Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Propolis Material
2.2. Preparation of Ethanolic Propolis Extracts
2.3. Optimization of Microwave-Assisted Extraction
2.4. Preparation of Aqueous Propolis Extracts
2.5. Propolis Sample Analysis by High-Performance Liquid Chromatography
2.6. Statistical Analysis
3. Results
3.1. Quantity of Phenolic Compounds in Propolis Material and Ethanolic Extracts
3.2. Determination of Optimal Microwave-Assisted Extraction Conditions
3.3. Saturation of Aqueous Propolis Extracts
3.4. Comparison of Extraction Methods
3.5. Determination of Solubilizer Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keskin, M.; Keskin, Ş.; Kolayli, S. Preparation of alcohol free propolis-alginate microcapsules, characterization and release property. LWT 2019, 108, 89–96. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1869–1876. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, R.; Tanvir, E.M.; Hossen, M.S.; Afroz, R.; Ahmmed, I.; Rumpa, N.E.N.; Paul, S.; Gan, S.H.; Sulaiman, S.A.; Khalil, M.I. Antioxidant properties and cardioprotective mechanism of Malaysian propolis in rats. Evid. Based Complement. Altern. Med. 2017, 2017, 5370545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecem Bayram, N.; Gerçek, Y.C.; Bayram, S.; Toğar, B. Effects of processing methods and extraction solvents on the chemical content and bioactive properties of propolis. J. Food Meas. Charact. 2020, 14, 905–916. [Google Scholar] [CrossRef]
- Escriche, I.; Juan-Borrás, M. Standardizing the analysis of phenolic profile in propolis. Food Res. Int. 2018, 106, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Kubiliene, L.; Maruska, A.; Gailiunaite, V. The Influence of Technological Processes On Extraction of Chemical Compounds of Propolis. Biomedicina 2011, 21, 105–108. [Google Scholar]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complement. Altern. Med. 2015, 15, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Švarc-Gajić, J.; Stojanović, Z.; Segura Carretero, A.; Arráez Román, D.; Borrás, I.; Vasiljević, I. Development of a microwave-assisted extraction for the analysis of phenolic compounds from Rosmarinus officinalis. J. Food Eng. 2013, 119, 525–532. [Google Scholar] [CrossRef]
- Tatke, P.; Jaiswal, Y. An overview of microwave assisted extraction and its applications in herbal drug research. Res. J. Med. Plant 2011, 5, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Margeretha, I.; Suniarti, D.F.; Herda, E.; Mas’ud, Z.A. Optimization and comparative study of different extraction methods of biologically active components of Indonesian propolis Trigona spp. J. Nat. Prod. 2012, 5, 233–242. [Google Scholar]
- Vemula, V.R.; Lagishetty, V.; Lingala, S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 41–51. [Google Scholar]
- Rodiahwati, W.; Ariskanopitasari, A.; Saleh, I.K. Identification of total bioflavonoid compound of propolis extract from wild honey bee hives apis dorsata in Sumbawa Region, Indonesia. Appl. Sci. Eng. Prog. 2019, 12, 37–43. [Google Scholar] [CrossRef]
- Mohamad Said, K.A.; Mohamed Amin, M.A. Overview on the Response Surface Methodology (RSM) in Extraction Processes. J. Appl. Sci. Process Eng. 2016, 2, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Fruit and vegetable processing wastes as natural sources of antioxidant-rich extracts: Evaluation of advanced extraction technologies by surface response methodology. J. Environ. Chem. Eng. 2021, 9, 105330. [Google Scholar] [CrossRef]
- Cavalaro, R.I.; da Cruz, R.G.; Dupont, S.; de Moura, J.M.L.N.; de Souza Vieira, T.M.F. In vitro and in vivo antioxidant properties of bioactive compounds from green propolis obtained by ultrasound-assisted extraction. Food Chem. X 2019, 4, 100054. [Google Scholar] [CrossRef]
- Manga, E.; Brostaux, Y.; Ngondi, J.L.; Sindic, M. Optimisation of phenolic compounds and antioxidant activity extraction conditions of a roasted mix of Tetrapleura tetraptera (Schumach & Thonn.) and Aframomum citratum (C. Pereira) fruits using response surface methodology (RSM). Saudi J. Biol. Sci. 2020, 27, 2054–2064. [Google Scholar] [PubMed]
- Vasilaki, A.; Hatzikamari, M.; Stagkos-Georgiadis, A.; Goula, A.M.; Mourtzinos, I. A natural approach in food preservation: Propolis extract as sorbate alternative in non-carbonated beverage. Food Chem. 2019, 298, 125080. [Google Scholar] [CrossRef]
- Qin, P.; Wei, A.; Zhao, D.; Yao, Y.; Yang, X.; Dun, B.; Ren, G. Low concentration of sodium bicarbonate improves the bioactive compound levels and antioxidant and α-glucosidase inhibitory activities of tartary buckwheat sprouts. Food Chem. 2017, 224, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Žilius, M.; Ramanauskiene, K.; Briedis, V. Release of propolis phenolic acids from semisolid formulations and their penetration into the human skin in vitro. Evid. Based Complement. Altern. Med. 2013, 2013, 958717. [Google Scholar] [CrossRef] [Green Version]
- Cunha, I.B.S.; Sawaya, A.C.H.F.; Caetano, F.M.; Shimizu, M.T.; Marcucci, M.C.; Drezza, F.T.; Povia, G.S.; Carvalho, P.O. Factors that influence the yield and composition of Brazilian propolis extracts. J. Braz. Chem. Soc. 2004, 15, 964–970. [Google Scholar] [CrossRef]
- Adomavičiute, E.; Pupkevičiute, S.; Juškaite, V.; Žilius, M.; Stanys, S.; Pavilonis, A.; Briedis, V. Formation and investigation of electrospun PLA materials with propolis extracts and silver nanoparticles for biomedical applications. J. Nanomater. 2017, 2017, 8612819. [Google Scholar] [CrossRef] [Green Version]
- Kubiliene, L.; Jekabsone, A.; Zilius, M.; Trumbeckaite, S.; Simanaviciute, D.; Gerbutaviciene, R.; Majiene, D. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: Antioxidant and mitochondria modulating properties. BMC Complement. Altern. Med. 2018, 18, 165. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskiene, K.; Savickas, A.; Inkeniene, A.; Vitkevičius, K.; Kasparavičiene, G.; Briedis, V.; Amšiejus, A. Analysis of content of phenolic acids in Lithuanian propolis using high-performance liquid chromatography technique. Medicina 2009, 45, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, H.; Qiu, Z.; Xie, B.; Wang, Z.; Shen, Z.; Hou, W. Development and application of ultra-high temperature drilling fluids in offshore oilfield around bohai sea bay Basin, China. In Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016; pp. 1201–1222. [Google Scholar]
- Pellati, F.; Prencipe, F.P.; Bertelli, D.; Benvenuti, S. An efficient chemical analysis of phenolic acids and flavonoids in raw propolis by microwave-assisted extraction combined with high-performance liquid chromatography using the fused-core technology. J. Pharm. Biomed. Anal. 2013, 81–82, 126–132. [Google Scholar] [CrossRef]
- Englis, D.T.; Manchester, M. Oxidation of Vanillin to Vanillic Acid. Anal. Chem. 1949, 21, 591–593. [Google Scholar] [CrossRef]
- Svard, M.; Gracin, S.; Rasmuson, A.C. Oiling Out or Molten Hydrate—Liquid–Liquid Phase Separation in the System Vanillin–Water. J. Pharm. Sci. 2007, 96, 2390–2398. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinos, I.; Konteles, S.; Kalogeropoulos, N.; Karathanos, V.T. Thermal oxidation of vanillin affects its antioxidant and antimicrobial properties. Food Chem. 2009, 114, 791–797. [Google Scholar] [CrossRef]
- Ramanauskienė, K.; Savickas, A.; Bernatonienė, J. The influence of extraction method on the quality of the liquid extract of St John’s wort. Medicina 2004, 40, 745–749. [Google Scholar]
- Gülçin, I.; Bursal, E.; Şehitoĝlu, M.H.; Bilsel, M.; Gören, A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2010, 48, 2227–2238. [Google Scholar] [CrossRef]
- De Moura, S.A.L.; Negri, G.; Salatino, A.; Lima, L.D.D.C.; Dourado, L.P.A.; Mendes, J.B.; Andrade, S.P.; Ferreira, M.A.V.D.; Cara, D.C. Aqueous extract of Brazilian green propolis: Primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid. Based Complement. Altern. Med. 2011, 2011, 748283. [Google Scholar] [CrossRef] [Green Version]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process.-Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Rafiee, Z.; Jafari, S.M.; Alami, M.; Khomeiri, M. Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J. Anim. Plant Sci. 2011, 21, 738–745. [Google Scholar]
- Simsek, M.; Sumnu, G.; Sahin, S. Microwave Assisted Extraction of Phenolic Compounds from Sour Cherry Pomace. Sep. Sci. Technol. 2012, 47, 1248–1254. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis; a preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Sheu, S.; Wang, C.; Yeh, Y.; Sung, K. Optimization Analysis of the Experimental Parameters on the Extraction Process of Propolis. Lect. Notes Eng. Comput. Sci. 2009, 2175, 1295–1299. [Google Scholar]
- Heidari, G.; Najafpour, G.D.; Mohammadi, M.; Moghadamnia, A.A. Microwave ultrasound assisted extraction: Determination of quercetin for antibacterial and antioxidant activities of Iranian propolis. Int. J. Eng. Trans. B Appl. 2019, 32, 1057–1064. [Google Scholar]
- Wyan, L.O.; Charland, J.M.; Mojica, E.E. Comparative Study of the Extraction Methods for the Instrumental Analysis of Bee Propolis. Undergrad. J. Teach. Res. 2021, 1, 51–62. [Google Scholar]
Independent Variable | Symbol | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Extraction duration (min) | X | 1 | 3 | 5 |
Microwave power (W) | Y | 472 | 636 | 800 |
Run | X = Extraction Duration (min) | Y = Microwave Power (W) | ||
---|---|---|---|---|
Level | Value | Level | Value | |
1 | 1 | 5 | 0 | 636 |
2 | 0 | 3 | 0 | 636 |
3 | 0 | 3 | 0 | 636 |
4 | 1 | 5 | 1 | 800 |
5 | −1 | 1 | 1 | 800 |
6 | 0 | 3 | 0 | 636 |
7 | 1 | 5 | −1 | 472 |
8 | −1 | 1 | −1 | 472 |
9 | 0 | 3 | 0 | 636 |
10 | 0 | 3 | −1 | 472 |
11 | −1 | 1 | 0 | 636 |
12 | 0 | 3 | 0 | 636 |
13 | 0 | 3 | 1 | 800 |
Compound | Concentration (mg/g) | Percentage of Total Phenolic Compounds (%) |
---|---|---|
p-Coumaric acid | 10.5 ± 0.4 | 37.1 ± 0.5 |
Ferulic acid | 7.6 ± 0.4 | 26.8 ± 0.3 |
Vanillin | 6.0 ± 0.4 | 21.2 ± 0.6 |
Vanillic acid | 3.7 ± 0.2 | 12.9 ± 0.7 |
Caffeic acid | 0.6 ± 0.1 | 2.0 ± 0.3 |
Compound | Concentration (µg/mL) | Percentage of Total Phenolic Compounds (%) |
---|---|---|
p-Coumaric acid | 857.8 ± 24.3 | 35.6 ± 0.3 |
Ferulic acid | 618.7 ± 14.8 | 25.7 ± 0.1 |
Vanillin | 543.8 ± 11.0 | 22.6 ± 0.1 |
Vanillic acid | 341.7 ± 11.5 | 14.2 ± 0.3 |
Caffeic acid | 45.8 ± 3.7 | 1.9 ± 0.1 |
Compound | Concentration (µg/mL) | Percentage of Total Hydroxycinnamic Acids (%) |
---|---|---|
p-Coumaric acid | 857.8 ± 24.3 | 56.3 ± 0.3 |
Ferulic acid | 618.7 ± 14.8 | 40.6 ± 0.2 |
Caffeic acid | 45.8 ± 3.7 | 3.0 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juodeikaitė, D.; Žilius, M.; Briedis, V. Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction. Processes 2022, 10, 1330. https://doi.org/10.3390/pr10071330
Juodeikaitė D, Žilius M, Briedis V. Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction. Processes. 2022; 10(7):1330. https://doi.org/10.3390/pr10071330
Chicago/Turabian StyleJuodeikaitė, Dovaldė, Modestas Žilius, and Vitalis Briedis. 2022. "Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction" Processes 10, no. 7: 1330. https://doi.org/10.3390/pr10071330
APA StyleJuodeikaitė, D., Žilius, M., & Briedis, V. (2022). Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction. Processes, 10(7), 1330. https://doi.org/10.3390/pr10071330