Classification of Droplets of Water-PVP Solutions with Different Viscosity Values Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurement Setup
2.3. Methods
2.3.1. Experimental Design
2.3.2. Viscosity Measurement
2.3.3. Image Processing
- State of the droplet: The droplets can be seen in three different states on the videos recorded as shown in Figure 3. Developing state, from the appearance of the droplet until it is completely formed. Before the Detachment state, the droplet is completely formed and in the frame before it detaches from the dropper. After the detachment state, the droplet is not attached to the dropper and falls until it disappears from the video.
- Time per droplet: The time it takes for the droplet to finish the three different states in seconds.
- Area of the droplet: The area of the droplet at each frame was extracted in pixels.
- Perimeter of the droplet: The perimeter of the droplet at each frame was extracted in pixels.
- Diameter of the droplet: The diameter of the droplet at each frame was extracted in pixels.
- Length of the droplet: The length of the droplet at each frame was extracted in pixels.
- Length/Width ratio: The Length/Width ratio was calculated as independent to the camera distance from the droplet.
- Y max coordinate: Before detachment, this feature reflects the maximum length the droplet reached.
- X and Y coordinates of Center of mass: Center of mass coordinates of the droplet in pixels.
- Deltoid Fitting: A deltoid was fitted inside the droplet in a way that its vertices are the lowest and highest point of the droplet and the two sides of the widest part of the droplet.
2.3.4. Data Analysis
2.3.5. Artificial Neural Network
3. Results and Discussion
3.1. Results of Data Analysis
3.2. Predicting the Droplet Categories Using ANN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
PCA | Principal Component Analysis |
PCs | Principal components |
PVP | Polyvinylpyrrolidone |
References
- Viswanath, D.S.; Ghosh, T.K.; Prasad, D.H.; Dutt, N.V.; Rani, K.Y. Viscosity of Liquids: Theory, Estimation, Experiment, and Data; Springer Science & Business Media: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Toropainen, E.; Fraser-Miller, S.J.; Novakovic, D.; Del Amo, E.M.; Vellonen, K.S.; Ruponen, M.; Viitala, T.; Korhonen, O.; Auriola, S.; Hellinen, L.; et al. Biopharmaceutics of topical ophthalmic suspensions: Importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics 2021, 13, 452. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, A.B.; Mishra, S.; Kulkarni, R.D.; Naik, J.B. Influence of different viscosity grade ethylcellulose polymers on encapsulation and in vitro release study of drug loaded nanoparticles. J. Pharm. Res. 2013, 7, 414–420. [Google Scholar] [CrossRef]
- Nunes, V.M.; Lourenço, M.J.; Santos, F.J.; Nieto de Castro, C.A. Importance of accurate data on viscosity and thermal conductivity in molten salts applications. J. Chem. Eng. Data 2003, 48, 446–450. [Google Scholar] [CrossRef]
- Rashid, B.; Bal, A.L.; Williams, G.J.; Muggeridge, A.H. Using vorticity to quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion on oil recovery. Comput. Geosci. 2012, 16, 409–422. [Google Scholar] [CrossRef]
- Brooks, R.; Dinsdale, A.; Quested, P. The measurement of viscosity of alloys—A review of methods, data and models. Meas. Sci. Technol. 2005, 16, 354. [Google Scholar] [CrossRef]
- Zhu, H.; Dexter, R.; Fox, R.; Reichard, D.; Brazee, R.; Ozkan, H. Effects of polymer composition and viscosity on droplet size of recirculated spray solutions. J. Agric. Eng. Res. 1997, 67, 35–45. [Google Scholar] [CrossRef]
- Gotaas, C.; Havelka, P.; Jakobsen, H.A.; Svendsen, H.F.; Hase, M.; Roth, N.; Weigand, B. Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison. Phys. Fluids 2007, 19, 102106. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Zhang, Z.; Sun, B.; Zhang, J.; Lou, W. Research on the effects of liquid viscosity on droplet size in vertical gas–liquid annular flows. Chem. Eng. Sci. 2020, 220, 115621. [Google Scholar] [CrossRef]
- Kheloufi, N.; Lounis, M. An Optical Technique for Newtonian Fluid Viscosity Measurement Using Multiparameter Analysis. Appl. Rheol. 2014, 24, 15–22. [Google Scholar]
- Santhosh, K.; Shenoy, V. Analysis of liquid viscosity by image processing techniques. Indian J. Sci. Technol. 2016, 9, 98693. [Google Scholar] [CrossRef]
- Afrand, M.; Najafabadi, K.N.; Sina, N.; Safaei, M.R.; Kherbeet, A.S.; Wongwises, S.; Dahari, M. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int. Commun. Heat Mass Transf. 2016, 76, 209–214. [Google Scholar] [CrossRef]
- Omole, O.; Falode, O.; Deng, A.D. Prediction of Nigerian crude oil viscosity using artificial neural network. Pet. Coal 2009, 51, 181–188. [Google Scholar]
- Esfe, M.H.; Saedodin, S.; Sina, N.; Afrand, M.; Rostami, S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int. Commun. Heat Mass Transf. 2015, 68, 50–57. [Google Scholar] [CrossRef]
- Naveenkumar, M.; Vadivel, A. OpenCV for computer vision applications. In Proceedings of the National Conference on Big Data and Cloud Computing (NCBDC’15), Tiruchirappalli, India, 20 March 2015; pp. 52–56. [Google Scholar]
- Sharifi, M.; Fathy, M.; Mahmoudi, M.T. A classified and comparative study of edge detection algorithms. In Proceedings of the International Conference on Information Technology: Coding and Computing, Las Vegas, NV, USA, 8–10 April 2002; pp. 117–120. [Google Scholar]
- Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: New York, NY, USA, 2019; pp. 215–229. [Google Scholar]
- Manaswi, N.K. Understanding and working with Keras. In Deep Learning with Applications Using Python; Springer: New York, NY, USA, 2018; pp. 31–43. [Google Scholar]
Formulation Number | Water (mL) | PVP Solution (mL) |
---|---|---|
WaterPVP0 (Water) | 300 | 0 |
WaterPVP1 | 300 | 50 |
WaterPVP2 | 125 | 50 |
WaterPVP3 | 66.66 | 50 |
WaterPVP4 | 37.5 | 50 |
WaterPVP5 | 20 | 50 |
WaterPVP6 | 8.33 | 50 |
WaterPVP7 (PVP Solution) | 0 | 50 |
Formulation Number | Viscosity Value mPa·S |
---|---|
WaterPVP0 (Water) | 0.891 |
WaterPVP1 | 1.825 |
WaterPVP2 | 4.306 |
WaterPVP3 | 7.601 |
WaterPVP4 | 9.347 |
WaterPVP5 | 16.51 |
WaterPVP6 | 33.13 |
WaterPVP7 (PVP Solution) | 61.40 |
Matrix | Number of Rows (n) | Number of Columns (i) | Number of Droplets | Runtime (s) |
---|---|---|---|---|
WaterPVP0 (Water) | 111,001 | 14 | 181 | 740.26 |
WaterPVP1 | 134,844 | 14 | 233 | 901.04 |
WaterPVP2 | 104,748 | 14 | 182 | 700.22 |
WaterPVP3 | 179,127 | 14 | 269 | 1197.95 |
WaterPVP4 | 185,722 | 14 | 283 | 1246.84 |
WaterPVP5 | 133,016 | 14 | 200 | 889.53 |
WaterPVP6 | 116,148 | 14 | 184 | 777.44 |
WaterPVP7 (PVP solution) | 184,686 | 14 | 295 | 1233.07 |
Category Number | Encoding |
---|---|
WaterPVP0 (Water) | (1, 0, 0, 0, 0, 0, 0, 0) |
WaterPVP1 | (0, 1, 0, 0, 0, 0, 0, 0) |
WaterPVP2 | (0, 0, 1, 0, 0, 0, 0, 0) |
WaterPVP3 | (0, 0, 0, 1, 0, 0, 0, 0) |
WaterPVP4 | (0, 0, 0, 0, 1, 0, 0, 0) |
WaterPVP5 | (0, 0, 0, 0, 0, 1, 0, 0) |
WaterPVP6 | (0, 0, 0, 0, 0, 0, 1, 0) |
WaterPVP7 (PVP Solution) | (0, 0, 0, 0, 0, 0, 0, 1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrad, M.A.; Csorba, K.; Galata, D.L.; Nagy, Z.K. Classification of Droplets of Water-PVP Solutions with Different Viscosity Values Using Artificial Neural Networks. Processes 2022, 10, 1780. https://doi.org/10.3390/pr10091780
Mrad MA, Csorba K, Galata DL, Nagy ZK. Classification of Droplets of Water-PVP Solutions with Different Viscosity Values Using Artificial Neural Networks. Processes. 2022; 10(9):1780. https://doi.org/10.3390/pr10091780
Chicago/Turabian StyleMrad, Mohamed Azouz, Kristof Csorba, Dorián László Galata, and Zsombor Kristóf Nagy. 2022. "Classification of Droplets of Water-PVP Solutions with Different Viscosity Values Using Artificial Neural Networks" Processes 10, no. 9: 1780. https://doi.org/10.3390/pr10091780
APA StyleMrad, M. A., Csorba, K., Galata, D. L., & Nagy, Z. K. (2022). Classification of Droplets of Water-PVP Solutions with Different Viscosity Values Using Artificial Neural Networks. Processes, 10(9), 1780. https://doi.org/10.3390/pr10091780