Niuhuang Qingwei pills reference drug. Chin. Pharm. Anal. 2019, 39, 1738–1750. [Google Scholar]
- Zha, Y.F.; Nie, L.X.; Wang, Z.; Yu, J.D.; Dai, Z.; Ma, S.C. Detection of 60Co-γ irradiated Niuhuang Qingwei Pills based on reference drug and photostimulated lumi-nescence method. China Pharm. 2018, 21, 1898–1900. [Google Scholar]
- Nie, L.X.; Zha, Y.F.; Zuo, T.T.; Jin, H.Y.; Yu, J.D.; Dai, Z.; Ma, S.C. Determination and risk assessment of heavy metals and harmful elements residues in Niuhuang Qingwei Pills based on ICP-MS. China J. Chin. Mater. Med. 2019, 44, 82–87. [Google Scholar]
- Zha, Y.F.; Nie, L.X.; Yu, J.D.; Dai, Z.; Ma, S.C. Fingerprint study and primary quality evaluation of Niuhuang Qingwei Pills based on UPLC and reference drug. Chin. Pharm. J. 2019, 54, 1438–1441. [Google Scholar]
- Nie, L.X.; Zha, Y.F.; Hu, X.R.; Zhang, N.P.; Dai, Z.; Yu, J.D.; Ma, S.C. Whole-ingredient identification and primary grade evaluation of Niuhuang Qingwei Pills based on reference drug. Chin. Tradit. Herb. Drugs 2018, 49, 5320–5327. [Google Scholar]
- Nie, L.X.; Zha, Y.F.; Chen, Y.H.; Yu, J.D.; Dai, Z.; Ma, S.C. Quality evaluation of Gypsum Fibrosum in Niuhuang Qingwei Pills based on ICP-MS and reference drug. Environ. Chem. 2018, 37, 2322–2325. [Google Scholar]
- Zha, Y.F.; Nie, L.X.; Yu, J.D.; Dai, Z.; Ma, S.C. Quality evaluation of Borneolum syntheticum in Niuhuang Qingwei Pills based on reference drug. Chin. Tradit. Pat. Med. 2019, 41, 2753–2756. [Google Scholar]
- Zha, Y.F.; Nie, L.X.; Yu, J.D.; Zhang, Y.; Dai, Z.; Ma, S.C. Quality evaluation of Phellodendri Chinensis Cortex in Niuhuang Qingwei Pills based on reference drug and UPLC. Food Drug 2020, 22, 7–11. [Google Scholar]
- International Conference on Harmonization. Guidance for Industry, Q2B, Validation of Analytical Procedures: Methodology; Food and Drug Administration: Rockville, MD, USA, 1996.
- Koo, H.J.; Lim, K.H.; Jung, H.J.; Park, E.H. Anti-inflammatory evaluation of gardenia extract, geniposide and genipin. J. Ethnopharmacol. 2006, 103, 496–500. [Google Scholar] [CrossRef]
- Gong, L.H.; Wang, C.; Zhou, H.; Ma, C.; Zhang, Y.F.; Peng, C.; Li, Y.X. A review of pharmacological and pharmacokinetic properties of Forsythiaside A. Pharmacol. Res. 2021, 169, 105690. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Y.; Guo, L.P.; Liu, D.H. Effects of planting density on yield and quality of Chrysanthemum morifolium. Chin. J. Chin. Mater. Med. 2020, 45, 59–64. [Google Scholar]
- Ho, S.C.; Kuo, C.T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food. Chem. Toxicol. 2014, 71, 176–182. [Google Scholar] [CrossRef]
- Moore, O.A.; Gao, Y.; Chen, A.Y.; Brittain, R.; Chen, Y.C. The extraction, anticancer effect, bioavailability, and nanotechnology of baicalin. J. Nutr. Med. Diet Care 2016, 2, 11. [Google Scholar]
- Chen, K.; Yang, R.; Shen, F.Q.; Zhu, H.L. Advances in pharmacological activities and mechanisms of glycyrrhizic acid. Curr. Med. Chem. 2020, 27, 6219–6243. [Google Scholar] [CrossRef]
- Prateeksha; Yusuf, M.A.; Singh, B.N.; Sudheer, S.; Kharwar, R.N.; Siddiqui, S.; M.Abdel-Azeem, A.; Fraceto, L.F.; Dashora, K.; K.Gupta, V. Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential. Biomolecules 2019, 9, 68. [Google Scholar]
- Nie, L.X.; Qian, X.Y.; Zhang, Y.; Wei, F.; Dai, Z.; Ma, S.C. Discussion on principle and method for quality rating standard of Chinese patent medicine. J. Shenyang Pharm. Univ. 2021, 38, 1327–1333. [Google Scholar]
- Wang, Z.Y.; Xia, Q.; Liu, X.; Liu, W.Z.; Huang, W.Z.; Mei, X.; Luo, J.; Shan, M.X.; Ma, Z.Q.; Lin, R.C. Phytochemistry, Pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J. Ethnopharmacol. 2018, 210, 318. [Google Scholar] [CrossRef]
- Wu, B.; Li, Y.P.; Zhao, W.J.; Meng, Z.Q.; Ji, W.; Wang, C. Transcriptomic and lipidomic analysis of lipids in Forsythia suspensa. Front. Genet. 2021, 12, 758326. [Google Scholar] [CrossRef]
- Bao, J.L.; Ding, R.B.; Liang, Y.; Liu, F.; Wang, K.; Jia, X.J.; Zhang, C.; Chen, M.W.; Li, P.; Su, H.X.; et al. Differences in chemical component and anticancer activity of green and ripe Forsythiae Fructus. Am. J. Chin. Med. 2017, 45, 1513–1536. [Google Scholar] [CrossRef]
- Li, Y.G.; Wang, X.Y.; Chen, H.F.; Yuan, J.B.; Meng, Y.; Yang, W.L. Comparison of the chemical constituents of raw Fructus Aurantii and Fructus Aurantii stir-baked with bran, and the biological effects of auraptene. J. Ethnopharmacol. 2021, 269, 113721. [Google Scholar] [CrossRef]
- He, Y.J.; Li, Z.K.; Wang, W.; Sooranna, S.R.; Shi, Y.T.; Chen, Y.; Wu, C.Q.; Zeng, J.G.; Tang, Q.; Xie, H.Q. Chemical profifiles and simultaneous quantifification of Aurantii Fructus by use of HPLC-Q-TOF-MS combined with GC-MS and HPLC methods. Molecules 2018, 23, 2189. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liu, J.; Leng, L.; Gao, H.; Yang, W.; Liu, A. A large-scale detection, identification and quantification of target metabolites using dMRM-MS combined with transcriptome of two rheum species focused on anthraquinone and flavonids biosynthesis. Res. Sq. 2019, 10, 20241. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.W.; He, M.Z.; Li, J.M.; Du, H.; Mao, Q.P.; Pei, N.; Zhong, G.Y.; Ouyang, H.; Yang, S.L.; Feng, Y.L. Integrating the rapid constituent profiling strategy and multivariate statistical analysis for herb ingredients research, with Chinese official rhubarb and Tibetan rhubarb as an example. Arab. J. Chem. 2021, 14, 103269. [Google Scholar] [CrossRef]
No. | Ingredient | Ratio | No. | Ingredient | Ratio |
---|---|---|---|---|---|
1 | Bovis Calculus Artifactus | 2 | 10 | Forsythiae Fructus | 100 |
2 | Scutellariae Radix | 100 | 11 | Gypsum Fibrosum | 150 |
3 | Rhei Radix et Rhizoma | 100 | 12 | Pharbitidis Semen | 50 |
4 | Glycyrrhizae Radix et Rhizoma | 100 | 13 | Gardeniae Fructus | 100 |
5 | Chrysanthemi Flos | 150 | 14 | Aurantii Immaturus Fructus | 100 |
6 | Platycodonis Radix | 100 | 15 | Scrophulariae Radix | 100 |
7 | Ophiopogonis Radix | 50 | 16 | Borneolum Syntheticum | 25 |
8 | Phellodendrl Chinensis Cortex | 100 | 17 | Sennae Folium | 200 |
9 | Menthae Haplocalycis Herba | 50 |
Analyte | Working Standard | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Geniposide | 0.02 | 0.04 | 0.06 | 0.08 | 0.1 |
Forsythiaside A | 0.02 | 0.04 | 0.06 | 0.08 | 0.1 |
3,5-O-dicaffeoyl quinic acid | 0.01 | 0.02 | 0.04 | 0.06 | 0.08 |
Hesperidin | 0.008 | 0.02 | 0.04 | 0.25 | 0.5 |
Baicalin | 0.06 | 0.12 | 0.18 | 0.24 | 0.3 |
Glycyrrhizic acid 1 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 |
Chrysophanol | 0.001 | 0.002 | 0.004 | 0.006 | 0.008 |
Analyte | Linear Range (mg/mL) | Regression Equation y = ax + b | r2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|
Geniposide | 0.04~1.07 | y = 8.46 × 106x − 2.65 × 105 | 1.0000 | 0.25 | 0.85 |
Forsythiaside A | 0.04~1.10 | y = 1.09 × 107x − 3.65 × 105 | 1.0000 | 0.36 | 1.25 |
3,5-O-dicaffeoyl quinic acid | 0.02~0.49 | y = 2.20 × 107x − 3.30 × 105 | 1.0000 | 0.38 | 1.31 |
Hesperidin | 0.01~0.52 | y =1.03 × 107x − 4.58 × 104 | 0.9998 | 0.27 | 0.92 |
Baicalin | 0.09~0.87 | y = 1.82 × 107x − 1.20 × 106 | 1.0000 | 0.35 | 1.19 |
Glycyrrhizic acid | 0.02~0.55 | y = 4.92 × 106x − 8.69 × 104 | 1.0000 | 0.18 | 0.61 |
Chrysophanol | 0.002~0.06 | y = 1.82 × 104x − 3.68 × 104 | 0.9999 | 0.19 | 0.62 |
Analyte | Precisions | Repeatability | Recovery | ||
---|---|---|---|---|---|
Intraday RSD (%, n = 6) | Interday RSD (%, n = 3) | RSD (%, n = 6) | Mean (%) | RSD (%, n = 6) | |
Geniposide | 1.1 | 2.1 | 2.4 | 103.8 | 2.2 |
Forsythiaside A | 1.6 | 1.6 | 2.8 | 103.5 | 1.7 |
3,5-O-dicaffeoyl quinic acid | 1.9 | 1.5 | 2.1 | 102.5 | 1.0 |
Hesperidin | 1.4 | 1.3 | 2.9 | 102.8 | 2.4 |
Baicalin | 1.2 | 2.3 | 2.6 | 101.1 | 2.4 |
Glycyrrhizic acid | 1.1 | 1.6 | 1.0 | 103.1 | 1.9 |
Chrysophanol | 1.8 | 2.9 | 2.8 | 102.7 | 1.5 |
No. | Manufacturer | Geniposide | Forsythiaside A | 3,5-O-dicaffeoyl Quinic Acid | Hesperidin | Baicalin | Glycyrrhizic Acid | Chrysophanol |
---|---|---|---|---|---|---|---|---|
1 | A | 1.66 | 1.36 | 0.62 | 8.95 | 3.10 | 0.62 | 0.13 |
2 | A | 1.51 | 1.54 | 0.54 | 8.16 | 3.23 | 0.64 | 0.08 |
3 | A | 1.70 | 1.41 | 0.51 | 7.55 | 3.09 | 0.65 | 0.10 |
4 | B | 1.76 | 1.85 | 0.74 | 8.63 | 3.39 | 0.71 | 0.40 |
5 | B | 1.80 | 1.86 | 0.75 | 8.68 | 3.31 | 0.69 | 0.39 |
6 | C | 1.67 | 1.20 | 0.73 | 10.18 | 3.40 | 0.72 | 0.13 |
7 | C | 1.67 | 1.79 | 0.74 | 10.64 | 3.46 | 0.72 | 0.10 |
8 | C | 1.62 | 1.91 | 0.75 | 10.49 | 3.42 | 0.72 | 0.12 |
9 | D | 1.58 | 1.33 | 0.53 | 1.77 | 3.01 | 0.73 | 0.28 |
10 | D | 1.62 | 1.39 | 0.51 | 1.21 | 3.13 | 0.97 | 0.30 |
11 | D | 1.71 | 1.70 | 0.56 | 1.16 | 2.84 | 0.77 | 0.21 |
12 | E | 1.60 | 1.40 | 0.90 | 9.08 | 3.71 | 0.69 | 0.22 |
13 | E | 1.76 | 1.07 | 0.70 | 2.12 | 3.27 | 0.75 | 0.18 |
14 | F | 1.66 | 1.45 | 0.71 | 0.93 | 3.31 | 0.69 | 0.25 |
15 | F | 1.63 | 1.19 | 0.48 | 1.33 | 3.12 | 0.65 | 0.10 |
16 | F | 1.78 | 2.06 | 0.61 | 1.79 | 3.18 | 0.70 | 0.19 |
17 | G | 1.75 | 1.56 | 0.73 | 1.13 | 3.48 | 0.82 | 0.16 |
18 | G | 1.81 | 1.76 | 0.65 | 0.99 | 3.47 | 0.61 | 0.10 |
19 | G | 1.69 | 1.82 | 0.65 | 1.05 | 3.50 | 0.61 | 0.10 |
20 | H | 1.58 | 1.81 | 0.59 | 8.67 | 3.05 | 0.70 | 0.24 |
21 | H | 1.77 | 1.66 | 0.54 | 8.78 | 3.17 | 0.74 | 0.20 |
22 | H | 1.78 | 1.75 | 0.57 | 8.71 | 3.16 | 0.76 | 0.19 |
23 | I | 0.93 | 0.95 | 0.47 | 6.15 | 2.64 | 1.57 | 0.22 |
24 | J | 1.38 | 0.97 | 0.51 | 5.63 | 2.87 | 0.52 | 0.10 |
25 | J | 1.47 | 1.12 | 0.51 | 9.26 | 2.95 | 0.58 | 0.09 |
26 | J | 1.74 | 1.12 | 0.51 | 9.67 | 3.02 | 0.78 | 0.10 |
27 | K | 1.56 | 1.27 | 0.65 | 7.23 | 3.27 | 0.63 | 0.10 |
28 | K | 1.59 | 1.55 | 0.66 | 7.49 | 3.25 | 0.62 | 0.12 |
29 | K | 1.58 | 1.54 | 0.65 | 7.44 | 3.30 | 0.63 | 0.11 |
30 | L | 1.42 | 1.68 | 0.71 | 6.06 | 3.29 | 0.62 | 0.08 |
31 | L | 1.43 | 1.58 | 0.66 | 6.36 | 3.04 | 0.64 | 0.10 |
32 | L | 1.47 | 1.58 | 0.65 | 6.14 | 3.38 | 0.62 | 0.09 |
33 | M | 1.55 | 1.18 | 0.76 | 10.15 | 2.92 | 0.70 | 0.16 |
34 | M | 1.38 | 1.13 | 0.70 | 9.48 | 3.06 | 0.68 | 0.13 |
35 | M | 1.40 | 1.20 | 0.58 | 9.45 | 3.03 | 0.60 | 0.12 |
36 | N | 1.46 | 1.48 | 0.71 | 7.11 | 2.23 | 0.69 | 0.21 |
37 | N | 1.47 | 1.46 | 0.54 | 8.98 | 2.84 | 0.60 | 0.22 |
38 | N | 1.44 | 1.57 | 0.54 | 8.13 | 2.93 | 0.62 | 0.22 |
39 | O | 1.69 | 1.21 | 0.58 | 7.29 | 3.07 | 0.73 | 0.10 |
40 | O | 1.37 | 1.27 | 0.40 | 0.12 | 3.04 | 0.70 | 0.13 |
41 | P | 1.62 | 1.37 | 0.67 | 2.29 | 3.28 | 0.65 | 0.10 |
42 | P | 1.60 | 1.32 | 0.64 | 1.93 | 3.31 | 0.64 | 0.26 |
43 | P | 1.62 | 1.39 | 0.64 | 1.90 | 3.30 | 0.72 | 0.28 |
44 | Q | 1.54 | 1.00 | 0.44 | 5.58 | 3.21 | 0.62 | 0.12 |
45 | Q | 1.59 | 0.98 | 0.43 | 5.68 | 3.25 | 0.62 | 0.12 |
46 | Q | 1.56 | 1.03 | 0.44 | 6.02 | 3.34 | 0.65 | 0.16 |
47 | R | 1.58 | 1.89 | 0.84 | 6.52 | 3.52 | 0.74 | 0.30 |
48 | R | 1.60 | 1.55 | 0.76 | 3.82 | 3.31 | 0.68 | 0.15 |
49 | R | 1.49 | 1.70 | 0.71 | 0.46 | 3.25 | 0.67 | 0.12 |
Median | 1.60 | 1.45 | 0.64 | 6.52 | 3.23 | 0.68 | 0.17 | |
Mean | 1.58 | 1.45 | 0.62 | 5.88 | 3.18 | 0.70 | 0.08 | |
RSD (%) | 9.7 | 19.9 | 18.1 | 57.2 | 7.9 | 21.0 | 47.5 |
Analyte | Geniposide | Forsythiaside A | 3,5-O-dicaffeoyl Quinic Acid | Hesperidin | Baicalin | Glycyrrhizic Acid | Chrysofanol | |
---|---|---|---|---|---|---|---|---|
Reference Drug 1 | Contents (mg/g) | 1.65 | 2.17 | 0.67 | 1.20 | 3.62 | 0.83 | 0.16 |
Transfer rates (%) | 92.6 | 98.7 | 85.8 | 97.2 | 94.2 | 97.4 | 98.3 | |
Reference Drug 2 | Contents (mg/g) | 1.12 | 1.35 | 0.39 | 0.36 | 2.62 | 1.03 | 0.08 |
Transfer rates (%) | 91.5 | 97.5 | 88.2 | 95.4 | 93.1 | 96.5 | 93.8 | |
Reference Drug 3 | Contents (mg/g) | 1.19 | 2.44 | 0.38 | 0.31 | 3.24 | 0.55 | 0.08 |
Transfer rates (%) | 93.4 | 98.5 | 86.6 | 94.7 | 94.7 | 95.1 | 95.2 | |
Mean | Contents (mg/g) | 1.32 | 1.99 | 0.48 | 0.62 | 3.16 | 0.80 | 0.11 |
Transfer rates (%) | 92.5 | 98.2 | 86.9 | 95.8 | 94.0 | 96.3 | 95.8 | |
RSD (%) | Contents (mg/g) | 21.8 | 28.6 | 34.3 | 80.2 | 16.0 | 30.0 | 43.3 |
Transfer rates (%) | 1.0 | 0.7 | 1.4 | 1.3 | 0.9 | 1.2 | 2.4 |
Analyte | First Grade | Second Grade | ||||
---|---|---|---|---|---|---|
Specification | Batches Qualified | Batches Qualified All 7 Specifications | Specification | Batches Qualified | Batches Qualified All 7 Specifications | |
Geniposide | ≥1.32 mg/g | 48 | 13 | ≥0.40 mg/g | 1 | 28 |
Forsythiaside A | N/A | N/A | ≥0.06 mg/g | 49 | ||
3,5-O-dicaffeoyl quinic acid | ≥0.48 mg/g | 44 | ≥0.22 mg/g | 5 | ||
Hesperidin | N/A | N/A | ≥0.37 mg/g | 48 | ||
Baicalin | ≥3.16 mg/g | 29 | ≥1.93 mg/g | 20 | ||
Glycyrrhizic acid | ≥0.64 mg/g | 34 | ≥0.43 mg/g | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.-X.; Zha, Y.-F.; Yu, J.-D.; Kang, S.; Dai, Z.; Ma, S.-C.; Chan, K. Quality Grade Evaluation of Niuhuang Qingwei Pills Based on UPLC and TCM Reference Drug—A Novel Principle of Analysis of Multiple Components in Ready-Made Chinese Herbal Medicine. Processes 2022, 10, 1166. https://doi.org/10.3390/pr10061166
Nie L-X, Zha Y-F, Yu J-D, Kang S, Dai Z, Ma S-C, Chan K. Quality Grade Evaluation of Niuhuang Qingwei Pills Based on UPLC and TCM Reference Drug—A Novel Principle of Analysis of Multiple Components in Ready-Made Chinese Herbal Medicine. Processes. 2022; 10(6):1166. https://doi.org/10.3390/pr10061166
Chicago/Turabian StyleNie, Li-Xing, Yi-Fan Zha, Jian-Dong Yu, Shuai Kang, Zhong Dai, Shuang-Cheng Ma, and Kelvin Chan. 2022. "Quality Grade Evaluation of Niuhuang Qingwei Pills Based on UPLC and TCM Reference Drug—A Novel Principle of Analysis of Multiple Components in Ready-Made Chinese Herbal Medicine" Processes 10, no. 6: 1166. https://doi.org/10.3390/pr10061166
APA StyleNie, L. -X., Zha, Y. -F., Yu, J. -D., Kang, S., Dai, Z., Ma, S. -C., & Chan, K. (2022). Quality Grade Evaluation of Niuhuang Qingwei Pills Based on UPLC and TCM Reference Drug—A Novel Principle of Analysis of Multiple Components in Ready-Made Chinese Herbal Medicine. Processes, 10(6), 1166. https://doi.org/10.3390/pr10061166