A Mathematical Kinetic Model and Network Analysis for Multicomponent Dissolution Relationships during the Extraction of Natural Products
Abstract
:1. Introduction
Model Assumptions
2. Materials and Methods
2.1. Materials and Instruments
2.2. Mathematical Basis of the Extraction Model
2.3. Solving Extraction Equations in the Model
2.4. Statistical Moment Analysis of the Kinetic Network
2.5. Theoretical Formulation of Network Analysis for the Extraction Model
2.6. Concepts of Other Parameter Network Dynamics
2.7. Sample Preparation
2.7.1. Collection of Samples at Different Times
2.7.2. Determination of Protoplasm, Apoplasm, and Solution Volumes
2.7.3. Determination of the Distribution Coefficients ρ1 and ρ2
2.7.4. HPLC Quantitative Analysis
2.7.5. Preparation of Reference Solution
2.7.6. Preparation of Sample Solution
3. Results
3.1. HPLC Fingerprints of the BYHWD
3.2. HPLC Quantitative Analysis
3.2.1. Linearity Test
3.2.2. Precision Test
3.2.3. Repeated Test
3.2.4. Stability Test
3.2.5. Recovery Test
3.3. V0, V1, and V2 Values
3.4. Concentrations of Total and Main Glycosides in Dried Herb Samples
3.5. Calculation of the Distribution Coefficients ρ2 and ρ1
3.6. Curve Fitting
3.7. Action Coefficients of the Kinetic Network
3.8. Network Diagrams Visualized Using Pajek Software
3.9. Network Topological Analysis of BYHWD Extraction Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCM | Traditional Chinese Medicine |
BYHWD | buyang huanwu decoction |
AST-IV | Astragaloside IV |
PF | paeoniflorin |
LT | Laetrile |
FA | ferulic acid |
LS | ligustrazine |
AUC | area under the curve |
MIC | compartment in cell |
CIS | compartment in solution |
CMCP | Chinese medicine compound prescription |
References
- Zhou, J.; Deng, K.W.; Duan, X.P.; He, F.Y. Study on calculation of fingerprint total quantum statistical moment(TQSM) and to decide integral condition. Chin. Arch. Tradit. Chin. Med. 2012, 30, 505–508. [Google Scholar]
- He, F.Y.; Deng, K.W.; Luo, J.Y.; Liu, W.; Liu, W.L.; Deng, C.Q. Fundamentally study on mathematical kinetic model of component extraction from FTCM. China J. Chin. Mater. Medica 2007, 32, 490–495. [Google Scholar]
- Jadhav, D.; Rekha, B.N.; Gogate, P.R.; Rathod, V.K. Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. J. Food Eng. 2009, 93, 421–426. [Google Scholar] [CrossRef]
- Suganya, T.; Renganathan, S. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour. Technol. 2011, 107, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Shang, E.; Su, S.; Zeng, H.; Zhu, Z.; Duan, J. A novel modeling method to evaluate the bioactive contributions of compositions in traditional Chinese medicine. Chemom. Intell. Lab. Syst. 2016, 159, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.M.; Escobar, G.A.; Delvalle, J.M.; Martin, R. Ethanol extraction of red peppers: Kinetic studies and microstructure. Int. J. Food Sci. Technol. 1987, 22, 225–232. [Google Scholar] [CrossRef]
- Vetal, M.D.; Lade, V.; Rathod, V.K. Extraction of ursolic acid from Ocimum sanctum leaves: Kinetics and modeling. Food Bioprod. Process. 2012, 90, 793–798. [Google Scholar] [CrossRef]
- Leal, P.F.; Almeida, T.S.; Prado, G.; Prado, J.M.; Meireles, M.A.A. Extraction kinetics and anethole content of fennel (Foeniculum vulgare) and anise seed (Pimpinella anisum) extracts obtained by Soxhlet, ultrasound, percolation, centrifugation, and steam distillation. Sep. Sci. Technol. 2011, 46, 1848–1856. [Google Scholar] [CrossRef]
- Haghshenas, H.; Sadeghi, M.T.; Ghadiri, M. Mathematical modeling of aroma compound recovery from natural sources using hollow fiber membrane contactors with small packing fraction. Chem. Eng. Process. Process Intensif. 2016, 102, 194–201. [Google Scholar] [CrossRef]
- Fick, A. On liquid diffusion. Membr. Sci. 1995, 100, 33–38. [Google Scholar] [CrossRef]
- Nagy, J.; Veress, T. Systematic error for extraction of controlled substances from plant/fungal materials. J. Chromatogr. Sci. 2020, 58, 985–991. [Google Scholar] [CrossRef]
- Yuan, H.F.; Luo, J.Y.; Deng, K.W.; Liu, X.J.; Yang, Y. A survey on status and research method of pharmacokinetics of formula Chinese materia medica. Chin. Tradit. Herb. Drugs 2005, 36, 1583. [Google Scholar]
- Lewicki, P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998, 1, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Liu, W.-L.; Tang, Y.; Yang, Y.-T.; Xiao, M.-F.; Zhou, Y.-Q.; Zhou, J.; He, F.-Y. A novel kinetic model for dissolution of herbal medicine. Dissolut. Technol. 2018, 25, 28–38. [Google Scholar] [CrossRef]
- Adnadjevic, B.; Koturevic, B.; Jovanovic, J. Isothermal kinetics of ethanolic extraction of total hypericin from pre-extracted Hypericum perforatum flowers. Phytochem. Anal. 2021, 32, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.B.; Zhang, X.F.; Tai, J.; Wang, J.; Cheng, J.X.; Zhao, C.B.; Feng, Y.; Wang, Y.; Liang, Y.L.; Shi, Y.J. Extraction kinetics of volatile oil from galangal by steam distillation. China J. Chin. Mater. Medica 2018, 43, 4231–4239. [Google Scholar] [CrossRef]
- He, F.-Y.; Deng, K.-W.; Liu, W.-L.; Shi, J.-L.; Wu, Y.; Liu, W.; He, Q.-P.; Li, B. Experimental studies on pharmacokinetics of three components in Buyanghuanwu injection on base of total quantum statistical moment. China J. Chin. Mater. Medica 2013, 38, 253–262. [Google Scholar]
- Horkovics-Kovats, S. Disintegration rate and properties of active pharmaceutical ingredient particles as determined from the dissolution time profile of a pharmaceutical formulation: An inverse problem. J. Pharm. Sci. 2014, 103, 456–464. [Google Scholar] [CrossRef]
- Tang, Y. Establishment of quantitative determination methods of total glycoside groups composition in Chinese materia medica by differential anthrone-sugar hydrazone. Chin. Tradit. Herb. Drugs 2014, 45, 2333–2338. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 20. [Google Scholar]
- Dai, Y.; Wang, D.; Zhao, M.; Yan, L.; Zhu, C.; Li, P.; Qin, X.; Verpoorte, R.; Chen, S. Quality markers for Astragali radix and its products based on process analysis. Front. Pharmacol. 2020, 11, 554777. [Google Scholar] [CrossRef]
- Capparucci, C.; Gironi, F.; Piemonte, V. Equilibrium and extraction kinetics of tannins from chestnut tree wood in water solutions. Asia Pac. J. Chem. Eng. 2011, 6, 606–612. [Google Scholar] [CrossRef]
- Zhu, D.Z.; Jun, W.U.; Tan, Y.J.; Deng, H.Z. Construction of complex networks based on degree distribution. Comput. Simul. 2007, 24, 130–136. [Google Scholar]
- Aoyama, T.; Omori, T.; Watabe, S.; Shioya, A.; Ueno, T.; Fukuda, N.; Matsumoto, Y. Pharmacokinetic/pharmacodynamic modeling and simulation of rosuvastatin using an extension of the indirect response model by incorporating a circadian rhythm. Biol. Pharm. Bull. 2010, 33, 1082–1087. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Li, M.-Y.; Li, H.-Q.; Deng, C.-H.; Li, L.; Zhou, T.-Y.; Lu, W. Pharmacokinetic-pharmacodynamic modeling of the anticancer effect of erlotinib in a human non-small cell lung cancer xenograft mouse model. Acta Pharmacol. Sin. 2013, 34, 1427–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.L.; Deng, K.W.; Liu, W.L.; Shi, J.L.; Yang, Y.T.; Luo, J.Y.; He, F.Y. Validation of chromatogram pharmacokinetic model, a pharmacokinetics for multiple components in Chinese materia medica with fingerprint chromatography. China J. Tradit. Chin. Med. Pharm. 2013, 28, 3367–3373. [Google Scholar]
- He, F.Y.; Deng, K.W.; Liu, W.L.; Shi, J.L.; Zou, H.; Tang, Y.; Liu, P.A.; Zhou, H.H. Reactive essence between Chinese materia medica formula and human body: Multiple genetic chromatodynamokinetics with ‘co-network compatibility and rainbow potential’. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 240–247. [Google Scholar]
- He, F.; Deng, K.; Zou, H.; Qiu, Y.; Chen, F.; Zhou, H. Study on differences between pharmacokinetics and chromatopharmacodynamics for Chinese materia medica formulae. China J. Chin. Mater. Medica 2011, 36, 136–141. [Google Scholar]
- Chen, F.; He, X.; Fang, B.; Wang, S. Simultaneous quantitative analysis of six proton-pump inhibitors with a single marker and evaluation of stability of investigated drugs in polypropylene syringes for continuous infusion use. Drug Des. Dev. Ther. 2020, 14, 5689–5698. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Younas, M.; Rezakazemi, M. Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor. Chem. Eng. Res. Des. 2017, 127, 52–61. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci. World J. 2017, 2017, 5873648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, W.G.; Tang, C.; Ye, Y.; Quinn, R.J.; Feng, Y. Traditional Chinese medicine extraction method by ethanol delivers drug-like molecules. Chin. J. Nat. Med. 2019, 17, 713–720. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Ahmad, M.; Faridullah, S.; Akhtar, M. Formulations, characterization, in vitro and ex vivo release of Ephedra extract from topical preparations using dialysis cellulose membrane and natural rabbit skin. Dissolut. Technol. 2017, 24, 24–30. [Google Scholar] [CrossRef]
Extraction Time/min | Total Glycosides/mg∙mL−1 | AST-IV /μg∙mL−1 | PF /μg∙mL−1 | LT /μg∙mL−1 | FA /μg∙mL−1 | LS /μg∙mL−1 |
---|---|---|---|---|---|---|
5 | 24.39 | 36.1 | 17.12 | 48.43 | 5.21 | 4.45 |
10 | 28.28 | 38.1 | 18.54 | 49.65 | 6.45 | 6.38 |
20 | 33.53 | 42.54 | 19.76 | 50.54 | 6.65 | 7.09 |
30 | 35.49 | 54.76 | 20.65 | 51.76 | 9.87 | 8.66 |
60 | 38.22 | 67.43 | 21.66 | 50.68 | 16.94 | 12.98 |
90 | 40.94 | 76.54 | 23.53 | 50.11 | 23.08 | 14.07 |
120 | 48.98 | 80.65 | 24.54 | 50.98 | 28.39 | 15.24 |
180 | 46.45 | 85.43 | 25.87 | 49.01 | 36.56 | 16.09 |
240 | 41.65 | 86.54 | 26.43 | 47.11 | 42.55 | 17.11 |
360 | 35.21 | 98.21 | 29.43 | 42.54 | 52.8 | 18.59 |
720 | 33.09 | 93.65 | 31.19 | 35.44 | 63.99 | 19.14 |
1355 | 32.66 | 90.23 | 34.43 | 27.65 | 70.03 | 20.09 |
1440 | 17.70 | 89.22 | 36.65 | 26.95 | 70.5 | 21.17 |
Parameter | Total Glycosides | AST-IV | PF | LT | FA | LS | Additive Component |
---|---|---|---|---|---|---|---|
M/% | 0.7016 | 0.1187 | 0.7269 | 0.2902 | 0.3063 | 0.4654 | 0.4930 |
α/min−1 | 0.00406 | 0.00959 | 0.00201 | 0.00103 | 0.00305 | 0.00902 | 0.00874 |
N/% | −0.6306 | −0.2298 | −0.6963 | −0.1903 | −0.1887 | −0.4101 | −0.4696 |
β/min−1 | 0.02244 | 0.0225 | 0.0625 | 0.0284 | 0.01768 | 0.00707 | 0.01358 |
L/% | 0.09494 | 0.0219 | 0.04799 | 0.07816 | 0.01432 | 0.1446 | 0.09297 |
π/min−1 | 0.001078 | 0.0088 | 0.07597 | 0.01154 | 0.04416 | 0.0141 | 0.9.615 |
R | 0.846 | 0.977 | 0.984 | 0.940 | 0.943 | 0.9860 | 0.996 |
N | 34 | 45 | 109 | 24 | 13 | 24 | 23 |
p | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Parameter | Total Glycosides | AST-IV | PF | LT | FA | LS | Additive Component |
---|---|---|---|---|---|---|---|
K/min−1 | 16.05 × 10−6 | 1.466 × 10−6 | 11.82 × 10−6 | 0.05339 × 10−6 | 1.457 × 10−6 | 3.082 × 10−6 | 1.963 × 10−6 |
k1′/min−1 | 0.2235 | 0.6291 | 0.1730 | 0.2830 | 0.2384 | 0.1264 | 0.2487 |
k2′/min−1 | 130.8 | 94.31 | 2.372 | 1.745 | 3.805 | 1.105 | 111.8 |
ρ1 | 7.051 | 2.563 | 2.607 | 2.573 | 2.576 | 2.597 | 3.245 |
ρ2 | 0.3210 | 1.069 | 1.046 | 1.154 | 0.453 | 0.787 | 0.674 |
tmax/min | 94.94 | 300 | 47.99 | 781.0 | 719.0 | 719.9 | 720.0 |
cmax/% | 57.38 | 54.10 | 47.20 | 29.00 | 29.66 | 41.80 | 46.00 |
AUC/min | 6.226 × 104 | 6.819 × 104 | 8.457 × 104 | 1.872 × 107 | 6.860 × 105 | 3.243 × 105 | 5.0923 × 105 |
w0/% | 75.30 | 1.231 | 0.2560 | 0.3521 | 0.2100 | 0.467 | 2.516 |
P/% | 5738 | 5410 | 4720 | 2900 | 2966 | 4180 | 4600 |
D/% | 0.08480 | 0.02000 | 0.1194 | 0.0005550 | 0.03068 | 0.08098 | 0.06055 |
Relational Expression | |
---|---|
AST-IV | C = 0.1187e−0.00959t − 0.2298e−0.0225t + 0.02190e−0.0088t |
PF | C = 0.7269e−0.00201t − 0.6963e−0.0625t + 0.04799e−0.07597t |
LT | C = 0.2902e−0.00103t − 0.1903e−0.0284t + 0.07816e−0.01154t |
FA | C = 0.3063e−0.00305t − 0.1887e−0.01768t + 0.01432e−0.04416t |
LS | C = 0.4654e−0.00902t − 0.4101e−0.00707t + 0.1446e−0.0141t |
Parameter | Total Glycosides | AST-IV | PF | LT | FA | LS | Additive Component |
---|---|---|---|---|---|---|---|
MRT/min | 96.73 | 86.22 | 14.68 | 64.53 | 22.43 | 72.10 | 104.69 |
VRT/min2 | 86.22 | 96.2 | 7.584 | 41.60 | 50.20 | 80.02 | 108.07 |
Total Glycosides | AST-IV | PF | LT | FA | LS | Additive Component | |
---|---|---|---|---|---|---|---|
Total glycosides (effective components) | 1 | 0.1098 | 0.7685 | 0.002792 | 0.0632 | 0.1823 | 0.1284 |
AST-IV | 0.1098 | 1 | 0.1539 | 0.03097 | 0.6588 | 0.6828 | 0.8984 |
PF | 0.7685 | 0.1539 | 1 | 0.003900 | 0.0883 | 0.2563 | 0.1802 |
LT | 0.002792 | 0.03097 | 0.003900 | 1 | 0.05375 | 0.01856 | 0.02645 |
FA | 0.06329 | 0.6580 | 0.0883 | 0.05375 | 1 | 0.4136 | 0.5742 |
LS | 0.1823 | 0.6828 | 0.2563 | 0.01856 | 0.4136 | 1 | 0.7760 |
Additive component | 0.1284 | 0.8984 | 0.1802 | 0.02640 | 0.5742 | 0.7760 | 1 |
Total Glycosides | AST-IV | PF | LT | FA | LS | Additive Component | |
---|---|---|---|---|---|---|---|
Similarity of additive data | 1 | 0.1098 | 0.7685 | 0.002792 | 0.0632 | 0.1823 | 0.1284 |
Similarity × content | 2.960 | 82.15 | 4.491 | 0.5564 | 7.368 | 20.80 | 184.8 |
Average Retention Time (min) | 5 Min | 10 Min | 20 Min | 30 Min | 60 Min | 90 Min | 120 Min | 180 Min | 240 Min | 360 Min | 720 Min | 1355 Min | 1440 Min |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.39 | 477,789 | 503,330 | 686,965 | 524,721 | 572,198 | 644,160 | 577,595 | 611,243 | 619,056 | 653,347 | 655,351 | 1,054,145 | 1,206,922 |
5.72 | 1,714,996 | 1,832,252 | 2,077,599 | 1,896,874 | 2,331,715 | 2,573,756 | 2,261,854 | 2,385,237 | 2,814,849 | 2,643,691 | 2,349,501 | 3,444,613 | 3,864,146 |
7.49 | 150,639 | 572,886 | 702,495 | 620,750 | 549,683 | 679,000 | 584,515 | 749,073 | 608,900 | 804,443 | 860,854 | 1,673,152 | 937,343 |
10.35 | 823,603 | 91,477 | 1,147,259 | 124,004 | 68,864 | 250,291 | 1,111,596 | 126,141 | 1,192,171 | 135,977 | 1,257,381 | 1,925,657 | 1,872,837 |
13.23 | 883,314 | 1,081,969 | 1,510,304 | 1,629,265 | 125,011 | 537,224 | 3,146,488 | 4,585,570 | 4,553,217 | 4,948,196 | 5,502,817 | 7,333,328 | 8,083,948 |
22.65 | 1,280,253 | 1,070,115 | 1,602,922 | 1,493,914 | 2,595,508 | 1,791,472 | 1,876,407 | 2,389,710 | 2,016,905 | 2,574,613 | 2,122,311 | 3,650,321 | 3,919,484 |
38.55 | 285,418 | 312,803 | 395,585 | 366,656 | 1,066,898 | 393,072 | 379,575 | 326,211 | 356,300 | 325,626 | 301,266 | 475,478 | 449,841 |
40.26 | 129,901 | 500,075 | 238,799 | 155,218 | 228,087 | 1,632,093 | 222,357 | 152,379 | 1,291,733 | 696,912 | 479,320 | 407,426 | 165,495 |
48.02 | 749,934 | 822,291 | 1,187,851 | 1,142,140 | 1,375,508 | 1,992,421 | 1,875,622 | 179,447 | 1,203,844 | 292,330 | 99,423 | 135,279 | 967,129 |
52.12 | 500,843 | 612,545 | 746,073 | 831,971 | 2,187,140 | 1,860,377 | 1,630,272 | 2,597,072 | 1,797,012 | 2,896,386 | 2,403,598 | 142,326 | 2,142,757 |
57.3 | 176,380 | 445,776 | 148,598 | 167,340 | 397,890 | 455,110 | 213,213 | 75,222 | 126,402 | 162,541 | 139,202 | 181,702 | 130,122 |
61.49 | 253,481 | 276,938 | 241,488 | 318,408 | 606,205 | 613,445 | 359,062 | 400,048 | 481,896 | 128,604 | 449,955 | 115,779 | 61,445 |
63.57 | 151,775 | 145,948 | 280,280 | 362,128 | 501,849 | 805,806 | 741,438 | 867,384 | 934,550 | 116,489 | 95,788 | 1,008,009 | 59,506 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | −3.202 | 6.501 | −1.981 | −19.755 | 13.455 | — | −21.328 | 38.527 | 50.059 | −13.855 | −19.374 | −1.777 |
2 | −0.287 | 1 | 1.914 | — | −5.992 | — | 1.272 | −12.262 | — | 44.878 | −55.358 | −55.677 | −30.396 |
3 | 0.152 | — | 1 | 0.287 | — | −2.402 | −0.694 | 4.327 | −5.850 | −23.039 | 27.753 | 30.253 | 15.616 |
4 | −0.019 | −0.037 | — | 1 | −0.107 | −2.780 | — | 4.696 | 1.477 | — | 11.561 | −7.057 | — |
5 | −0.042 | −0.143 | 0.280 | −0.024 | 1 | 23.150 | 86.186 | −1.701 | −71.15 | 0.097 | 2.588 | −8.084 | −4.450 |
6 | 0.008 | — | −0.057 | −0.090 | 0.251 | 1 | −0.016 | 1.703 | — | — | — | 0.949 | 1.038 |
7 | 0.199 | — | −1.285 | 3.774 | — | — | 1 | 2.654 | −8.322 | −28.757 | 31.286 | 42.298 | 19.776 |
8 | −0.076 | −0.239 | 0.492 | −0.309 | −1.464 | 0.358 | — | 1 | 3.108 | 11.156 | −12.657 | −15.887 | −7.650 |
9 | 0.024 | 0.075 | −0.154 | — | — | −0.030 | −0.119 | — | 1 | −3.447 | 4.314 | 5.057 | 2.422 |
10 | — | 0.020 | −0.040 | 0.006 | 0.131 | −0.152 | −0.027 | 0.247 | −0.227 | 1 | 1.349 | — | 0.651 |
11 | −0.001 | −0.005 | 0.009 | 0.009 | — | 0.043 | 16.47 | −0.100 | 0.051 | 0.244 | 1 | −0.220 | −0.181 |
12 | −0.005 | −0.014 | 0.030 | — | — | 0.018 | 2.365 | −0.044 | 0.190 | 0.671 | −0.695 | 1 | −0.469 |
13 | −0.009 | −0.030 | 0.058 | −0.008 | −0.181 | 0.178 | 0.040 | −0.338 | 0.342 | 1.398 | −2.151 | −1.766 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Out-degree | 11 | 9 | 10 | 8 | 12 | 8 | 9 | 11 | 9 | 10 | 11 | 10 | 12 |
In-degree | 11 | 9 | 11 | 9 | 7 | 10 | 9 | 11 | 10 | 10 | 11 | 11 | 11 |
Node degree | 22 | 18 | 21 | 17 | 19 | 18 | 18 | 22 | 19 | 20 | 22 | 21 | 23 |
Clustering coefficient | 0.81 | 0.85 | 0.82 | 0.85 | 0.84 | 0.85 | 0.84 | 0.81 | 0.84 | 0.83 | 0.81 | 0.82 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Zhou, Y.; Zhang, Y.; Deng, K.; Liu, Z.; Liu, W.; He, F. A Mathematical Kinetic Model and Network Analysis for Multicomponent Dissolution Relationships during the Extraction of Natural Products. Processes 2022, 10, 1470. https://doi.org/10.3390/pr10081470
Tang Y, Zhou Y, Zhang Y, Deng K, Liu Z, Liu W, He F. A Mathematical Kinetic Model and Network Analysis for Multicomponent Dissolution Relationships during the Extraction of Natural Products. Processes. 2022; 10(8):1470. https://doi.org/10.3390/pr10081470
Chicago/Turabian StyleTang, Yu, Yiqun Zhou, Yutian Zhang, Kaiwen Deng, Zhigang Liu, Wenlong Liu, and Fuyuan He. 2022. "A Mathematical Kinetic Model and Network Analysis for Multicomponent Dissolution Relationships during the Extraction of Natural Products" Processes 10, no. 8: 1470. https://doi.org/10.3390/pr10081470
APA StyleTang, Y., Zhou, Y., Zhang, Y., Deng, K., Liu, Z., Liu, W., & He, F. (2022). A Mathematical Kinetic Model and Network Analysis for Multicomponent Dissolution Relationships during the Extraction of Natural Products. Processes, 10(8), 1470. https://doi.org/10.3390/pr10081470