Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application
Abstract
:1. Introduction
2. Approaches for Mucosal Vaccine Delivery
3. Microalgae as a Biofactory for Proteins
4. Dunaliella sp. as a Production and Delivery Vehicle for Antigens
4.1. General Features
4.2. Production Aspects
4.3. Culture Systems of D. salina
4.4. Genetic Engineering Tools Applied to D. salina
4.4.1. Selection Markers and Reporter Genes
4.4.2. Promoters and Enhancers for D. salina
4.5. Advances in Dunaliella Transformation for Recombinant Biopharmaceutical Production
4.6. Immunological Aspects in Mucosal Vaccination with D. salina
5. Prospective View
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, V.; Sengupta, M.; Prakash, J.; Tripathy, B.C. An Introduction to Biotechnology. In Basic and Applied Aspects of Biotechnology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–21. [Google Scholar]
- Madan, M. Animal Biotechnology: Applications and Economic Implications in Developing Countries. Rev. Sci. Et Tech. Off. Int. Des Epizoot. 2005, 24, 127. [Google Scholar] [CrossRef]
- Fukuyama, H.; Matousek, R.; Tzeremes, N.G. Estimating the Degree of Firms’ Input Market Power via Data Envelopment Analysis: Evidence from the Global Biotechnology and Pharmaceutical Industry. Eur. J. Oper. Res. 2022, in press. [Google Scholar] [CrossRef]
- León-de la O, D.I.; Thorsteinsdóttir, H.; Calderón-Salinas, J.V. The Rise of Health Biotechnology Research in Latin America: A Scientometric Analysis of Health Biotechnology Production and Impact in Argentina, Brazil, Chile, Colombia, Cuba and Mexico. PLoS ONE 2018, 13, e0191267. [Google Scholar]
- Chakdar, H.; Hasan, M.; Pabbi, S.; Nevalainen, H.; Shukla, P. High-Throughput Proteomics and Metabolomic Studies Guide Re-Engineering of Metabolic Pathways in Eukaryotic Microalgae: A Review. Bioresour. Technol. 2021, 321, 124495. [Google Scholar] [CrossRef] [PubMed]
- Shahid, A.; Rehman, A.U.; Usman, M.; Ashraf, M.U.F.; Javed, M.R.; Khan, A.Z.; Gill, S.S.; Mehmood, M.A. Engineering the Metabolic Pathways of Lipid Biosynthesis to Develop Robust Microalgal Strains for Biodiesel Production. Biotechnol. Appl. Biochem. 2020, 67, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Jareonsin, S.; Pumas, C. Advantages of Heterotrophic Microalgae as a Host for Phytochemicals Production. Front. Bioeng. Biotechnol. 2021, 9, 628597. [Google Scholar] [CrossRef]
- Puetz, J.; Wurm, F.M. Recombinant Proteins for Industrial versus Pharmaceutical Purposes: A Review of Process and Pricing. Processes 2019, 7, 476. [Google Scholar] [CrossRef]
- Duzenli, O.F.; Okay, S. Promoter Engineering for the Recombinant Protein Production in Prokaryotic Systems. AIMS Bioeng. 2020, 7, 62–81. [Google Scholar] [CrossRef]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant Protein Expression in Escherichia Coli: Advances and Challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef]
- Kaur, J.; Kumar, A.; Kaur, J. Strategies for Optimization of Heterologous Protein Expression in E. Coli: Roadblocks and Reinforcements. Int. J. Biol. Macromol. 2018, 106, 803–822. [Google Scholar] [CrossRef]
- Mathieu-Rivet, E.; Kiefer-Meyer, M.-C.; Vanier, G.; Ovide, C.; Burel, C.; Lerouge, P.; Bardor, M. Protein N-Glycosylation in Eukaryotic Microalgae and Its Impact on the Production of Nuclear Expressed Biopharmaceuticals. Front. Plant Sci. 2014, 5, 359. [Google Scholar] [CrossRef] [PubMed]
- Mathieu-Rivet, E.; Mati-Baouche, N.; Walet-Balieu, M.-L.; Lerouge, P.; Bardor, M. N-and O-Glycosylation Pathways in the Microalgae Polyphyletic Group. Front. Plant Sci. 2020, 11, 2027. [Google Scholar] [CrossRef] [PubMed]
- Potvin, G.; Zhang, Z. Strategies for High-Level Recombinant Protein Expression in Transgenic Microalgae: A Review. Biotechnol. Adv. 2010, 28, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Farajnia, S.; Rajabibazl, M.; Ghasemi, Y.; Mafi, A.; Hoseinpoor, R.; Rahbarnia, L.; Aria, M. Yeast Expression Systems: Overview and Recent Advances. Mol. Biotechnol. 2019, 61, 365–384. [Google Scholar] [CrossRef]
- Grose, C.; Putman, Z.; Esposito, D. A Review of Alternative Promoters for Optimal Recombinant Protein Expression in Baculovirus-Infected Insect Cells. Protein Expr. Purif. 2021, 186, 105924. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, R.; Bergin, A.; Flampouri, E.; Mota, L.M.; Obaidi, I.; Quigley, A.; Xie, Y.; Butler, M. Mammalian Cell Culture for Production of Recombinant Proteins: A Review of the Critical Steps in Their Biomanufacturing. Biotechnol. Adv. 2020, 43, 107552. [Google Scholar] [CrossRef] [PubMed]
- Dyck, M.K.; Lacroix, D.; Pothier, F.; Sirard, M.-A. Making Recombinant Proteins in Animals–Different Systems, Different Applications. TRENDS Biotechnol. 2003, 21, 394–399. [Google Scholar] [CrossRef]
- Burnett, M.J.; Burnett, A.C. Therapeutic Recombinant Protein Production in Plants: Challenges and Opportunities. Plants People Planet 2020, 2, 121–132. [Google Scholar] [CrossRef]
- Schillberg, S.; Raven, N.; Spiegel, H.; Rasche, S.; Buntru, M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. Front. Plant Sci. 2019, 10, 720. [Google Scholar] [CrossRef]
- Schillberg, S.; Finnern, R. Plant Molecular Farming for the Production of Valuable Proteins–Critical Evaluation of Achievements and Future Challenges. J. Plant Physiol. 2021, 258, 153359. [Google Scholar] [CrossRef]
- Fischer, R.; Schillberg, S.; F Buyel, J.; M Twyman, R. Commercial Aspects of Pharmaceutical Protein Production in Plants. Curr. Pharm. Des. 2013, 19, 5471–5477. [Google Scholar] [CrossRef] [Green Version]
- Virdi, V.; Depicker, A. Role of Plant Expression Systems in Antibody Production for Passive Immunization. Int. J. Dev. Biol. 2013, 57, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P. Overview of the Mucosal Immune System. In New Strategies for Oral Immunization; Springer: Berlin/Heidelberg, Germany, 1989; pp. 13–25. [Google Scholar]
- Wang, S.; Liu, H.; Zhang, X.; Qian, F. Intranasal and Oral Vaccination with Protein-Based Antigens: Advantages, Challenges and Formulation Strategies. Protein Cell 2015, 6, 480–503. [Google Scholar] [CrossRef]
- Rhee, J.H. Current and New Approaches for Mucosal Vaccine Delivery. In Mucosal vaccines; Elsevier: Amsterdam, The Netherlands, 2020; pp. 325–356. [Google Scholar]
- Streatfield, S.J. Mucosal Immunization Using Recombinant Plant-Based Oral Vaccines. Methods 2006, 38, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Feng, W.; Zhao, L.; Gu, H.; Li, Q.; Shi, K.; Guo, S.; Zhang, N. Preparation of Transgenic Dunaliella Salina for Immunization against White Spot Syndrome Virus in Crayfish. Arch. Virol. 2014, 159, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Raja, R.; Hemaiswarya, S.; Rengasamy, R. Exploitation of Dunaliella for β-Carotene Production. Appl. Microbiol. Biotechnol. 2007, 74, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, A.; Sansone, C.; Brunet, C. Insights into the Biosynthesis Pathway of Phenolic Compounds in Microalgae. Comput. Struct. Biotechnol. J. 2022, 20, 1901–1913. [Google Scholar] [CrossRef]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Gong, Y.; Hu, H.; Gao, Y.; Xu, X.; Gao, H. Microalgae as Platforms for Production of Recombinant Proteins and Valuable Compounds: Progress and Prospects. J. Ind. Microbiol. Biotechnol. 2011, 38, 1879–1890. [Google Scholar] [CrossRef]
- Jha, D.; Jain, V.; Sharma, B.; Kant, A.; Garlapati, V.K. Microalgae-Based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Rev. 2017, 4, 257–272. [Google Scholar] [CrossRef]
- Subashini, G.; Bhuvaneswari, S. Novel Products from Microalgae. In Bioactive Natural products in Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2020; pp. 451–465. [Google Scholar]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Sui, Y.; Vlaeminck, S.E. Dunaliella Microalgae for Nutritional Protein: An Undervalued Asset. Trends Biotechnol. 2020, 38, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Chen, T.; Chen, S.H.Y.; Liu, B.; Sun, P.; Sun, H.; Chen, F. The Potentials and Challenges of Using Microalgae as an Ingredient to Produce Meat Analogues. Trends Food Sci. Technol. 2021, 112, 188–200. [Google Scholar] [CrossRef]
- Dineshbabu, G.; Goswami, G.; Kumar, R.; Sinha, A.; Das, D. Microalgae–Nutritious, Sustainable Aqua-and Animal Feed Source. J. Funct. Foods 2019, 62, 103545. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiu, H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J. Pharm. Sci. 2019, 108, 1366–1377. [Google Scholar] [CrossRef]
- Barolo, L.; Abbriano, R.M.; Commault, A.S.; George, J.; Kahlke, T.; Fabris, M.; Padula, M.P.; Lopez, A.; Ralph, P.J.; Pernice, M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020, 9, 633. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef]
- Feng, S.; Li, X.; Xu, Z.; Qi, J. Dunaliella Salina as a Novel Host for the Production of Recombinant Proteins. Appl. Microbiol. Biotechnol. 2014, 98, 4293–4300. [Google Scholar] [CrossRef]
- Udayan, A.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J. Mass Cultivation and Harvesting of Microalgal Biomass: Current Trends and Future Perspectives. Bioresour. Technol. 2022, 344, 126406. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, N.; Koji, I.; Yuzir, A.; Muhammad, S.E. Evolution of Photobioreactors: A Review Based on Microalgal Perspective. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Johor, Malaysia, 16–17 January 2021; IOP Publishing: Bristol, UK, 2021; Volume 1142, p. 012004. [Google Scholar]
- Khadim, S.R.; Singh, P.; Singh, A.K.; Tiwari, A.; Mohanta, A.; Asthana, R.K. Mass Cultivation of Dunaliella Salina in a Flat Plate Photobioreactor and Its Effective Harvesting. Bioresour. Technol. 2018, 270, 20–29. [Google Scholar] [CrossRef]
- Peter, A.P.; Koyande, A.K.; Chew, K.W.; Ho, S.-H.; Chen, W.-H.; Chang, J.-S.; Krishnamoorthy, R.; Banat, F.; Show, P.L. Continuous Cultivation of Microalgae in Photobioreactors as a Source of Renewable Energy: Current Status and Future Challenges. Renew. Sustain. Energy Rev. 2022, 154, 111852. [Google Scholar] [CrossRef]
- Ho, Y.-H.; Wong, Y.-K.; Rao, A.R. Astaxanthin Production from Haematococcus Pluvialis by Using Illuminated Photobioreactor. Glob. Perspect. Astaxanthin 2021, 209–224. [Google Scholar] [CrossRef]
- Chang, J.-S.; Show, P.-L.; Ling, T.-C.; Chen, C.-Y.; Ho, S.-H.; Tan, C.-H.; Nagarajan, D.; Phong, W.-N. Photobioreactors. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 313–352. [Google Scholar]
- Rasala, B.A.; Lee, P.A.; Shen, Z.; Briggs, S.P.; Mendez, M.; Mayfield, S.P. Robust Expression and Secretion of Xylanase1 in Chlamydomonas Reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide. PLoS ONE 2012, 7, e43349. [Google Scholar] [CrossRef]
- Akbari, F.; Eskandani, M.; Khosroushahi, A.Y. The Potential of Transgenic Green Microalgae; a Robust Photobioreactor to Produce Recombinant Therapeutic Proteins. World J. Microbiol. Biotechnol. 2014, 30, 2783–2796. [Google Scholar] [CrossRef] [PubMed]
- Rasala, B.A.; Mayfield, S.P. The Microalga Chlamydomonas Reinhardtii as a Platform for the Production of Human Protein Therapeutics. Bioeng. Bugs 2011, 2, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Velázquez-Juárez, G.; Fernández-Siurob, I. Transformation of Dunaliella Salina by Agrobacterium Tumefaciens for the Expression of the Hemagglutinin of Avian Influenza Virus H5. Microorganisms 2022, 10, 361. [Google Scholar] [CrossRef]
- Durvasula, R.; Subhadra, B.; Matthews, S.; Hurwitz, I.; Rao, D.S. Paratransgenic Approaches to the Control of Infections of Shrimp: Prospects for Use of Dunaliella. In The Alga Dunaliella; CRC Press: Boca Raton, FL, USA, 2019; pp. 385–402. [Google Scholar]
- Georgianna, D.R.; Hannon, M.J.; Marcuschi, M.; Wu, S.; Botsch, K.; Lewis, A.J.; Hyun, J.; Mendez, M.; Mayfield, S.P. Production of Recombinant Enzymes in the Marine Alga Dunaliella Tertiolecta. Algal Res. 2013, 2, 2–9. [Google Scholar] [CrossRef]
- Chai, X.-J.; Chen, H.-X.; Xu, W.-Q.; Xu, Y.-W. Expression of Soybean Kunitz Trypsin Inhibitor Gene SKTI in Dunaliella Salina. J. Appl. Phycol. 2013, 25, 139–144. [Google Scholar] [CrossRef]
- Oren, A. A Hundred Years of Dunaliella Research: 1905–2005. Saline Syst. 2005, 1, 1–14. [Google Scholar] [CrossRef]
- Massyuk, N. Morphology, Taxonomy, Ecology and Geographic Distribution of the Genus Dunaliella Teod. and Prospects for Its Potential Utilization; Naukova Dumka. Massyuk: Kiev, Ukraine, 1973; Volume 312. [Google Scholar]
- Colin, C.D. Organisation et Développement Du Dunaliella, Nouveau Genre de Volvocacée-Polyblépharidée. Beih. Zum Bot. Cent. Syst. Pflanzengeogr. Angew. Bot. Etc. Abt. B 1905, 18, 215. [Google Scholar]
- Dunal, M. Note Sur Les Algues Qui Colourent En Rouge Certaines Eaux Des Marais Salants Méditerranéens. Compte Rendu Hebd. Des Seances De I’Academie Des Sci. 1837, 15, 585–587. [Google Scholar]
- Lamers, P.P.; Janssen, M.; De Vos, R.C.; Bino, R.J.; Wijffels, R.H. Exploring and Exploiting Carotenoid Accumulation in Dunaliella Salina for Cell-Factory Applications. Trends Biotechnol. 2008, 26, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Ben-Amotz, A. Glycerol Production in the Alga Dunaliella. In Biochemical and Photosynthetic Aspects of Energy Production; Elsevier: Amsterdam, Netherlands, 1980; pp. 191–208. [Google Scholar]
- Hosseini Tafreshi, A.; Shariati, M. Dunaliella Biotechnology: Methods and Applications. J. Appl. Microbiol. 2009, 107, 14–35. [Google Scholar] [CrossRef] [PubMed]
- Ben-Amotz, A.; Avron, M. Dunaliella: Physiology, Biochemistry, and Biotechnology; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- MELKONIAN, M. The Eyespot Apparatus of Flagellated Green Algae: A Critical Review. Prog. Phycol. Res. 1984, 3, 193–268. [Google Scholar]
- Borowitzka, M.A.; Siva, C.J. The Taxonomy of the Genus Dunaliella (Chlorophyta, Dunaliellales) with Emphasis on the Marine and Halophilic Species. J. Appl. Phycol. 2007, 19, 567–590. [Google Scholar]
- Gimmler, H.; Weis, U.; Weiss, C.; Kugel, H.; Treffny, B. Dunaliella Acidophila (Kalina) Masyuk-an Alga with a Positive Membrane Potential. New Phytol. 1989, 113, 175–184. [Google Scholar] [CrossRef]
- Ginzburg, M. Dunaliella: A Green Alga Adapted to Salt. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 1988; Volume 14, pp. 93–183. [Google Scholar]
- Borowitzka, M.A.; Borowitzka, L.J. Micro-Algal Biotechnology; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Andersen, D.C.; Krummen, L. Recombinant Protein Expression for Therapeutic Applications. Curr. Opin. Biotechnol. 2002, 13, 117–123. [Google Scholar]
- Butinar, L.; Zalar, P.; Frisvad, J.C.; Gunde-Cimerman, N. The Genus Eurotium–Members of Indigenous Fungal Community in Hypersaline Waters of Salterns. FEMS Microbiol. Ecol. 2005, 51, 155–166. [Google Scholar] [CrossRef]
- Wang, T.; Xue, L.; Hou, W.; Yang, B.; Chai, Y.; Ji, X.; Wang, Y. Increased Expression of Transgene in Stably Transformed Cells of Dunaliella Salina by Matrix Attachment Regions. Appl. Microbiol. Biotechnol. 2007, 76, 651–657. [Google Scholar] [CrossRef]
- Baas-Becking, L. Salt Effects on Swarmers of Dunaliella Viridis Teod. J. Gen. Physiol. 1931, 14, 765. [Google Scholar] [CrossRef]
- McLachlan, J. The Growth of Unicellular Algae in Artificial and Enriched Sea Water Media. Can. J. Microbiol. 1959, 5, 9–15. [Google Scholar] [PubMed]
- Borowitzka, L.J. The Microflora. In Salt lakes; Springer: Berlin/Heidelberg, Germany, 1981; pp. 33–46. [Google Scholar]
- Brock, T. Salinity and the Ecology of Dunaliella from Great Salt Lake. Microbiology 1975, 89, 285–292. [Google Scholar] [CrossRef]
- Sathasivam, R.; Juntawong, N. Others Modified Medium for Enhanced Growth of Dunaliella Strains. Int. J. Curr. Sci. 2013, 5, 67–73. [Google Scholar]
- Fu, W.; Paglia, G.; Magnúsdóttir, M.; Steinarsdóttir, E.A.; Gudmundsson, S.; Palsson, B.Ø.; Andrésson, Ó.S.; Brynjólfsson, S. Effects of Abiotic Stressors on Lutein Production in the Green Microalga Dunaliella Salina. Microb. Cell Factories 2014, 13, 3. [Google Scholar]
- Chen, M.; Tang, H.; Ma, H.; Holland, T.C.; Ng, K.S.; Salley, S.O. Effect of Nutrients on Growth and Lipid Accumulation in the Green Algae Dunaliella Tertiolecta. Bioresour. Technol. 2011, 102, 1649–1655. [Google Scholar]
- Fu, W.; Guðmundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó.S.; Palsson, B.Ø.; Brynjólfsson, S. Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella Salina with Light-Emitting Diodes and Adaptive Laboratory Evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. [Google Scholar]
- Johnson, M.K.; Johnson, E.J.; MacElroy, R.D.; Speer, H.L.; Bruff, B.S. Effects of Salts on the Halophilic Alga Dunaliella Viridis. J. Bacteriol. 1968, 95, 1461–1468. [Google Scholar]
- Borowitzka, M.A. Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters. J. Biotechnol. 1999, 70, 313–321. [Google Scholar]
- Pulz, O. Photobioreactors: Production Systems for Phototrophic Microorganisms. Appl. Microbiol. Biotechnol. 2001, 57, 287–293. [Google Scholar]
- Borowitzka, L.J.; Borowitzka, M.A. Commercial Production of β-Carotene by Dunaliella Salina in Open Ponds. Bull. Mar. Sci. 1990, 47, 244–252. [Google Scholar]
- Su, W.W.; Li, J.; Xu, N.-S. State and Parameter Estimation of Microalgal Photobioreactor Cultures Based on Local Irradiance Measurement. J. Biotechnol. 2003, 105, 165–178. [Google Scholar] [PubMed]
- Tredici, M.R.; Zitelli, G. Cultivation of Spirulina (Arthrospira) Platensis in Flat Plate Reactors. Spirulina Platensis (Arthrospira): Physiol. Cell-Biol. Biotechnology. Taylor Fr. Lond. 1997, 117, 130. [Google Scholar]
- Zhu, Y.-H.; Jiang, J.-G. Continuous Cultivation of Dunaliella Salina in Photobioreactor for the Production of β-Carotene. Eur. Food Res. Technol. 2008, 227, 953–959. [Google Scholar]
- Hejazi, M.A.; De Lamarliere, C.; Rocha, J.; Vermue, M.; Tramper, J.; Wijffels, R. Selective Extraction of Carotenoids from the Microalga Dunaliella Salina with Retention of Viability. Biotechnol. Bioeng. 2002, 79, 29–36. [Google Scholar] [CrossRef]
- León, R.; Vila, M.; Hernánz, D.; Vílchez, C. Production of Phytoene by Herbicide-Treated Microalgae Dunaliella Bardawil in Two-Phase Systems. Biotechnol. Bioeng. 2005, 92, 695–701. [Google Scholar]
- Joo, D.-S.; Cho, M.-G.; Lee, J.-S.; Park, J.-H.; Kwak, J.-K.; Han, Y.-H.; Bucholz, R. New Strategy for the Cultivation of Microalgae Using Microencapsulation. J. Microencapsul. 2001, 18, 567–576. [Google Scholar]
- Geng, D.; Wang, Y.; Wang, P.; Li, W.; Sun, Y. Stable Expression of Hepatitis B Surface Antigen Gene in Dunaliella Salina (Chlorophyta). J. Appl. Phycol. 2003, 15, 451–456. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Gao, X.; Li, Q.; Zhang, Q.; Xu, Z. Expression of Foreign Genes in Dunaliella by Electroporation. Mol. Biotechnol. 2005, 30, 185–192. [Google Scholar]
- Tan, C.; Qin, S.; Zhang, Q.; Jiang, P.; Zhao, F. Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella Salina. J. Microbiol. 2005, 43, 361–365. [Google Scholar]
- Feng, S.; Xue, L.; Liu, H.; Lu, P. Improvement of Efficiency of Genetic Transformation for Dunaliella Salina by Glass Beads Method. Mol. Biol. Rep. 2009, 36, 1433. [Google Scholar]
- Surzycki, R.; Greenham, K.; Kitayama, K.; Dibal, F.; Wagner, R.; Rochaix, J.-D.; Ajam, T.; Surzycki, S. Factors Effecting Expression of Vaccines in Microalgae. Biologicals 2009, 37, 133–138. [Google Scholar]
- Daniell, H.; Lee, S.-B.; Panchal, T.; Wiebe, P.O. Expression of the Native Cholera Toxin B Subunit Gene and Assembly as Functional Oligomers in Transgenic Tobacco Chloroplasts. J. Mol. Biol. 2001, 311, 1001–1009. [Google Scholar] [PubMed]
- Badr, Y.; Kereim, M.; Yehia, M.; Fouad, O.; Bahieldin, A. Production of Fertile Transgenic Wheat Plants by Laser Micropuncture. Photochem. Photobiol. Sci. 2005, 4, 803–807. [Google Scholar] [PubMed]
- Minai-Tehrani, A.; Park, Y.-C.; Hwang, S.-K.; Kwon, J.-T.; Chang, S.-H.; Park, S.-J.; Yu, K.-N.; Kim, J.-E.; Shin, J.-Y.; Kim, J.-H.; et al. Aerosol Delivery of Kinase-Deficient Akt1 Attenuates Clara Cell Injury Induced by Naphthalene in the Lungs of Dual Luciferase Mice. J. Vet. Sci. 2011, 12, 309–317. [Google Scholar]
- Specht, E.A.; Mayfield, S.P. Algae-Based Oral Recombinant Vaccines. Front. Microbiol. 2014, 5, 60. [Google Scholar] [CrossRef]
- Dehghani, J.; Movafeghi, A.; Barzegari, A.; Barar, J. Efficient and Stable Transformation of Dunaliella Pseudosalina by 3 Strains of Agrobacterium Tumefaciens. BioImpacts: BI 2017, 7, 247. [Google Scholar]
- Anila, N.; Chandrashekar, A.; Ravishankar, G.A.; Sarada, R. Establishment of Agrobacterium Tumefaciens-Mediated Genetic Transformation in Dunaliella Bardawil. Eur. J. Phycol. 2011, 46, 36–44. [Google Scholar]
- Voth, D.E.; Broederdorf, L.J.; Graham, J.G. Bacterial Type IV Secretion Systems: Versatile Virulence Machines. Future Microbiol. 2012, 7, 241–257. [Google Scholar] [PubMed]
- Hoekema, A.; Hirsch, P.R.; Hooykaas, P.J.; Schilperoort, R.A. A Binary Plant Vector Strategy Based on Separation of Vir-and T-Region of the Agrobacterium Tumefaciens Ti-Plasmid. Nature 1983, 303, 179–180. [Google Scholar]
- Komari, T.; Takakura, Y.; Ueki, J.; Kato, N.; Ishida, Y.; Hiei, Y. Binary Vectors and Super-Binary Vectors. In Agrobacterium Protocols; Humana Press: Totowa, NJ, USA, 2006; pp. 15–42. [Google Scholar]
- Valentine, L. Agrobacterium Tumefaciens and the Plant: The David and Goliath of Modern Genetics. Plant Physiol. 2003, 133, 948–955. [Google Scholar]
- Jiang, G.-Z.; Lü, Y.-M.; Niu, X.-L.; Xue, L.-X. The Actin Gene Promoter-Driven Bar as a Dominant Selectable Marker for Nuclear Transformation of Dunaliella Salina. Yi Chuan Xue Bao= Acta Genet. Sin. 2005, 32, 424–433. [Google Scholar]
- Li, J.; Xue, L.; Yan, H.; Liu, H.; Liang, J. Inducible EGFP Expression under the Control of the Nitrate Reductase Gene Promoter in Transgenic Dunaliella Salina. J. Appl. Phycol. 2008, 20, 137–145. [Google Scholar] [CrossRef]
- Jia, Y.; Li, S.; Allen, G.; Feng, S.; Xue, L. A Novel Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Promoter for Expressing Transgenes in the Halotolerant Alga Dunaliella Salina. Curr. Microbiol. 2012, 64, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Y.; Xue, L.; Xie, H. A Structurally Novel Salt-Regulated Promoter of Duplicated Carbonic Anhydrase Gene 1 from Dunaliella Salina. Mol. Biol. Rep. 2010, 37, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, L.; Yan, H.; Wang, L.; Liu, L.; Lu, Y.; Xie, H. The Nitrate Reductase Gene-Switch: A System for Regulated Expression in Transformed Cells of Dunaliella Salina. Gene 2007, 403, 132–142. [Google Scholar] [CrossRef]
- Peach, C.; Velten, J. Transgene Expression Variability (Position Effect) of CAT and GUS Reporter Genes Driven by Linked Divergent T-DNA Promoters. Plant Mol. Biol. 1991, 17, 49–60. [Google Scholar] [CrossRef]
- Abranches, R.; Shultz, R.W.; Thompson, W.F.; Allen, G.C. Matrix Attachment Regions and Regulated Transcription Increase and Stabilize Transgene Expression. Plant Biotechnol. J. 2005, 3, 535–543. [Google Scholar] [CrossRef]
- Michalowski, S.M.; Allen, G.C.; Hall, G.E.; Thompson, W.F.; Spiker, S. Characterization of Randomly-Obtained Matrix Attachment Regions (MARs) from Higher Plants. Biochemistry 1999, 38, 12795–12804. [Google Scholar] [CrossRef]
- Allen, G.C.; Spiker, S.; Thompson, W.F. Transgene Integration: Use of Matrix Attachment Regions. In Transgenic Plants: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2005; pp. 313–326. [Google Scholar]
- James, V.; Avart, C.; Worland, B.; Snape, J.; Vain, P. The Relationship between Homozygous and Hemizygous Transgene Expression Levels over Generations in Populations of Transgenic Rice Plants. Theor. Appl. Genet. 2002, 104, 553–561. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Hou, W.-H.; Chai, Y.-R.; Ji, X.; Wang, J.-M.; Xue, L.-X. Nuclear Matrices and Matrix Attachment Regions from Green Alga: Dunaliella Salina. Yi Chuan Xue Bao= Acta Genet. Sin. 2005, 32, 1312–1318. [Google Scholar]
- Wang, T.Y.; Hou, W.H.; Yuan, B.M.; Chai, Y.R.; Hou, G.Q.; Wang, J.M. Others Construction of Randomly Matrix Attachment Regions Library from the Green Alga: Dunaliella Salina. Shi Yan Sheng Wu Xue Bao 2005, 38, 23–28. [Google Scholar] [PubMed]
- Neupert, J.; Karcher, D.; Bock, R. Generation of Chlamydomonas Strains That Efficiently Express Nuclear Transgenes. Plant J. 2009, 57, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Kim, J.-S.; Park, D.-H.; Kang, H.S.; Yoon, J.; Baek, K.; Yoon, Y. Improved Recombinant Gene Expression in CHO Cells Using Matrix Attachment Regions. J. Biotechnol. 2004, 107, 95–105. [Google Scholar] [CrossRef]
- Lee, S.M.; Kang, K.; Chung, H.; Yoo, S.H.; Xu, X.M.; Lee, S.-B.; Cheong, J.-J.; Daniell, H.; Kim, M. Plastid Transformation in the Monocotyledonous Cereal Crop, Rice (Oryza Sativa) and Transmission of Transgenes to Their Progeny. Mol. Cells 2006, 21, 401. [Google Scholar]
- van Steensel, B.; Delrow, J.; Henikoff, S. Chromatin Profiling Using Targeted DNA Adenine Methyltransferase. Nat. Genet. 2001, 27, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, R.; Ülker, B.; Todd, J.J.; Sowinski, D.A.; Schimeneck, C.R.; Allen, G.C.; Weissinger, A.K.; Thompson, W.F. Analysis of Trans-Silencing Interactions Using Transcriptional Silencers of Varying Strength and Targets with and without Flanking Nuclear Matrix Attachment Regions. Transgenic Res. 2003, 12, 305–318. [Google Scholar] [CrossRef]
- Mankin, S.L.; Allen, G.C.; Phelan, T.; Spiker, S.; Thompson, W.F. Elevation of Transgene Expression Level by Flanking Matrix Attachment Regions (MAR) Is Promoter Dependent: A Study of the Interactions of Six Promoters with the RB7 3′ MAR. Transgenic Res. 2003, 12, 3–12. [Google Scholar] [CrossRef]
- Chen, H.-C.; Melis, A. Marker-Free Genetic Engineering of the Chloroplast in the Green Microalga C Hlamydomonas Reinhardtii. Plant Biotechnol. J. 2013, 11, 818–828. [Google Scholar] [CrossRef]
- Wu, T.-M.; Lin, W.-R.; Kao, Y.-T.; Hsu, Y.-T.; Yeh, C.-H.; Hong, C.-Y.; Kao, C.H. Identification and Characterization of a Novel Chloroplast/Mitochondria Co-Localized Glutathione Reductase 3 Involved in Salt Stress Response in Rice. Plant Mol. Biol. 2013, 83, 379–390. [Google Scholar] [CrossRef]
- Luo, X.; Wu, J.; Li, Y.; Nan, Z.; Guo, X.; Wang, Y.; Zhang, A.; Wang, Z.; Xia, G.; Tian, Y. Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses. PLoS ONE 2013, 8, e54002. [Google Scholar] [CrossRef]
- Cui, C.; Song, F.; Tan, Y.; Zhou, X.; Zhao, W.; Ma, F.; Liu, Y.; Hussain, J.; Wang, Y.; Yang, G.; et al. Stable Chloroplast Transformation of Immature Scutella and Inflorescences in Wheat (Triticum Aestivum L.). Acta Biochim Biophys Sin 2011, 43, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Bock, R. Transgenic Plastids in Basic Research and Plant Biotechnology. J. Mol. Biol. 2001, 312, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Chebolu, S.; Daniell, H. Stable Expression of Gal/GalNAc Lectin of Entamoeba Histolytica in Transgenic Chloroplasts and Immunogenicity in Mice towards Vaccine Development for Amoebiasis. Plant Biotechnol. J. 2007, 5, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H. Transgene Containment by Maternal Inheritance: Effective or Elusive? Proc. Natl. Acad. Sci. 2007, 104, 6879–6880. [Google Scholar] [CrossRef]
- Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-Made Vaccine Antigens and Biopharmaceuticals. Trends Plant Sci. 2009, 14, 669–679. [Google Scholar] [CrossRef]
- Rasala, B.A.; Muto, M.; Lee, P.A.; Jager, M.; Cardoso, R.M.; Behnke, C.A.; Kirk, P.; Hokanson, C.A.; Crea, R.; Mendez, M.; et al. Production of Therapeutic Proteins in Algae, Analysis of Expression of Seven Human Proteins in the Chloroplast of Chlamydomonas Reinhardtii. Plant Biotechnol. J. 2010, 8, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Lee, R.W.; Cushman, J.C.; Magnuson, J.K.; Tran, D.; Polle, J.E. The Dunaliella Salina Organelle Genomes: Large Sequences, Inflated with Intronic and Intergenic DNA. BMC Plant Biol. 2010, 10, 83. [Google Scholar] [CrossRef]
- Doron, L.; Segal, N.; Shapira, M. Transgene Expression in Microalgae—from Tools to Applications. Front. Plant Sci. 2016, 7, 505. [Google Scholar] [CrossRef]
- Bock, R. Plastid Biotechnology: Prospects for Herbicide and Insect Resistance, Metabolic Engineering and Molecular Farming. Curr. Opin. Biotechnol. 2007, 18, 100–106. [Google Scholar] [CrossRef]
- Wang, H.-H.; Yin, W.-B.; Hu, Z.-M. Advances in Chloroplast Engineering. J. Genet. Genom. 2009, 36, 387–398. [Google Scholar] [CrossRef]
- Li, D.; Han, X.; Zuo, J.; Xie, L.; He, R.; Gao, J.; Chang, L.; Yuan, L.; Cao, M. Construction of Rice Site-Specific Chloroplast Transformation Vector and Transient Expression of EGFP Gene in Dunaliella Salina. J. Biomed. Nanotechnol. 2011, 7, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A. Vaccination and the Prevention Problem. Bioethics 2004, 18, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Ahmed, R. Immunological Mechanisms of Vaccination. Nat. Immunol. 2011, 12, 509–517. [Google Scholar] [CrossRef]
- van den Berg, T.; Lambrecht, B.; Marché, S.; Steensels, M.; Van Borm, S.; Bublot, M. Influenza Vaccines and Vaccination Strategies in Birds. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 121–165. [Google Scholar] [CrossRef] [PubMed]
- McGhee, J.R.; Fujihashi, K. Inside the Mucosal Immune System. PLoS Biol. 2012, 10, e1001397. [Google Scholar] [CrossRef]
- Ike, A.C.; Ononugbo, C.M.; Obi, O.J.; Onu, C.J.; Olovo, C.V.; Muo, S.O.; Chukwu, O.S.; Reward, E.E.; Omeke, O.P. Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines 2021, 9, 20. [Google Scholar] [CrossRef]
- Wang, T.; Wei, F.; Liu, J. Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza a Viruses. Viruses 2020, 12, 862. [Google Scholar] [CrossRef]
- Siripornadulsil, S.; Dabrowski, K.; Sayre, R. Microalgal Vaccines. In Transgenic Microalgae as Green Cell Factories; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; pp. 122–128. [Google Scholar]
- Kwon, K.-C.; Lamb, A.; Fox, D.; Jegathese, S.J.P. An Evaluation of Microalgae as a Recombinant Protein Oral Delivery Platform for Fish Using Green Fluorescent Protein (GFP). Fish Shellfish Immunol. 2019, 87, 414–420. [Google Scholar] [CrossRef]
- Kiataramgul, A.; Maneenin, S.; Purton, S.; Areechon, N.; Hirono, I.; Brocklehurst, T.W.; Unajak, S. An Oral Delivery System for Controlling White Spot Syndrome Virus Infection in Shrimp Using Transgenic Microalgae. Aquaculture 2020, 521, 735022. [Google Scholar] [CrossRef]
- Chang, T.; Ohta, S.; Ikegami, N.; Miyata, H.; Kashimoto, T.; Kondo, M. Antibiotic Substances Produced by a Marine Green Alga, Dunaliella Primolecta. Bioresour. Technol. 1993, 44, 149–153. [Google Scholar] [CrossRef]
- Yang, D.-J.; Lin, J.-T.; Chen, Y.-C.; Liu, S.-C.; Lu, F.-J.; Chang, T.-J.; Wang, M.; Lin, H.-W.; Chang, Y.-Y. Suppressive Effect of Carotenoid Extract of Dunaliella Salina Alga on Production of LPS-Stimulated pro-Inflammatory Mediators in RAW264. 7 Cells via NF-ΚB and JNK Inactivation. J. Funct. Foods 2013, 5, 607–615. [Google Scholar] [CrossRef]
- Lin, H.-W.; Chen, Y.-C.; Liu, C.-W.; Yang, D.-J.; Chen, S.-Y.; Chang, T.-J.; Chang, Y.-Y. Regulation of Virus-Induced Inflammatory Response by Dunaliella Salina Alga Extract in Macrophages. Food Chem. Toxicol. 2014, 71, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Brondyk, W.H. Selecting an Appropriate Method for Expressing a Recombinant Protein. Methods Enzymol. 2009, 463, 131–147. [Google Scholar] [PubMed]
- Mayfield, S.P.; Franklin, S.E. Expression of Human Antibodies in Eukaryotic Micro-Algae. Vaccine 2005, 23, 1828–1832. [Google Scholar] [CrossRef]
- Sepulveda, C.; Gómez, C.; Bahraoui, N.E.; Acién, G. Comparative Evaluation of Microalgae Strains for CO2 Capture Purposes. J. CO2 Util. 2019, 30, 158–167. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Eriksen, G.K.; Bergum, J.-S.; Strømholt, J.; Elvevoll, E.; Eilertsen, K.-E.; Heimstad, E.S.; Giæver, I.H.; Israelsen, L.; Svenning, J.B.; et al. Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. Appl. Sci. 2022, 12, 3082. [Google Scholar] [CrossRef]
- Rasala, B.A.; Muto, M.; Sullivan, J.; Mayfield, S.P. Improved Heterologous Protein Expression in the Chloroplast of Chlamydomonas Reinhardtii through Promoter and 5′ Untranslated Region Optimization. Plant Biotechnol. J. 2011, 9, 674–683. [Google Scholar] [CrossRef]
- Ramesh, V.M.; Bingham, S.E.; Webber, A.N. A Simple Method for Chloroplast Transformation in Chlamydomonas Reinhardtii. In Photosynthesis Research Protocols; Springer: Berlin/Heidelberg, Germany, 2004; pp. 301–307. [Google Scholar]
- Bañuelos-Hernández, B.; Monreal-Escalante, E.; González-Ortega, O.; Angulo, C.; Rosales-Mendoza, S. Algevir: An Expression System for Microalgae Based on Viral Vectors. Front. Microbiol. 2017, 8, 1100. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellanos-Huerta, I.; Gómez-Verduzco, G.; Tellez-Isaias, G.; Ayora-Talavera, G.; Bañuelos-Hernández, B.; Petrone-García, V.M.; Fernández-Siurob, I.; Garcia-Casillas, L.A.; Velázquez-Juárez, G. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes 2022, 10, 1776. https://doi.org/10.3390/pr10091776
Castellanos-Huerta I, Gómez-Verduzco G, Tellez-Isaias G, Ayora-Talavera G, Bañuelos-Hernández B, Petrone-García VM, Fernández-Siurob I, Garcia-Casillas LA, Velázquez-Juárez G. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes. 2022; 10(9):1776. https://doi.org/10.3390/pr10091776
Chicago/Turabian StyleCastellanos-Huerta, Inkar, Gabriela Gómez-Verduzco, Guillermo Tellez-Isaias, Guadalupe Ayora-Talavera, Bernardo Bañuelos-Hernández, Víctor Manuel Petrone-García, Isidro Fernández-Siurob, Luis Alberto Garcia-Casillas, and Gilberto Velázquez-Juárez. 2022. "Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application" Processes 10, no. 9: 1776. https://doi.org/10.3390/pr10091776
APA StyleCastellanos-Huerta, I., Gómez-Verduzco, G., Tellez-Isaias, G., Ayora-Talavera, G., Bañuelos-Hernández, B., Petrone-García, V. M., Fernández-Siurob, I., Garcia-Casillas, L. A., & Velázquez-Juárez, G. (2022). Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes, 10(9), 1776. https://doi.org/10.3390/pr10091776