Medlar Jam Production (Mespilus germanica) with the Use of Sous Vide Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Total Polyphenols Content Spectrophotometrically
2.2. Determination of Antioxidant Activity by the FRAP Method (Ferric Reducing Antioxidant Power Assay)
2.3. Determination of Antioxidant Activity Using DPPH (2,2-Diphenyl-1-picrylhydrazyl)
2.4. Determination of Organic Acids by HPLC
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Antioxidant Activity
3.2. Organic Acid Content
3.3. Principal Components Analysis-PCA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinwari, K.J.; Rao, P.S. Stability of Bioactive Compounds in Fruit Jam and Jelly during Processing and Storage: A Review. Trends Food Sci. Technol. 2018, 75, 181–193. [Google Scholar] [CrossRef]
- Rinaldi, M.; Santi, S.; Paciulli, M.; Ganino, T.; Pellegrini, N.; Visconti, A.; Vitaglione, P.; Barbanti, D.; Chiavaro, E. Comparison of Physical, Microstructural and Antioxidative Properties of Pumpkin Cubes Cooked by Conventional, Vacuum Cooking and Sous Vide Methods. J. Sci. Food Agric. 2021, 101, 2534–2541. [Google Scholar] [CrossRef]
- Aisala, H.; Laaksonen, O.; Manninen, H.; Raittola, A.; Hopia, A.; Sandell, M. Sensory Properties of Nordic Edible Mushrooms. Food Res. Int. 2018, 109, 526–536. [Google Scholar] [CrossRef]
- Keller, T. Under Pressure: Cooking Sous Vide; Artisan: New York, NY, USA, 2008; ISBN 978-1-57965-351-4. [Google Scholar]
- Zavadlav, S.; Blažić, M.; de Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Bursać Kovačević, D.; Putnik, P. Sous-Vide as a Technique for Preparing Healthy and High-Quality Vegetable and Seafood Products. Foods 2020, 9, 1537. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous Vide Cooking: A Review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef]
- Ruiz-Carrascal, J.; Roldan, M.; Refolio, F.; Perez-Palacios, T.; Antequera, T. Sous-Vide Cooking of Meat: A Maillarized Approach. Int. J. Gastron. Food Sci. 2019, 16, 100138. [Google Scholar] [CrossRef]
- Ercisli, S.; Sengul, M.; Yildiz, H.; Sener, D.; Duralija, B.; Voca, S.; Purgar, D.D. Phytochemical and Antioxidant Characteristics of Medlar Fruits (Mespilus germanica L.). J. Appl. Bot. Food Qual. 2012, 85, 86–90. [Google Scholar]
- Glew, R.H.; Ayaz, F.A.; Sanz, C.; VanderJagt, D.J.; Huang, H.-S.; Chuang, L.-T.; Strnad, M. Changes in Sugars, Organic Acids and Amino Acids in Medlar (Mespilus germanica L.) during Fruit Development and Maturation. Food Chem. 2003, 83, 363–369. [Google Scholar] [CrossRef]
- Solgi, M.; Najib, T.; Ahmadnejad, S.; Nasernejad, B. Synthesis and Characterization of Novel Activated Carbon from Medlar Seed for Chromium Removal: Experimental Analysis and Modeling with Artificial Neural Network and Support Vector Regression. Resour. Technol. 2017, 3, 236–248. [Google Scholar] [CrossRef]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Agüero, M. V Optimization of Ultrasound, Vanillin and Pomegranate Extract Treatment for Shelf-Stable Unpasteurized Strawberry Juice. LWT Food Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago Major Seed Mucilage as a Novel Edible Coating Incorporated with Anethum Graveolens Essential Oil on Shelf Life Extension of Beef in Refrigerated Storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.Y.; Lim, Y.Y.; Yule, C.M. Evaluation of Antioxidant, Antibacterial and Anti-Tyrosinase Activities of Four Macaranga Species. Food Chem. 2009, 114, 594–599. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Akagić, A.; Vranac, A.; Gaši, F.; Drkenda, P.; Spaho, N.; Oručević Žuljević, S.; Kurtović, M.; Musić, O.; Murtić, S.; Hudina, M. Sugars, Acids and Polyphenols Profile of Commercial and Traditional Apple Cultivars for Processing. Acta Agric. Slov. 2019, 113, 239–250. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Isbilir, S.S.; Kabala, S.I.; Yagar, H. Assessment of in Vitro Antioxidant and Antidiabetic Capacities of Medlar (Mespilus germanica). Not. Bot. Horti. Agrobot. Cluj Napoca 2018, 47, 384–389. [Google Scholar] [CrossRef]
- Dominguez Avila, J.A.; Villegas Ochoa, M.A.; Alvarez Parrilla, E.; Montalvo Gonzalez, E.; Gonzalez Aguilar, G.A. Interactions between Four Common Plant-Derived Phenolic Acids and Pectin, and Its Effect on Antioxidant Capacity. J. Food Meas. Charact. 2018, 12, 992–1004. [Google Scholar] [CrossRef]
- Gulcin, I. Antioxidant Activity of Eugenol: A Structure-Activity Relationship Study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef]
- Araya, X.; Smale, N.; Zabaras, D.; Winley, E.; Forde, C.; Stewart, C.; Mawson, J. Sensory Perception and Quality Attributes of High Pressure Processed Carrots in Comparison to Raw, Sous-Vide and Cooked Carrots. Innov. Food Sci. Emerg. Technol. 2009, 10, 420–433. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-Based DPPH Assay for Antioxidant Activity Analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and Antioxidant Activity of Pectin from Indonesian Mangosteen (Garcinia mangostana L.) Rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Pilizota, V.; Tiban, N.N.; Subaric, D.; Babic, J.; Ackar, D.; Sajdl, M. Strawberry Jams: Influence of Different Pectins on Colour and Textural Properties. Czech J. Food Sci. 2009, 27, 20–28. [Google Scholar] [CrossRef]
- Kopjar, M.; Pilizota, V.; Tiban, N.N.; Subaric, D.; Babic, J.; Ackar, D. Effect of Different Pectin Addition and Its Concentration on Colour and Textural Properties of Raspberry Jam. Dtsch. Leb. 2007, 103, 164–168. [Google Scholar]
- Poiana, M.-A.; Munteanu, M.-F.; Bordean, D.-M.; Gligor, R.; Alexa, E. Assessing the Effects of Different Pectins Addition on Color Quality and Antioxidant Properties of Blackberry Jam. Chem. Cent. J. 2013, 7, 121. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The Antioxidant Activity of Wild Medlar (Mespilus germanica L.) Fruit, Stem Bark and Leaf. Afr. J. Biotechnol. 2011, 10, 283–289. [Google Scholar]
- Miser-Salihoglu, E.; Akaydin, G.; Caliskan-Can, E.; Yardim-Akaydin, S. Evalution of Antioxidant Activity of Various Herbal Folk Medicines. Nutr. Food Sci. 2013, 3, 1–9. [Google Scholar]
- Gruz, J.; Ayaz, F.A.; Torun, H.; Strnad, M. Phenolic Acid Content and Radical Scavenging Activity of Extracts from Medlar (Mespilus germanica L.) Fruit at Different Stages of Ripening. Food Chem. 2011, 124, 271–277. [Google Scholar] [CrossRef]
- Kosewski, G.; Gorna, I.; Boleslawska, I.; Kowalowka, M.; Wieckowska, B.; Glowka, A.K.; Morawska, A.; Jakubowski, K.; Dobrzynska, M.; Miszczuk, P.; et al. Comparison of Antioxidative Properties of Raw Vegetables and Thermally Processed Ones Using the Conventional and Sous-Vide Methods. Food Chem. 2018, 240, 1092–1096. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Pasli, A.A.; Ozcelik, B.; Van Camp, J.; Capanoglu, E. Influence of Different Processing and Storage Conditions on in Vitro Bioaccessibility of Polyphenols in Black Carrot Jams and Marmalades. Food Chem. 2015, 186, 74–82. [Google Scholar] [CrossRef]
- Dufour, C.; Loonis, M.; Delosière, M.; Buffière, C.; Hafnaoui, N.; Santé-Lhoutellier, V.; Rémond, D. The Matrix of Fruit & Vegetables Modulates the Gastrointestinal Bioaccessibility of Polyphenols and Their Impact on Dietary Protein Digestibility. Food Chem. 2018, 240, 314–322. [Google Scholar] [CrossRef]
- Kedzierska-Matysek, M.; Stryjecka, M.; Teter, A.; Skalecki, P.; Domaradzki, P.; Florek, M. Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination. Molecules 2021, 26, 1810. [Google Scholar] [CrossRef] [PubMed]
- Molaveisi, M.; Beigbabaei, A.; Akbari, E.; Noghabi, M.S.; Mohamadi, M. Kinetics of Temperature Effect on Antioxidant Activity, Phenolic Compounds and Color of Iranian Jujube Honey. Heliyon 2019, 5, e01129. [Google Scholar] [CrossRef] [PubMed]
- Rababah, T.M.; Al-Mahasneh, M.A.; Kilani, I.; Yang, W.; Alhamad, M.N.; Ereifej, K.; Al-u’datt, M. Effect of Jam Processing and Storage on Total Phenolics, Antioxidant Activity, and Anthocyanins of Different Fruits. J. Sci. Food Agric. 2011, 91, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Amakura, Y.; Umino, Y.; Tsuji, S.; Tonogai, Y. Influence of Jam Processing on the Radical Scavenging Activity and Phenolic Content in Berries. J. Agric. Food Chem. 2000, 48, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Scibisz, I.; Mitek, M. The changes of antioxidant properties in highbush blueberries (Vaccinium corymbosum L.) During freezing and long-term frozen storage. Acta Sci. Pol. Aliment. 2007, 6, 75–81. [Google Scholar]
- Bursać Kovačević, D.; Levaj, B.; Dagović-Uzelac, V. Free Radical Scavenging Activity and Phenolic Content in Strawberry Fruit and Jam. Agric. Conspec. Sci. 2009, 74, 155–159. [Google Scholar]
- Selcuk, N.; Erkan, M. The Effects of 1-MCP Treatment on Fruit Quality of Medlar Fruit (Mespilus germanica L. Cv. Istanbul) during Long Term Storage in the Palliflex Storage System. Postharvest Biol. Technol. 2015, 100, 81–90. [Google Scholar] [CrossRef]
- Cevahir, G.; Bostan, S.Z. Organic Acids, Sugars and Bioactive Compounds of Promising Medlar (Mespilus germanica L.) Genotypes Selected from Turkey. Int. J. Fruit Sci. 2021, 21, 312–322. [Google Scholar] [CrossRef]
- Vincente, A.R.; Manganaris, G.A.; Ortiz, C.M.; Sozzi, G.O.; Crisosto, C.H. Chapter 5—Nutritional Quality of Fruits and Vegetables. In Postharvest Handling, 3rd ed.; Florkowski, W.J., Shewfelt, R.L., Brueckner, B., Prussia, S.E., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 69–122. ISBN 978-0-12-408137-6. [Google Scholar]
- Cho, E.-H.; Jung, H.-T.; Lee, B.-H.; Kim, H.-S.; Rhee, J.-K.; Yoo, S.-H. Green Process Development for Apple-Peel Pectin Production by Organic Acid Extraction. Carbohydr. Polym. 2019, 204, 97–103. [Google Scholar] [CrossRef]
- Zolnierczyk, A.K.; Cialek, S.; Styczynska, M.; Oziemblowski, M. Functional Properties of Fruits of Common Medlar (Mespilus germanica L.) Extract. Appl. Sci. 2021, 11, 7528. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Liu, J.; Zhao, C.; Xue, F.; Zhao, Y. Decomposition of Five Phenolic Compounds in High Temperature Water. J. Braz. Chem. Soc. 2014, 25, 2102–2107. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Mendes, G.C.; Seabra, R.M.; Ferreira, M.A. Study of the Organic Acids Composition of Quince (Cydonia Oblonga Miller) Fruit and Jam. J. Agric. Food Chem. 2002, 50, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Mir, M.; Ganai, D.; Maqbool, T.; Mir, S.; Shah, M. Postharvest Biology and Technology of Peach. In Postharvest Biology and Technology of Temperate Fruits; Springer: Cham, Switzerland, 2018; pp. 169–199. ISBN 978-3-319-76842-7. [Google Scholar]
- Rodriguez, M.A.R.; Oderiz, M.L.V.; Hernandez, J.L.; Lozano, J.S. Determination of Vitamin C and Organic Acids in Various Fruits by HPLC. J. Chromatogr. Sci. 1992, 30, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.; Yildiz, K.; Ozturk, B.; Karakaya, O.; Gun, S.; Uzun, S.; Gundogdu, M. Maintaining Postharvest Quality of Medlar (Mespilus germanica) Fruit Using Modified Atmosphere Packaging and Methyl Jasmonate. LWT 2019, 111, 117–124. [Google Scholar] [CrossRef]
Sample Number | Temperature (°C) | Processing and Pectin Addition |
---|---|---|
1 | 60 °C | sous vide with pectin |
2 | 60 °C | sous vide without pectin |
3 | 70 °C | sous vide with pectin |
4 | 70 °C | sous vide without pectin |
5 | 80 °C | sous vide with pectin |
6 | 80 °C | sous vide without pectin |
7 | 100 °C | traditional with pectin |
8 | 100 °C | traditional without pectin |
Sample Number | Temperature (°C) and Sample Description | FRAP (µmol Trolox/g) | DPPH (%) |
---|---|---|---|
1 | 60 °C, sous vide with pectin | 0.17 ± 0.01 a | 7.49 ± 0.01 a |
2 | 60 °C, sous vide without pectin | 0.18 ± 0.01 a,e | 8.34 ± 0.22 b |
3 | 70 °C, sous vide with pectin | 0.30 ± 0.01 b,d | 9.99 ± 0.15 c |
4 | 70 °C, sous vide without pectin | 0.31 ± 0.01 d,c,f,g | 13.81 ± 0.21 d |
5 | 80 °C, sous vide with pectin | 0.26 ± 0.01 e | 14.37 ± 0.28 e |
6 | 80 °C, sous vide without pectin | 0.32 ± 0.01 f,g | 21.39 ± 0.33 f |
7 | 100 °C, traditional with pectin | 0.42 ± 0.02 g,b,c | 28.68 ± 0.24 g |
8 | 100 °C, traditional without pectin | 0.44 ± 0.01 c | 17.02 ± 0.18 h |
Sample Number | Temperature (°C) and Sample Description | Total Polyphenol Content (Gallic Acid in mg/g) |
---|---|---|
1 | 60 °C, sous vide with pectin | 0.31 ± 0.01 a |
2 | 60 °C, sous vide without pectin | 0.30 ± 0.01 b |
3 | 70 °C, sous vide with pectin | 0.51 ± 0.01 c |
4 | 70 °C, sous vide without pectin | 0.49 ± 0.01 d |
5 | 80 °C, sous vide with pectin | 0.56 ± 0.01 e |
6 | 80 °C, sous vide without pectin | 0.56 ± 0.01 f |
7 | 100 °C traditional with pectin | 0.67 ± 0.01 g |
8 | 100 °C traditional without pectin | 0.70 ± 0.01 h |
Sample Number | Temperature (°C) and Sample Description | Oxalic Acid (mg/kg) | Malic Acid (mg/kg) |
---|---|---|---|
1 | 60 °C sous vide with pectin | 8.26 ± 0.01 a | 11.04 ± 0.01 a |
2 | 70 °C sous vide with pectin | 3.15 ± 0.01 b | 5.36 ± 0.01 c |
3 | 80 °C sous vide with pectin | 6.80 ± 0.01 c | 11.93 ± 0.01 a |
4 | 100 °C traditional with pectin | 8.40 ± 0.01 a | 22.34 ± 0.01 b |
5 | 60 °C sous vide without pectin | 1.76 ± 0.01 a | 4.94 ± 0.01 a |
6 | 70 °C sous vide without pectin | 1.49 ± 0.01 b | 6.33 ± 0.01 b |
7 | 80 °C sous vide without pectin | 1.65 ± 0.01 a | 10.25 ± 0.01 c |
8 | 100 °C traditional without pectin | 1.16 ± 0.01 c | 13.68 ± 0.01 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremlova, B.; Mikulaskova, H.K.; Slamova, D.; Dordevic, S.; Antonic, B.; Zemancova, J.; Dordevic, D. Medlar Jam Production (Mespilus germanica) with the Use of Sous Vide Method. Processes 2022, 10, 1584. https://doi.org/10.3390/pr10081584
Tremlova B, Mikulaskova HK, Slamova D, Dordevic S, Antonic B, Zemancova J, Dordevic D. Medlar Jam Production (Mespilus germanica) with the Use of Sous Vide Method. Processes. 2022; 10(8):1584. https://doi.org/10.3390/pr10081584
Chicago/Turabian StyleTremlova, Bohuslava, Hana Koudelkova Mikulaskova, Daniela Slamova, Simona Dordevic, Bojan Antonic, Johana Zemancova, and Dani Dordevic. 2022. "Medlar Jam Production (Mespilus germanica) with the Use of Sous Vide Method" Processes 10, no. 8: 1584. https://doi.org/10.3390/pr10081584
APA StyleTremlova, B., Mikulaskova, H. K., Slamova, D., Dordevic, S., Antonic, B., Zemancova, J., & Dordevic, D. (2022). Medlar Jam Production (Mespilus germanica) with the Use of Sous Vide Method. Processes, 10(8), 1584. https://doi.org/10.3390/pr10081584