High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Processes
2.2.1. Hydrothermal Carbonization (HTC)
2.2.2. Heat Treatment
2.2.3. Chemical Activation
2.2.4. Acid Wash
2.3. Characterization
2.4. Adsorption Ability Test
3. Results
3.1. Case 1: CM-DC
3.2. Case 2: CM-DTC
3.3. Cow Manure–(HTC + Heat Treatment)–Chemical Activation
3.4. Cow Manure–(HTC + Heat Treatment)–Chemical Activation–Acid Wash
3.5. Ammonia Adsorption Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernal, M.P.; Roig, A.; Madrid, R.; Navarro, A.F. Salinity risks on calcareous soils following pig slurry applications. Soil Use Manag. 1992, 8, 125–129. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Beline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J., Jr.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Curtis, C.E. Legality of seabed disposal of high-level radioactive wastes under the London dumping convention. Deep. Sea Res. Part B Oceanogr. Lit. Rev. 1985, 14, 383–415. [Google Scholar] [CrossRef]
- Carolina, F.P. Methods for the Treatment of Cattle Manure—A Review. C 2019, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Palallo, F.; Ardi, M.; Yusuf, G. The Potency of Livestock Waste into Renewable Energy. (Biogas) In Palipu District Tana Toraja Regency. J. Phys. Conf. Ser. 2018, 1028, 012010. [Google Scholar] [CrossRef]
- Uchimiya, M.; Bannon, D.I. Solubility of lead and copper in biochar-amended small arms range soils: Influence of soil organic carbon and pH. J. Agric. Food Chem. 2013, 61, 7679–7688. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Zhang, B.; Lin, J.; Chi, Q.; Wang, Y. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis. Bioresour. Technol. 2016, 221, 560–567. [Google Scholar] [CrossRef]
- Tian, R.; Li, C.; Xie, S.; You, F.; Cao, Z.; Xu, Z.; Yu, G.; Yin, W. Preparation of biochar via pyrolysis at laboratory and pilot scales to remove antibiotics and immobilize heavy metals in livestock feces. J. Soils Sediments 2019, 19, 2891–2902. [Google Scholar] [CrossRef]
- Xie, S.; Yu, G.; Li, C.; You, F.; Li, J.; Tian, R.; Wang, G.; Wang, Y. Dewaterability enhancement and heavy metals immobilization by pig manure biochar addition during hydrothermal treatment of sewage sludge. Environ. Sci. Pollut. Res. Int. 2019, 26, 16537–16547. [Google Scholar] [CrossRef] [PubMed]
- Nazmul Islam, K.M.; Sarker, T.; Farhad, T.-H.; Anashuwa, C.A.; Mohammad, S.A. Renewable energy generation from livestock waste for a sustainable circular economy in Banglades. Renew. Sustain. Energy Rev. 2021, 139, 110695. [Google Scholar] [CrossRef]
- Samarasinghe, K.; Wijayatunga, P.D.C. Techno-economic feasibility and environmental sustainability of waste-to-energy in a circular economy: Sri Lanka case study. Energy Sustain. Dev. 2022, 68, 308–317. [Google Scholar] [CrossRef]
- Yun, H.-B.; Lee, Y.; Yu, C.-Y.; Lee, S.-M.; Hyun, B.-K.; Lee, Y.-B. Effect of Crude Carbohydrate Content in Livestock Manure Compost on Organic Matter Decomposition Rate in Upland Soil. J. Soil Sci. Fert. 2007, 40, 364–368. [Google Scholar]
- Choi, Y.; Ryu, J.; Lee, S.R. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. Technol. 2020, 62, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yang, S.; Sun, H.; Liu, X. Production of activated carbon from cow manure for wastewater treatment. BioResources 2018, 13, 3135–3143. [Google Scholar] [CrossRef] [Green Version]
- Ajay, D. Activated Carbon Market Size, Share & COVID-19 Impact Analysis, By Type (Powdered, Granular, and Others), By Application (Water Treatment, Air & Gas Purification, Food & Beverage, Others), and Regional Forecast, 2021–2028. Quince Mark. Insights 2021, 6, 1–226. Available online: https://www.fortunebusinessinsights.com/activated-carbon-market-102175 (accessed on 2 June 2022).
- Tsai, W.-T.; Huang, P.-C.; Lin, Y.-Q. Reusing Cow Manure for the Production of Activated Carbon Using Potassium Hydroxide (KOH) Activation Process and Its Liquid-Phase Adsorption Performance. Processes 2019, 7, 737. [Google Scholar] [CrossRef] [Green Version]
- Das, D.D.; Mahapatra, R.; Pradhan, J.; Das, S.N.; Thakur, R.S. Removal of Cr(VI) from Aqueous Solution Using Activated Cow Dung Carbon. J. Colloid Interface Sci. 2000, 232, 235–240. [Google Scholar] [CrossRef]
- Xie, T.; Reddy, K.R.; Wang, C.; Yargicoglu, E.; Spokas, K. Characteristics and Applications of Biochar for Environmental Remediation: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 939–969. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, S.J. Effects of carbonyl group formation on ammonia adsorption of porous carbon surfaces. J. Colloid Interface Sci. 2007, 311, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Le Leuch, L.M.; Bandosz, T.J. The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons. Carbon 2007, 45, 568–578. [Google Scholar] [CrossRef]
- Tamon, H.; Okazaki, M. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics. Carbon 1996, 34, 741–746. [Google Scholar] [CrossRef]
- Huang, C.-C.; Li, H.-S.; Chen, C.-H. Effect of surface acidic oxides of activated carbon on adosrption of ammonia. J. Hazard. Mater. 2008, 159, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Toufiq Reza, M.; Freitas, A.; Yang, X.; Hiibel, S.; Lin, H.; Coronella, C.J. Hydrothermal carbonization (HTC) of cow manure: Carbon and nitrogen distributions in HTC products. Environ. Prog. Sustain. Energy 2016, 35, 1002–1011. [Google Scholar] [CrossRef]
- Marin-Batista, J.D.; Villamil, J.A.; Qaramaleki, S.V.; Coronella, C.J.; Mohedano, A.F.; Rubia, M.A. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digest. Renew. Energy 2020, 160, 623–632. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, G.B.; Jeong, C.J.; Kim, H.; Kim, C.G. Determination of Relationship between Higher Heating Value and Atomic Ratio of Hydrogen to Carbon in Spent Coffee Grounds by Hydrothermal Carbonization. Energies 2021, 14, 6551. [Google Scholar] [CrossRef]
- Lee, G.B.; Park, J.E.; Hwang, S.Y.; Kim, J.H.; Kim, S.; Kim, H.; Hong, B.U. Comparison of by-product gas composition by activations of activated carbon. Carbon Lett. 2019, 29, 263–272. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Lee, G.B.; Kim, J.H.; Hong, B.U.; Park, J.E. Pre-Treatment Methods for Regeneration of Spent Activated Carbon. Molecules 2020, 25, 4561. [Google Scholar] [CrossRef]
- Cavalaglio, G.; Cotana, F.; Nicolini, A.; Coccia, V.; Petrozzi, A.; Formica, A.; Bertini, A. Characterization of Various Biomass Feedstock Suitable for Small-Scale Energy Plants as Preliminary Activity of Biocheaper Project. Sustainability 2020, 12, 6678. [Google Scholar] [CrossRef]
- Cevallos Toledo, R.B.; Aragon-Tobar, C.F.; Gamez, S.; Torre, E. Reactivation Process of Activated Carbons: Effect on the Mechanical and Adsorptive Properties. Molecules 2020, 25, 1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, E.; Thomauske, K.; Weber, C.; Hornung, A.; Tumiatti, V. Experiments on the generation of activated carbon from biomass. J. Anal. Appl. Pyrolysis 2007, 79, 106–111. [Google Scholar] [CrossRef]
- Han, B.; Butterly, C.; Zhang, W.; He, J.-Z.; Chen, D. Adsorbent materials for ammonium and ammonia removal: A review. J. Clean. Prod. 2021, 283, 124611. [Google Scholar] [CrossRef]
- Rodrigues, C.C.; Moraes, D., Jr.; Nobrega, S.W.; Barboza, M.G. Ammonia adsorption in a fixed bed of activated carbon. Bioresour. Technol. 2007, 98, 886–891. [Google Scholar] [CrossRef]
- Love, C.D.; Kolar, P.; Classen, J.J.; Das, L. Adsorption of Ammonia on Ozonated Activated Carbon. Trans. ASABE 2011, 54, 1931–1940. [Google Scholar] [CrossRef]
- Park, S.-J.; Jin, S.-Y. Effect of ozone treatment on ammonia removal of activated carbons. J. Colloid Interface Sci. 2005, 286, 417–419. [Google Scholar] [CrossRef]
- Khabzina, Y.; Farrusseng, D. Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions. Microporous Mesoporous Mater. 2018, 265, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Qajar, A.; Peer, M.; Andalibi, M.R.; Rajagopalan, R.; Foley, H.C. Enhanced ammonia adsorption functionalized nanoporous carbons. Microporous Mesoporous Mater. 2015, 218, 15–23. [Google Scholar] [CrossRef]
- Bai, W.; Qian, M.; Li, Q.; Atkinson, S.; Tang, B.; Zhu, Y.; Wang, J. Rice husk-based adsorbents for removing ammonia: Kinetics, thermodynamics and adsorption mechanism. J. Environ. Chem. Eng. 2021, 9, 105793. [Google Scholar] [CrossRef]
Defined | Yield (%) | Properties |
---|---|---|
Compost 1 | 20–40 | (1) Maturation period: 3 months (2) Odor generation: 588 m3/ton (3) Increasing environment load (N, P2O5, K2O) |
Solid Refuse Fuel 2 | 20–30 | (1) Odor generation: 1198 m3/ton (2) High drying energy: 553 Mcal/ton |
Activated Carbon 3 | 10–20 | (1) Low economic feasibility |
Proximate Analysis (%)—Dry Basis | Ultimate Analysis (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Moisture | Volatile | Fixed Carbon | Ash | C | H | O | N | S | |
CM-D | 1.1 | 56.6 | 17.8 | 24.5 | 42.6 | 4.9 | 51.8 | 0.9 | 0.0 |
Sample to KOH Ratio (w/w) | Proximate Properties (%)—Dry Basis | Solid Yield (%) | Surface Area (m2/g) | |||
---|---|---|---|---|---|---|
Moisture | Volatiles | Fixed Carbon | Ash | |||
1:1 | 1.8 | 13.1 | 34.4 | 50.7 | 32.5 | 541 |
1:2 | 2.1 | 16.6 | 24.9 | 56.4 | 14.5 | 763 |
1:3 | 2.5 | 17.0 | 20.2 | 60.3 | 8.8 | 642 |
Proximate Properties (%)—Dry Basis | Ultimate Analysis (%) | Surface Area (m2/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture | Volatiles | Fixed Carbon | Ash | C | H | O | N | S | ||
CM-DT | 0.2 | 57.3 | 24.2 | 18.4 | 45.6 | 3.6 | 49.3 | 0.8 | 0.6 | 9.0 |
Sample to KOH Ratio (w/w) | Proximate Properties (%)—Dry Basis | Solid Yield (%) | Surface Area (m2/g) | |||
---|---|---|---|---|---|---|
Moisture | Volatiles | Fixed Carbon | Ash | |||
1:1 | 2.0 | 17.3 | 25.5 | 55.3 | 27.3 | 1038 |
1:2 | 1.8 | 18.4 | 32.4 | 47.5 | 21.5 | 1110 |
1:3 | 2.2 | 15.8 | 40.5 | 41.4 | 25.2 | 1034 |
Sample to KOH Ratio (w/w) | Proximate Properties (%)—Dry Basis | Surface Area (m2/g) | Surface Area Growth Rate (%) * | |||
---|---|---|---|---|---|---|
Moisture | Volatiles | Fixed Carbon | Ash | |||
1:1 | 1.5 | 15.1 | 70.2 | 13.2 | 1589 | 53 |
1:2 | 0.8 | 19.8 | 56.4 | 21.3 | 1362 | 23 |
1:3 | 0.2 | 27.2 | 45.7 | 27.2 | 1118 | 8 |
Pre-Heat Temperature (°C) | Sample to KOH Ratio (w/w) | Proximate Properties (%)—Dry Basis | Surface Area (m2/g) | |||
---|---|---|---|---|---|---|
Moisture | Volatiles | Fixed Carbon | Ash | |||
300 | 1:0 | 0.6 | 39.0 | 35.4 | 26.2 | 14 |
1:1 | 2.0 | 17.3 | 25.5 | 55.3 | 1216 | |
1:2 | 1.8 | 18.4 | 32.4 | 47.5 | 1330 | |
1:3 | 2.2 | 15.8 | 40.5 | 41.4 | 1272 | |
500 | 1:0 | 0.5 | 18.0 | 48.2 | 34.3 | 14 |
1:1 | 2.2 | 13.1 | 46.9 | 37.7 | 717 | |
1:2 | 4.9 | 17.3 | 37.0 | 40.8 | 1204 | |
1:3 | 3.0 | 13.5 | 40.9 | 42.7 | 1214 | |
700 | 1:0 | 1.0 | 6.6 | 50.9 | 41.4 | 28 |
1:1 | 2.0 | 18.1 | 46.1 | 33.8 | 559 | |
1:2 | 2.7 | 16.8 | 39.3 | 41.2 | 873 | |
1:3 | 2.1 | 16.4 | 41.5 | 40.1 | 830 |
Area (%) | CM-DTHC-300 | CM-DTHC-500 | CM-DTHC-700 |
---|---|---|---|
C-C | 62.7 | 48.1 | 38.7 |
C-O | 9.5 | 40.3 | 43.4 |
C=O | 27.8 | 11.7 | 17.9 |
The fraction of C=O/(C-C+C-O) | 0.39 | 0.13 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.E.; Lee, G.B.; Kim, H.; Hong, B.U. High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Processes 2022, 10, 1282. https://doi.org/10.3390/pr10071282
Park JE, Lee GB, Kim H, Hong BU. High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Processes. 2022; 10(7):1282. https://doi.org/10.3390/pr10071282
Chicago/Turabian StylePark, Jung Eun, Gi Bbum Lee, Ho Kim, and Bum Ui Hong. 2022. "High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions" Processes 10, no. 7: 1282. https://doi.org/10.3390/pr10071282
APA StylePark, J. E., Lee, G. B., Kim, H., & Hong, B. U. (2022). High Surface Area–Activated Carbon Production from Cow Manure Controlled by Heat Treatment Conditions. Processes, 10(7), 1282. https://doi.org/10.3390/pr10071282