Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Extraction of Phenolic Compounds
2.4. Polyphenol Estimation and Antioxidant Assays
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoids Content (TFC)
2.4.3. Determination of Total Tannins Content (TTC)
2.4.4. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Antioxidant Assay
2.4.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.4.6. 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.4.7. Total Antioxidant Capacity (TAC)
2.4.8. Reducing Power Assay (RPA)
2.4.9. Hydroxyl Radical Scavenging Activity (•OH-RSA)
2.4.10. Ferrous Ion Chelating Activity (FICA)
2.5. Characterization of Phenolic Compounds by LC-ESI-QTOF-MS/MS Analysis
2.6. Quantification of Phenolic Compounds by HPLC-PDA Analysis
2.7. Statistical Analysis
3. Results and Discussions
3.1. Polyphenol Estimation (TPC, TFC and TTC)
3.2. Antioxidant Activities
3.3. LC-ESI-QTOF-MS/MS-Based Characterization of Phenolic Compounds
3.3.1. Phenolic Acids
- Hydroxycinnamic Acids
- Hydroxybenzoic Acids
3.3.2. Flavonoids
- Anthocyanins
- Flavonols
- Flavones
- Other Derivatives of Flavonoids
3.3.3. Other Polyphenols
3.3.4. Lignans and Stilbenes
3.4. Distribution of Phenolic Compounds—Venn Diagram
3.5. HPLC-PDA Quantification of Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lebersorger, S.; Schneider, F. Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures. Waste Manag. 2014, 34, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.; Joyce, D.; Hofman, P.; Vu, N. Factors contributing to increased bruise expression in avocado (Persea americana M.) cv. ‘Hass’ fruit. Postharvest Biol. Technol. 2018, 143, 58–67. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Joudu, I.; Rajeev, B. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Gun Hean, C.; Noranizan Mohd, A.; Norhayati, H.; Nur Hanani Zainal, A.; Rabiha, S.; Russly Abdul, R. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef]
- Grosso, G. Effects of Polyphenol-Rich Foods on Human Health. Nutrients 2018, 10, 1089. [Google Scholar] [CrossRef]
- Francesco, P.; Daniele, S.; Giorgia, S.; Francesca, Z.; Ilaria, Z. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; del Mar Contreras, M.; Gómez-Cruz, I.; Romero-García, J.M.; Castro, E. Avocado-derived biomass: Chemical composition and antioxidant potential. Proceedings 2021, 70, 100. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Poovarodom, S.; Leontowicz, H.; Leontowicz, M.; Vearasilp, S.; Trakhtenberg, S.; Gorinstein, S. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Res. Int. 2011, 44, 1671–1701. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Gorinstein, S.; Haruenkit, R.; Poovarodom, S.; Vearasilp, S.; Ruamsuke, P.; Namiesnik, J.; Leontowicz, M.; Leontowicz, H.; Suhaj, M.; Sheng, G.P. Some analytical assays for the determination of bioactivity of exotic fruits. Phytochem. Anal. 2010, 21, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Kosinska, A.; Karamac, M.; Estrella, I.; Hernandez, T.; Bartolome, B.; Dykes, G.A. Phenolic compound profiles and antioxidant capacity of Persea americana Mill. peels and seeds of two varieties. J. Agric. Food Chem. 2012, 60, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.S.; Joyce, D.C.; Collins, R.J. Bruising in Avocado (Persea americana M.) ‘HASS’ Supply Chains in Queensland Australia: Ripener to Retailer. In Proceedings of the 2014 ASHS Annual Conference, Orlando, FL, USA, 28–31 July 2014; Volume 49, p. S205. [Google Scholar]
- Van Zeebroeck, M.; Van Linden, V.; Ramon, H.; De Baerdemaeker, J.; Nicolaï, B.M.; Tijskens, E. Impact damage of apples during transport and handling. Postharvest Biol. Technol. 2007, 45, 157–167. [Google Scholar] [CrossRef]
- Mazhar, M.; Joyce, D.C.; Petty, J.; Taylor, L.; Symonds, N.; Hofman, P.J. Skin spotting situation at retail level in Australian avocados. Acta Hortic. 2016, 2016, 171–176. [Google Scholar] [CrossRef]
- Gamble, J.; Harker, F.R.; Jaeger, S.R.; White, A.; Bava, C.; Beresford, M.; Stubbings, B.; Wohlers, M.; Hofman, P.J.; Marques, R.; et al. The impact of dry matter, ripeness and internal defects on consumer perceptions of avocado quality and intentions to purchase. Postharvest Biol. Technol. 2010, 57, 35–43. [Google Scholar] [CrossRef]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef]
- Tang, J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterization of Phenolic Compounds from Medicinal Plants (Hops and Juniper Berries) and Their Antioxidant Activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Gianluca, M.; Luigi, L.; Patricia, C.; Sara, C. UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int. J. Food Sci. Technol. 2019, 54, 335–346. [Google Scholar] [CrossRef]
- Severo, J.; Tiecher, A.; Chaves, F.C.; Silva, J.A.; Rombaldi, C.V. Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem. 2011, 126, 995–1000. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Dinis, T.C.; Madeira, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef]
- Zhong, B.; Robinson, N.A.; Warner, R.D.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar. Drugs 2020, 18, 331. [Google Scholar] [CrossRef]
- Golukcu, M.; Ozdemir, F. Changes in phenolic composition of avocado cultivars during harvesting time. Chem. Nat. Compd. 2010, 46, 112–115. [Google Scholar] [CrossRef]
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Zhang, X.; Jin, Q.; Li, J. Phenolic Profiles, Antioxidant Activities, and Neuroprotective Properties of Mulberry (Morus atropurpurea Roxb.) Fruit Extracts from Different Ripening Stages. J. Food Sci. 2016, 81, C2439–C2446. [Google Scholar] [CrossRef] [PubMed]
- Poovarodom, S.; Haruenkit, R.; Vearasilp, S.; Namiesnik, J.; Cvikrová, M.; Martincová, O.; Ezra, A.; Suhaj, M.; Ruamsuke, P.; Gorinstein, S. Comparative characterisation of durian, mango and avocado. Int. J. Food Sci. Technol. 2010, 45, 921–929. [Google Scholar] [CrossRef]
- Princewill-Ogbonna, I.L.; Ogbonna, P.C.; Ogujiofor, I.B. Proximate Composition, Vitamin, Mineral and biologically Active Compounds Levels in Leaves of Mangifera indica (Mango), Persea americana (Avocado pea), and Annona muricata (Sour sop). J. Appl. Sci. Environ. Manag. 2019, 23, 65–74. [Google Scholar] [CrossRef]
- Shahidi, F.; Ying, Z. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Contreras-Guzmán, E.S.; Strong III, F.C. Determination of tocopherols (vitamin E) by reduction of cupric ion. J. Assoc. Off. Anal. Chem. 1982, 65, 1215–1221. [Google Scholar] [CrossRef]
- Lahmass, I.; Ouahhoud, S.; Elmansuri, M.; Sabouni, A.; Elyoubi, M.; Benabbas, R.; Choukri, M.; Saalaoui, E. Determination of Antioxidant Properties of Six By-Products of Crocus sativus L. (Saffron) Plant Products. Waste Biomass Valoriz. 2018, 9, 1349–1357. [Google Scholar] [CrossRef]
- Morais, D.R.; Alexandra, C.H.F.S.; Eduardo, M.S.; Eliza, M.R.; Elton Guntendorfer, B.; Jesuí, V.V.; Marcos, N.E.; Sheisa, C.S. Antioxidant activity, phenolics and UPLC–ESI(–)–MS of extracts from different tropical fruits parts and processed peels. Food Res. Int. 2015, 77, 392–399. [Google Scholar] [CrossRef]
- Bunea, A.; Rugina, O.D.; Pintea, A.M.; Sconta, Z.; Bunea, C.I.; Socaciu, C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 70–76. [Google Scholar] [CrossRef]
- Daieni Alves Vieira, A.; Giovani Andrey Bet, H.; Alessandra Maria, D.; Sérgio Luiz Colucci de, C.; Caroline Mariana de, A.; Clayton Antunes, M.; Tatiana Shioji, T.; Solange Maria, C. Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Braz. J. Food Technol. 2019, 22, e2018044. [Google Scholar] [CrossRef]
- Antasionasti, I.; Riyanto, S.; Rohman, A. Antioxidant activities and phenolics contents of avocado (Persea americana Mill.) peel in vitro. Res. J. Med. Plants 2017, 11, 55–56. [Google Scholar]
- Asaolu, M.; Asaolu, S.; Fakunle, J.B.; Emman-Okon, B.; Ajayi, E.; Togun, R. Evaluation of In-Vitro Antioxidant Activities of Methanol Extracts of Persea americana and Cnidosculus aconitifolius. Pak. J. Nutr. 2010, 9, 1074–1077. Available online: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/434 (accessed on 5 August 2022). [CrossRef]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxid. Med. Cell. Longev. 2011, 2011, 809696. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Warad, I.; Fernandez-Gutierrez, A.; Segura-Carretero, A. UHPLC/MS2-based approach for the comprehensive metabolite profiling of bean (Vicia faba L.) by-products: A promising source of bioactive constituents. Food Res. Int. 2017, 93, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.-A.; Chen, H.; Chen, X.-L.; Zhang, X.-M.; Lei, L.-G.; Chen, J.-J. Rapid characterization of chemical constituents in Saniculiphyllum guangxiense by ultra fast liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. Int. J. Mass Spectrom. 2014, 361, 9–22. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, A.; Sun, H.; Zhang, Y. Chapter 23—Systematic Characterization of the Absorbed Components of Acanthopanax senticosus Stem. In Serum Pharmacochemistry of Traditional Chinese Medicine; Academic Press; Cambridge, MA, USA, 2017; pp. 313–336. [Google Scholar] [CrossRef]
- Mpai, S.; Sivakumar, D. Influence of growing seasons on metabolic composition, and fruit quality of avocado cultivars at ‘ready-to-eat stage’. Sci. Hortic. 2020, 265, 109159. [Google Scholar] [CrossRef]
- Kaluzewicz, A.; Lisiecka, J.; Gasecka, M.; Krzesinski, W.; Spizewski, T.; Zaworska, A.; Fraszczak, B. The effects of plant density and irrigation on phenolic content in cauliflower. Hortic. Sci. 2017, 44, 178–185. [Google Scholar] [CrossRef]
- Pablo, V.; María Elena, C.; Pilar, S.; Marta, F. Phenolic Compounds in Brassica Vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef]
- Dillenburg Meinhart, A.; Fernanda Mateus, D.; Helena Teixeira, G.; José Teixeira, F.; Letícia Cardoso da, S.; Lívia da Silva, C.; Lucas, C.o.; Milton de Jesus, F.; Roger, W. Chlorogenic and Caffeic Acids in 64 Fruits Consumed in Brazil. Food Chem. 2019, 286, 51–63. [Google Scholar] [CrossRef]
- Kelebek, H. Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Ind. Crops Prod. 2010, 32, 269–274. [Google Scholar] [CrossRef]
- Del-Castillo-Alonso, M.Á.; Diago, M.P.; Monforte, L.; Tardaguila, J.; Martínez-Abaigar, J.; Núñez-Olivera, E. Effects of UV exclusion on the physiology and phenolic composition of leaves and berries of Vitis vinifera cv. Graciano. J. Sci. Food Agric. 2015, 95, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Kirmizibekmez, H.; Ariburnu, E.; Masullo, M.; Festa, M.; Capasso, A.; Yesilada, E.; Piacente, S. Iridoid, phenylethanoid and flavonoid glycosides from Sideritis trojana. Fitoterapia 2012, 83, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Avello, D.; Lozano-Castellon, J.; Mardones, C.; Perez, A.J.; Saez, V.; Riquelme, S.; Baer, D.V.; Vallverdu-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef]
- Malakar, S.; Gibson, P.R.; Barrett, J.S.; Muir, J.G. Naturally occurring dietary salicylates: A closer look at common Australian foods. J. Food Compos. Anal. 2017, 57, 31–39. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef]
- Legua, P.; Forner-Giner, M.A.; Nuncio-Jauregui, N.; Hernandez, F. Polyphenolic compounds, anthocyanins and antioxidant activity of nineteen pomegranate fruits: A rich source of bioactive compounds. J. Funct. Foods 2016, 23, 628–636. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, S.; Bajpai, V.; Reddy, T.J.; Rameshkumar, K.B.; Kumar, B. Structural characterization of flavonoid C- and O-glycosides in an extract of Adhatoda vasica leaves by liquid chromatography with quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2015, 29, 1095–1106. [Google Scholar] [CrossRef]
- Roowi, S.; Crozier, A. Flavonoids in Tropical Citrus Species. J. Agric. Food Chem. 2011, 59, 12217–12225. [Google Scholar] [CrossRef]
- Yang, Y.; Xi Juan, Z.; Yu, P.; Zhiqin, Z. Identification of the chemical compositions of Ponkan peel by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Anal. Methods 2016, 8, 893–903. [Google Scholar] [CrossRef]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. UFLC-Q-TOF-MS/MS-Based Screening and Identification of Flavonoids and Derived Metabolites in Human Urine after Oral Administration of Exocarpium Citri Grandis Extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Kadiroğlu, P.; Demircan, N.B.; Selli, S. Screening of bioactive components in grape and apple vinegars: Antioxidant and antimicrobial potential. J. Inst. Brew. 2017, 123, 407–416. [Google Scholar] [CrossRef]
- Ivanova, V.; Doernyei, A.; Mark, L.; Vojnoski, B.; Stafilov, T.; Stefova, M.; Kilar, F. Polyphenolic content of Vranec wines produced by different vinification conditions. Food Chem. 2011, 124, 316–325. [Google Scholar] [CrossRef]
- Johanna, C.R.; Silvia, C.; Coralia, O.; Nelson, H. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef]
- De Paepe, D.; Valkenborg, D.; Noten, B.; Servaes, K.; Diels, L.; De Loose, M.; Van Droogenbroeck, B.; Voorspoels, S. Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 2015, 11, 739–752. [Google Scholar] [CrossRef]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Lagana, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors 2017, 43, 495–506. [Google Scholar] [CrossRef]
- Drira, M.; Kelebek, H.; Guclu, G.; Jabeur, H.; Selli, S.; Bouaziz, M. Targeted analysis for detection the adulteration in extra virgin olive oil’s using LC-DAD/ESI–MS/MS and combined with chemometrics tools. Eur. Food Res. Technol. 2020, 246, 1661–1677. [Google Scholar] [CrossRef]
- Stefano, V.d.; Avellone, G.; Bongiorno, D.; Indelicato, S.; Massenti, R.; Bianco, R.L. Quantitative evaluation of the phenolic profile in fruits of six avocado (Persea americana) cultivars by ultra-high-performance liquid chromatography-heated electrospray-mass spectrometry. Int. J. Food Prop. 2017, 20, 1302–1312. [Google Scholar] [CrossRef]
- Santos, J.; Ibáñez, E.; Herrero, M.; Oliveira, M.B.P.P. Phenolic profile evolution of different ready-to-eat baby-leaf vegetables during storage. J. Chromatogr. 2014, 1327, 118–131. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carpena, J.G.; Morcuende, D.; Andrade, M.J.; Kylli, P.; Estevez, M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
Antioxidant Assays | Hass Avocado | Wurtz Avocado | Reed Avocado |
---|---|---|---|
TPC (mg GAE/g) | 0.17 ± 0.06 b | 0.16 ± 0.03 b | 0.21 ± 0.04 a |
TFC (mg QE/g) | 0.04 ± 0.03 a | 0.02 ± 0.04 b | 0.05 ± 0.05 a |
TTC (mg CE/g) | 0.02 ± 0.01 | _ | 0.01 ± 0.02 |
DPPH (mg AAE/g) | 0.32 ± 0.09 a | 0.24 ± 0.07 b | 0.12 ± 0.05 c |
FRAP (mg AAE/g) | 0.13 ± 0.05 a | 0.09 ± 0.01 b | 0.04 ± 0.03 c |
ABTS (mg AAE/g) | 0.32 ± 0.09 a | 0.21 ± 0.04 c | 0.28 ± 0.06 b |
RPA (mg AAE/g) | 0.01 ± 0.04 b | 0.07 ± 0.03 a | 0.01 ± 0.01 b |
•OH-RSA (mg AAE/g) | 0.51 ± 0.01 a | 0.07 ± 0.01 c | 0.17 ± 0.02 b |
FICA (mg EDTA/g) | 0.47 ± 0.12 a | 0.18 ± 0.02 c | 0.34 ± 0.08 b |
PMA (mg AAE/g) | 0.19 ± 0.05 c | 0.27 ± 0.04 a | 0.21 ± 0.03 b |
No. | Proposed Compounds | Molecular Formula | RT (min) | Ionization | Molecular Weight | Theoretical (m/z) | Observed (m/z) | Error (ppm) | MS2 Product Ions | Samples |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acid | ||||||||||
Hydroxycinnamic acids | ||||||||||
1 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 4.181 | [M − H]− | 516.1268 | 515.1195 | 515.1196 | 0.2 | 353, 335, 191, 179 | Wurtz |
2 | p-Coumaroyl malic acid | C13H12O7 | 5.953 | [M − H]− | 280.0583 | 279.0510 | 279.0514 | 1.4 | 163, 119 | Wurtz |
3 | p-Coumaroyl tartaric acid | C13H12O8 | 8.935 | ** [M − H]− | 296.0532 | 295.0459 | 295.0451 | −2.7 | 115 | * Wurtz, Reed |
4 | 3-Caffeoylquinic acid | C16H18O9 | 24.757 | ** [M − H]− | 354.0951 | 353.0878 | 353.0891 | 3.7 | 253, 190, 144 | * Wurtz, Reed |
5 | Sinapic acid | C11H12O5 | 29.019 | [M − H]− | 224.0685 | 223.0612 | 223.0617 | 2.2 | 205, 163 | Reed |
6 | Ferulic acid 4-O-glucoside | C16H20O9 | 30.870 | ** [M − H]− | 356.1107 | 355.1034 | 355.1041 | 2.0 | 193, 178, 149, 134 | * Wurtz, Reed |
7 | Ferulic acid | C10H10O4 | 42.847 | ** [M − H]− | 194.0579 | 193.0506 | 193.0506 | 0.0 | 178, 149, 134 | Reed, * Wurtz |
8 | Verbascoside | C29H36O15 | 44.703 | [M − H]− | 624.2054 | 623.1981 | 623.1977 | −0.6 | 477, 461, 315, 135 | Wurtz |
9 | 1-Sinapoyl-2-feruloylgentiobiose | C33H40O18 | 72.821 | [M − H]− | 724.2215 | 723.2142 | 723.2146 | 0.6 | 529, 499 | Reed |
Hydroxybenzoic acids | ||||||||||
10 | 2-Hydroxybenzoic acid | C7H6O3 | 4.327 | ** [M − H]− | 138.0317 | 137.0244 | 137.0241 | −2.2 | 93 | * Hass, Reed |
11 | 3-O-Methylgallic acid | C8H8O5 | 12.938 | [M + H]+ | 184.0372 | 185.0445 | 185.0444 | −0.5 | 170, 142 | Wurtz |
12 | Paeoniflorin | C23H28O11 | 40.731 | ** [M − H]− | 480.1632 | 479.1559 | 479.1579 | 4.2 | 449, 357, 327 | Reed |
Hydroxyphenylacetic acids | ||||||||||
13 | 3,4-Dihydroxyphenylacetic acid | C8H8O4 | 31.864 | ** [M − H]− | 168.0423 | 167.0350 | 167.0359 | 5.4 | 149, 123 | * Wurtz, Reed |
14 | 2-Hydroxy-2-phenylacetic acid | C8H8O3 | 36.105 | [M − H]− | 152.0473 | 151.0400 | 151.0407 | 4.6 | 136, 92 | Wurtz |
Hydroxyphenylpropanoic acids | ||||||||||
15 | Dihydroferulic acid 4-sulfate | C10H12O7S | 4.112 | [M − H]− | 276.0304 | 275.0231 | 275.0230 | −0.4 | 195, 151, 177 | Hass |
Flavonoids | ||||||||||
Anthocyanins | ||||||||||
16 | Delphinidin 3-O-galactoside | C21H21O12 | 36.639 | [M + H]+ | 465.1033 | 466.1106 | 466.1097 | −1.9 | 303 | Reed |
17 | Delphinidin 3-O-glucosyl-glucoside | C27H31O17 | 36.655 | [M + H]+ | 627.1561 | 628.1634 | 628.1630 | −0.6 | 465, 3030 | Reed |
18 | Cyanidin 3,5-O-diglucoside | C27H31O16 | 40.382 | ** [M + H]+ | 611.1612 | 612.1685 | 612.1678 | −1.1 | 449, 287 | Reed |
19 | Petunidin 3,5-O-diglucoside | C28H33O17 | 40.846 | [M + H]+ | 641.1718 | 642.1791 | 642.1794 | 0.5 | 479, 317 | * Reed, Wurtz |
20 | Petunidin 3-O-(6″-acetyl-glucoside) | C24H25O13 | 61.318 | [M + H]+ | 521.1295 | 522.1368 | 522.1372 | 0.8 | 317 | Reed |
Flavonols | ||||||||||
21 | Quercetin 3-O-xylosyl-rutinoside | C32H38O20 | 16.481 | [M + H]+ | 742.1956 | 743.2029 | 743.2038 | 1.2 | 479, 317 | Reed |
22 | 3-Methoxynobiletin | C22H24O9 | 20.837 | [M + H]+ | 432.1420 | 433.1493 | 433.1482 | −2.5 | 403, 385, 373, 345 | Reed |
23 | 3-Methoxysinensetin | C21H22O8 | 29.374 | ** [M + H]+ | 402.1315 | 403.1388 | 403.1393 | 1.2 | 388, 373, 355, 327 | Wurtz, * Hass, Reed |
24 | Quercetin 3-O-arabinoside | C20H18O11 | 30.907 | [M − H]− | 434.0849 | 433.0776 | 433.0789 | 3.0 | 301 | Reed |
25 | Kaempferol 3-O-glucosyl-rhamnosyl-galactoside | C33H40O20 | 32.709 | ** [M − H]− | 756.2113 | 755.2040 | 755.2069 | 3.8 | 285 | * Wurtz, Hass |
26 | Myricetin 3-O-rhamnoside | C21H20O12 | 51.748 | [M − H]− | 464.0955 | 463.0882 | 463.0892 | 2.2 | 317 | Reed |
27 | Quercetin 3-O-(6″-malonyl-glucoside) 7-O-glucoside | C30H32O20 | 53.914 | [M + H]+ | 712.1487 | 713.1560 | 713.1568 | 1.1 | 551, 303 | * Reed, Wurtz |
28 | Kaempferol 3-O-(2″-rhamnosyl-galactoside) 7-O-rhamnoside | C33H40O19 | 60.098 | ** [M − H]− | 740.2164 | 739.2091 | 739.2093 | 0.3 | 593, 447, 285 | Reed |
Flavones | ||||||||||
29 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 32.261 | ** [M − H]− | 594.1585 | 593.1512 | 593.1506 | −1.0 | 503, 473 | * Wurtz, Reed |
30 | 6-Hydroxyluteolin 7-O-rhamnoside | C21H20O11 | 51.777 | [M − H]− | 448.1006 | 447.0933 | 447.0950 | 3.8 | 301 | Wurtz |
31 | Apigenin 7-O-apiosyl-glucoside | C26H28O14 | 59.215 | ** [M + H]+ | 564.1479 | 565.1552 | 565.1542 | −1.8 | 296 | Wurtz, * Reed |
Isoflavonoids | ||||||||||
32 | Dihydrobiochanin A | C16H14O5 | 9.841 | [M + H]+ | 286.0841 | 287.0914 | 287.0919 | 1.7 | 269, 203, 201, 175 | Wurtz |
33 | 3′-Hydroxygenistein | C15H10O6 | 31.357 | [M + H]+ | 286.0477 | 287.0550 | 287.0540 | −3.5 | 269, 259 | * Wurtz, Reed |
34 | 5,6,7,3′,4′-Pentahydroxyisoflavone | C15H10O7 | 31.423 | ** [M + H]+ | 302.0427 | 303.0500 | 303.0493 | −2.3 | 285, 257 | Reed, * Wurtz |
35 | Glycitin | C22H22O10 | 38.236 | [M + H]+ | 446.1213 | 447.1286 | 447.1298 | 2.7 | 285 | Hass |
36 | Formononetin 7-O-glucuronide | C22H20O10 | 42.036 | ** [M − H]− | 444.1056 | 443.0983 | 443.0976 | −1.6 | 267, 252 | * Wurtz, Reed |
37 | 6″-O-Malonyldaidzin | C24H22O12 | 45.551 | [M + H]+ | 502.1111 | 503.1184 | 503.1193 | 1.8 | 255 | Wurtz |
38 | 6″-O-Malonylgenistin | C24H22O13 | 64.084 | [M + H]+ | 518.1060 | 519.1133 | 519.1161 | 5.4 | 271 | Reed |
Flavanols | ||||||||||
39 | (+)-Gallocatechin 3-O-gallate | C22H18O11 | 17.150 | [M − H]− | 458.0849 | 457.0776 | 457.0789 | 2.8 | 305, 169 | Hass |
40 | Prodelphinidin dimer B3 | C30H26O14 | 28.673 | [M + H]+ | 610.1323 | 611.1396 | 611.1401 | 0.8 | 469, 311, 291 | * Wurtz, Reed |
41 | (+)-Catechin | C15H14O6 | 31.118 | ** [M − H]− | 290.0790 | 289.0717 | 289.0717 | 0.0 | 245, 205, 179 | * Wurtz, Reed |
Flavanones | ||||||||||
42 | Naringin 4′-O-glucoside | C33H42O19 | 12.481 | ** [M − H]− | 742.2320 | 741.2247 | 741.2271 | 3.2 | 433, 271 | * Wurtz, Hass |
43 | Neoeriocitrin | C27H32O15 | 45.015 | [M − H]− | 596.1741 | 595.1668 | 595.1677 | 1.5 | 431, 287 | * Hass, Reed |
44 | 6-Prenylnaringenin | C20H20O5 | 45.633 | [M + H]+ | 340.1311 | 341.1384 | 341.1396 | 3.5 | 323, 137 | Reed |
Dihydrochalcones | ||||||||||
45 | 3-Hydroxyphloretin 2′-O-xylosyl-glucoside | C26H32O15 | 36.370 | [M − H]− | 584.1741 | 583.1668 | 583.1666 | −0.3 | 289 | Wurtz |
46 | 3-Hydroxyphloretin 2′-O-glucoside | C21H24O11 | 42.383 | ** [M − H]− | 452.1319 | 451.1246 | 451.1237 | −2.0 | 289, 273 | * Wurtz, Reed |
47 | Phloridzin | C21H24O10 | 42.847 | ** [M − H]− | 436.1369 | 435.1296 | 435.1298 | 0.5 | 273 | * Wurtz, Reed |
Dihydroflavonols | ||||||||||
48 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 26.430 | ** [M − H]− | 466.1111 | 465.1038 | 465.1040 | 0.4 | 301 | * Wurtz, Reed |
Other polyphenols | ||||||||||
Tyrosols | ||||||||||
49 | 3,4-DHPEA-AC | C10H12O4 | 9.681 | ** [M − H]− | 196.0736 | 195.0663 | 195.0667 | 2.1 | 135 | * Wurtz, Reed |
50 | Demethyloleuropein | C24H30O13 | 23.050 | ** [M − H]− | 526.1686 | 525.1613 | 525.1621 | 1.5 | 495 | * Wurtz, Hass, Reed |
Hydroxyphenylpropenes | ||||||||||
51 | 2-Methoxy-5-prop-1-enylphenol | C10H12O2 | 23.305 | [M + H]+ | 164.0837 | 165.0910 | 165.0906 | −2.4 | 149, 137, 133, 124 | Reed |
Hydroxybenzaldehydes | ||||||||||
52 | p-Anisaldehyde | C8H8O2 | 17.690 | [M + H]+ | 136.0524 | 137.0597 | 137.0598 | 0.7 | 122, 109 | Reed |
Hydroxycoumarins | ||||||||||
53 | Coumarin | C9H6O2 | 52.192 | [M + H]+ | 146.0368 | 147.0441 | 147.0444 | 2.0 | 103, 91 | Reed |
Curcuminoids | ||||||||||
54 | Demethoxycurcumin | C20H18O5 | 76.809 | [M − H]− | 338.1154 | 337.1081 | 337.1083 | 0.6 | 217 | Wurtz |
Furanocoumarins | ||||||||||
55 | Isopimpinellin | C13H10O5 | 14.808 | [M + H]+ | 246.0528 | 247.0601 | 247.0607 | 2.4 | 232, 217, 205, 203 | Reed |
Other polyphenols | ||||||||||
56 | Lithospermic acid | C27H22O12 | 31.035 | [M − H]− | 538.1111 | 537.1038 | 537.1047 | 1.7 | 493, 339, 295 | Wurtz |
Stilbenes | ||||||||||
57 | Resveratrol 5-O-glucoside | C20H22O8 | 44.305 | [M − H]− | 390.1315 | 389.1242 | 389.1238 | −1.0 | 227 | Wurtz |
58 | 4-Hydroxy-3,5,4′-trimethoxystilbene | C17H18O4 | 63.306 | [M + H]+ | 286.1205 | 287.1278 | 287.1265 | −4.5 | 271, 241, 225 | Reed |
Lignans | ||||||||||
59 | Conidendrin | C20H20O6 | 4.340 | [M + H]+ | 356.1260 | 357.1333 | 357.1330 | −0.8 | 339, 221, 206 | Reed |
60 | 7-Hydroxymatairesinol | C20H22O7 | 10.282 | [M − H]− | 374.1366 | 373.1293 | 373.1288 | −1.3 | 343, 313, 298, 285 | Reed |
61 | Schisandrin C | C22H24O6 | 32.682 | [M + H]+ | 384.1573 | 385.1646 | 385.1651 | 1.3 | 370, 315, 300 | * Wurtz, Reed |
62 | 7-Oxomatairesinol | C20H20O7 | 35.437 | [M + H]+ | 372.1209 | 373.1282 | 373.1303 | 5.6 | 358, 343, 328, 325 | Hass |
63 | Todolactol A | C20H24O7 | 41.489 | [M − H]− | 376.1522 | 375.1449 | 375.1438 | −2.9 | 313, 137 | Wurtz |
64 | Pinoresinol | C20H22O6 | 47.768 | ** [M − H]− | 358.1416 | 357.1343 | 357.1353 | 2.8 | 342, 327, 313, 221 | * Wurtz, Reed |
No. | Compounds Name | Chemical Formula | RT (min) | Hass Avocado (mg/g) | Wurtz Avocado (mg/g) | Reed Avocado (mg/g) | Polyphenol Class |
---|---|---|---|---|---|---|---|
1 | Gallic acid | C7H6O5 | 6.836 | 6.78 ± 0.34 a | 2.39 ± 0.19 c | 4.58 ± 0.23 b | Phenolic acids |
2 | Protocatechuic acid | C7H6O4 | 12.569 | 4.58 ± 0.32 b | 7.54 ± 0.38 a | 3.89 ± 0.27 b | Phenolic acids |
3 | p-Hydroxybenzoic acid | C7H6O3 | 20.240 | - | 2.13 ± 0.09 a | 1.24 ± 0.06 a | Phenolic acids |
4 | Chlorogenic acid | C16H18O9 | 20.579 | 21.36 ± 0.85 a | 13.49 ± 0.67 b | 14.67 ± 0.73 b | Phenolic acids |
5 | Caffeic acid | C9H8O4 | 25.001 | 7.25 ± 0.44 a | 2.14 ± 0.17 c | 3.29 ± 0.19 b | Phenolic acids |
6 | Catechin | C15H14O6 | 19.704 | 13.68 ± 0.96 b | 9.57 ± 0.38 c | 15.94 ± 0.80 a | Flavonoids |
7 | Epicatechin | C15H14O6 | 24.961 | 5.48 ± 0.27 b | 14.24 ± 0.85 a | 3.71 ± 0.22 c | Flavonoids |
8 | Epicatechin gallate | C22H18O10 | 38.015 | - | 3.21 ± 0.19 a | 1.25 ± 0.08 a | Flavonoids |
9 | Quercetin | C15H10O7 | 70.098 | 17.37 ± 0.87 b | 6.87 ± 0.55 c | 21.47 ± 1.07 a | Flavonoids |
10 | Kaempferol | C15H10O6 | 80.347 | 3.6 ± 0.14 b | 2.14 ± 0.15 b | 9.68 ± 0.58 a | Flavonoids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Qi, Y.; Shi, L.; Giovani, M.; Zaki, N.A.A.; Guo, S.; Suleria, H.A.R. Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes 2022, 10, 1747. https://doi.org/10.3390/pr10091747
Fan S, Qi Y, Shi L, Giovani M, Zaki NAA, Guo S, Suleria HAR. Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes. 2022; 10(9):1747. https://doi.org/10.3390/pr10091747
Chicago/Turabian StyleFan, Simiao, Yunyang Qi, Linghong Shi, Marcella Giovani, Nur Afifah Ahmad Zaki, Siwei Guo, and Hafiz Ansar Rasul Suleria. 2022. "Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential" Processes 10, no. 9: 1747. https://doi.org/10.3390/pr10091747
APA StyleFan, S., Qi, Y., Shi, L., Giovani, M., Zaki, N. A. A., Guo, S., & Suleria, H. A. R. (2022). Screening of Phenolic Compounds in Rejected Avocado and Determination of Their Antioxidant Potential. Processes, 10(9), 1747. https://doi.org/10.3390/pr10091747