Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy
Abstract
:1. Introduction
Novelty
2. Combined Heat and Power with CCUS
2.1. Combined Heat and Power Plant
- Three trains of CHP, with the configuration of each train consisting of a GE 7F04 gas turbine (GT) connected to a heat recovery steam generator (HRSG), as shown in Figure 3. The flue gas exiting the gas turbine enters the HRSG, where intermediate pressure steam is generated for the petrochemical process and for the PCC. Additional steam at low pressure is produced in the HRSG to increase the CHP plant’s power generation.
- Three trains of CHP, with the configuration of each train consisting of a GE 7F05 gas turbine with a HRSG as shown in Figure 4. The flue gas leaving the gas turbine enters the HRSG, where intermediate pressure steam is generated, but in this case, a portion of the steam feeds into a steam turbine and the remainder goes to the petrochemical process and the capture plant. Additional low pressure steam is produced in the HRSG to increase the CHP plant´s power generation.
- Two trains of CHP, with each train consisting of a GE H01 gas turbine with a HRSG, as shown in Figure 5. The GTs have higher capacity than cases 1 and 2. The flue gas leaving the GT enters the HRSG, where intermediate pressure steam is produced for the petrochemical process and for the PCC. In addition, steam at low pressure is produced in the HRSG to increase the CHP plant´s power generation.
- The gas turbines were simulated using GE GTP software from General Electric.
- The amount of steam generated was estimated based on the heat and mass balances modelled in Excel using the free steam tables based on IAPWS-IF97 (Industrial Formulation).
2.2. Post-Combustion MEA-Based CO2 Capture Plant
- Variation of the MEA lean solvent loading solution to define the minimum energy required in the reboiler for a specific CO2 concentration of the flue gas.
- While studying the impact of different lean loading on the capture system, the pressure in the reboiler is varied in order to adjust the lean loading. The temperature is maintained constant at 120 °C.
- The solvent circulation rate in the absorber is changed to obtain 90% CO2 capture. Flue gas at the inlet of the absorber is 44 °C and the pressure is 1.13 bar; and CO2 leaves the stripper condenser at 40 °C.
2.3. Performance of the Three Case Studies
3. Combined Heat and Power with CO2 Capture and Solar Energy for Solvent Regeneration
4. Plant Configuration/Specification
System Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CHP | combined heat and power plant |
CCS | carbon capture and storage |
EOR | enhanced oil recovery |
CSE | concentrate solar energy |
CFE | Federal Commission of Electricity |
DNI | direct normal irradiance |
GT | gas turbine |
HTF | heat transfer fluid |
HRSG | heat recovery steam generator |
IP | intermedia pressure |
LCS | levelised cost of steam |
LHV | low heat value |
LP | low pressure |
MEA | monoethanolamine |
MW | megawatts |
NGCC | natural gas combined cycle power plant |
PTC | parabolic-trough collector |
PTCSP | parabolic-trough collector solar plant |
PTCSTPP | parabolic-trough-concentrating solar thermal power plant |
PCC | post-combustion carbon capture |
Qt | total thermal heat |
SDC | Stirling dish collector |
SPT | solar power tower |
SAM | system advisor model |
TES | thermal energy storage |
References
- WEO. World Energy Outlook Special Report: Energy Climate and Change; WEO: Miami, FL, USA, 2015. [Google Scholar]
- Veysey, J.; Octaviano, C.; Calvin, K.; Herrera, S.; Kitous, A.; McFarland, J.; Van der Zwaan, B. Pathways to Mexico’s climate change mitigation targets: A multi-model analysis. Energy Econ. 2016, 56, 587–599. [Google Scholar] [CrossRef]
- Mexican Ministry of Energy. Mexican Electric Sector Prospective 2015–2029. In Annually Revision of the Mexican Electricity Sector (Version in Spanish). 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/44328/Prospectiva_del_Sector_Electrico.pdf (accessed on 23 November 2022).
- Gonzalez-Diaz, A. Sequential Supplementary Firing in Natural Gas Combined Cycle Plants with Carbon Capture for Enhanced Oil Recovery. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2016. [Google Scholar]
- Mexican Ministry of Energy. Mexican Electric Sector Prospective 2021–2035. 2021. Available online: https://www.gob.mx/cenace/documentos/programa-para-el-desarrollo-del-sistema-electrico-nacional-276178 (accessed on 23 November 2022).
- Mexican Ministry of Energy. Mexican Electric Sector Prospective 2022–2036. 2022. Available online: https://base.energia.gob.mx/prodesen22/Capitulo7.pdf (accessed on 23 November 2022).
- Department for Business, Energy & Industrial Strategy, UK. Combined Heat and Power: Pathway to Decarbonisation: Call for Evidence. 2021. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1020816/chp-pathway-to-decarbonisation-call-for-evidence.pdf (accessed on 23 November 2022).
- IPCC CCS. Special Report on Carbon Dioxide Capture and Storage. 2004. Available online: https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/ (accessed on 23 November 2022).
- Ahlmén, M.; Hellsberg, J. Combined Heat and Power Plants Integrated with Carbon Capture Process and System Level Potential. Master’s Thesis, Chalmers University of Technology Gothenburg, Göteborg, Sweden, 2020. [Google Scholar]
- Kehlhofer, P.; Hannemann, F.; Stirninmann, F.; Rukes, B. Combined-Cycle Gas and Steam Turbine Power Plant, 3rd ed.; PennWell Corporation: Tulsa, OK, USA, 2009. [Google Scholar]
- Encabo Cáceres, I.; Montañés, R.; Nord, L. Flexible operation of combined cycle gas turbine power plants with supplementary firing. J. Power Technol. 2018, 98, 188–197. [Google Scholar]
- Beiron, J.; Montañés, R.; Normann, F.; Johnsson, F. Flexible operation of a combined cycle cogeneration plant–A techno-economic assessment. Appl. Energy 2020, 278, 1–18. [Google Scholar] [CrossRef]
- Yaïci, W.; Entchev, E.; Longo, M. Recent Advances in Small-Scale Carbon Capture Systems for Micro-Combined Heat and Power Applications. Energies 2022, 15, 2938. [Google Scholar] [CrossRef]
- Gustafsson, K.; Sadegh-Vaziri, R.; Grönkvist, S.; Levihn, F.; Sundberg, C. BECCS with combined heat and power: Assessing the energy penalty. Int. J. Greenh. Gas Control. 2021, 108, 103248. [Google Scholar] [CrossRef]
- Levihn, F.; Linde, L.; Gustafsson, K.; Dahlen, E. Introducing BECCS through HPC to the research agenda: The case of combined heat and power in Stockholm. Energy Rep. 2019, 5, 1381–1389. [Google Scholar] [CrossRef]
- Adinolfi, A.; Costa, M.; Palombo, A.; Piazzullo, D. Dynamic optimization of a cogeneration plant for an industrial application with two different hydrogen embedding solutions. Int. J. Hydrogen Energy 2022, 47, 12204–12218. [Google Scholar] [CrossRef]
- Adinolfi, D.; Costa, M.; Maka, R.; Prati, M. Carbon capture and Power-to-Gas: A dynamic analysis of the use of hydrogen in a cogeneration plant Conference. In Proceedings of the 44th Meeting of the Italian Section of the Combustion Institute-Combustion for Sustainability, Naples, Italy, 5–8 June 2022. [Google Scholar]
- Xu, W.; Zhao, P.; Gou, F.; Wu, W.; Liu, A.; Wang, J. A combined heating and power system based on compressed carbon dioxide energy storage with carbon capture: Exploring the technical potential. Energy Convers. Manag. 2022, 260, 115610. [Google Scholar] [CrossRef]
- Ragul-hari, S.; Prem-Balaji, C.; Karunamurthy, K. Carbon Capture and Storage Using Renewable Energy Sources: A Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012004. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Deng, S.; Sun, T.; Du, Y.; Li, K.; Xu, Y. Integrated assessment for solar-assisted carbon capture and storage power plant by adopting resilience thinking on energy system. J. Clean. Prod. 2019, 208, 1009–1021. [Google Scholar] [CrossRef]
- Plaza, M.; Ribeiro, R. Special Issue “CO2 Capture and Renewable Energy”. Energies 2022, 15, 5187. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Hong, F.; Yang, J.; Chen, Z.; Cui, H.; Feng, J. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system. Energy 2021, 236, 121392. [Google Scholar] [CrossRef]
- Groesbeck, J.; Pearce, J. Coal with Carbon Capture and Sequestration is not as Land Use Efficient as Solar Photovoltaic Technology for Climate Neutral Electricity Production. Sci. Rep. 2018, 8, 13476. [Google Scholar] [CrossRef] [Green Version]
- Gul, F.; Baldinelli, G.; Bartocci, P. Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities. Energies 2022, 15, 6740. [Google Scholar] [CrossRef]
- Wibberley. CO2 Capture Using Solar Thermal. U.S. Patent 2010/0005966 A1, 14 January 2010. [Google Scholar]
- Cohen, S.; Webber, M.; Rochelle, G. Utilizing Solar Thermal Energy for Post-Combustion CO2 Capture, Utilizing Solar Thermal Energy for Post-Combustion CO2 Capture. In Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Phoenix, AZ, USA, 17–22 May 2010; pp. 663–672. [Google Scholar] [CrossRef]
- Mokhtar, M.; Ali, M.; Khalilpour, R.; Abbas, A.; Shah, N.; Hajaj, A.; Armstrong, P.; Chiesa, M.; Sgouridis, S. Solar-assisted Post-combustion Carbon Capture feasibility study. Appl. Energy 2012, 92, 668–676. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L.; Vaccarelli, M. Analysis of CO2 Post-combustion Capture in Coal-fired Power Plants Integrated with Renewable Energies. Energy Procedia 2015, 82, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Alsagri, A.; Alrobaian, A. Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview. Energies 2022, 15, 5977. [Google Scholar] [CrossRef]
- Gelowitz, D.; Kritpiphat, W.; Tontiwachwuthikul, P. Cogeneration concepts for CO2 separation from power plants for enhanced oil recovery applications. Energy Convers. Manag. 1995, 36, 563–566. [Google Scholar] [CrossRef]
- Montigny, D.; Kritpiphat, W.; Gelowitz, D.; Tontiwachwuthikul, P. Simultaneous production of electricity, steam, and CO2 from small gas-fired cogeneration plants for enhanced oil recovery. Energy Convers. Manag. 1997, 38, S223–S228. [Google Scholar] [CrossRef]
- Leduc, J.; Mottaghi, M.; Moran-Gonzalez, D.; Sigler, E.; Mahé, H.; Castel, J. Integration of a carbon capture-ready cogeneration plant: From requirements to design, facilities optimization and energy efficiency opportunities. Energy Procedia 2011, 4, 2432–2439. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Aguillón-Martínez, J.; Mazur Czerwiec, Z.; Zavala Guzmán, A.; Huante Pérez, L.; Flores Zamudio, J.; Díaz Guillén, M. Techno-economic analysis of solar-assisted post-combustion carbon capture to a pilot cogeneration system in Mexico. Energy 2019, 167, 1107–1119. [Google Scholar] [CrossRef]
- Mokheimer, E.; Shakeel, M.; Sanusi, Y.; Mahmoud, M. Thermoeconomic comparative analysis of solar-assisted and carbon capture integrated conventional cogeneration plant of power and process steam. Int. J. Energy Res. 2020, 44, 8455–8479. [Google Scholar] [CrossRef]
- Razi, F.; Dincer, I. A new solar combined cycle integrated with heat pump system. Appl. Therm. Eng. 2020, 173, 114784. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, L.; Song, C.; Zhang, N.; Guo, M.; Zhang, X. Reduction of efficiency penalty for a natural gas combined cycle power plant with post-combustion CO2 capture: Integration of liquid natural gas cold energy. Energy Convers. Manag. 2019, 198, 111852. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Libertini, L.; Vicidomini, M. Thermoeconomic analysis of an integrated solar combined cycle power plant. Energy Convers. Manag. 2018, 171, 1038–1051. [Google Scholar] [CrossRef]
- González-Díaz, A.; Sánchez-Fernández, E.; Gibbins, J.; Lucquiaud, M. Sequential supplementary firing in natural gas combined cycle with carbon capture: A technology option for Mexico for low-carbonelectricity generation and CO2 enhanced oil recovery. Int. J. Greenh. Gas Control. 2016, 51, 330–345. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Díaz, A.; Alcaraz-Calderon, M.; Gonzalez-Díaz, M.; Mendez-Aranda, A.; Lucquiaud, M.; Gonzalez-Santalo, J. Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture. Energy 2017, 134, 221–233. [Google Scholar] [CrossRef]
- Blair, N.; Nicholas, D.; Freeman, J.; Gilm, P.; Janzou, S.; Neises, T.; Wagner, M. System Advisor Model (SAM) General Description (Version 2017.9.5). (C. N.-6.-7. Golden, Ed.). 2018. Available online: https://www.nrel.gov/docs/fy18osti/70414.pdf (accessed on 1 June 2022).
- Deepak, B.; Sudhakara, K. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case. Stud. Therm. Eng. 2017, 10, 216–226. [Google Scholar] [CrossRef]
- VYNMSA. Construction and Development. What Is the Potential of Solar Energy in Mexico? 2022. Available online: https://www.vynmsa.com/blog/en/economy/solar-energy-in-mexico/ (accessed on 23 November 2022).
Ambient Condition | ||
---|---|---|
Pressure | bar | 0.98 |
Temperature | °C | 33 |
Relative humidity | % | 40 |
Steam required in the process | tonne/h | 700 |
Steam temperature | bar | 350 |
Steam pressure | °C | 19.6 |
Natural gas composition | ||
Methane | % mol | 94.59 |
Ethane | % mol | 3.89 |
Propane | % mol | 0.205 |
n-buthane | % mol | 0.026 |
n-pentane | % mol | 0.016 |
n-hexane | % mol | 0.051 |
Nitrogen | % mol | 0.148 |
Carbon dioxide | % mol | 1.074 |
HLV | kJ/kg | 48,318 |
Molar weight | kmol/kg | 17.01 |
Concept | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Net power output (MW) | 493.7 | 635.85 | 511.8 |
Gas turbine power (MW) | 493.7 | 612.6 | 511.8 |
Steam turbine power (MW) | 0 | 23.22 | 0 |
Natural gas consumption (MW) | 1362.6 | 1849.3 | 1344.4 |
Steam mass flow to the process (tonne/h) (20 bar and 350 °C) | 700 | 700 | 700 |
Flue gas composition (% vol.) | |||
Ar | 0.87 | 0.87 | 0.87 |
N2 | 73.51 | 73.55 | 73.27 |
O2 | 11.85 | 11.96 | 11.16 |
CO2 | 4.05 | 4.00 | 4.37 |
H2O | 9.72 | 9.62 | 10.33 |
Flue gas flow rate (tonne/h) | 4381.9 | 5391.9 | 4000.7 |
Post-combustion (MW) | 9.78 | 0 | 77.3 |
Steam required for the capture plant (tonne/h) (Saturated at 3.5 bar) | 412 | 500.87 | 406.7 |
CHP efficiency + PCC + CO2 compression (%) | 70.53% | 65.04% | 72.86% |
Parameter | Unit | Case 1 | Case 2 | Case 3 |
---|---|---|---|---|
Number of trains | 2 | 2 | 2 | |
Absorber packing heigh | meter | 21 | 21 | 21 |
Absorber diameter | m | 15.83 | 17.54 | 15.27 |
Stripper packing heigh | m | 13 | 13 | 13 |
Stripper diameter | m | 7.15 | 7.16 | 7.12 |
Location and Resource | Values | Reference | Solar Field–Continue | Values | Reference |
---|---|---|---|---|---|
Latitude and longitude. | 25.61 DD and −99.98 DD | NREL, NSRDB | Header design maximum flow velocity | 3 m/s | NREL, SAM |
Elevation | 324 m, | NREL, NSRDB | Collector tilt | 0° | Assume |
Global horizontal irradiation, direct normal (beam) irradiation and diffuse horizontal Irradiation: | 5.36 kWh/m2/day, 5.61 kWh/m2/day and 1.74 kWh/m2/day | NREL, NSRDB | Collector azimuth | 0° | NREL, SAM |
Average temperature: | 22.1 °C | NREL, NSRDB | Stow angle | 170° | NREL, SAM |
Average wind speed: | 2.5 m/s | NREL, NSRDB | Deploy angle | 10° | NREL, SAM |
System Design | Water usage per wash | 0.7 L/m2 aperture | NREL, SAM | ||
Design point direct normal irradiance | 950 W/m2 | NREL, SAM | Washes per year | 12 | NREL, SAM |
Target solar multiple | 2.5 | NREL, SAM | Hot piping thermal inertia | 0.2 kWht/K-MW-t | NREL, SAM |
Target receiver thermal power | 743.05 MWth | Assume | Cold piping thermal inertia | 0.2 kWht/K-MW-t | NREL, SAM |
Loop inlet heat transfer fluid temperature | 150 | Assume | Field loop piping thermal inertia | 4.5 Wht/K-m | NREL, SAM |
Loop outlet heat transfer fluid temperature | 350 | Assume | Non solar field land area multiplier | 1.1 | NREL, SAM |
Heat sink power | 296.7 MWt | Assume | Solar collectors assembly | Values | Reference |
Pumping power for Heat Transfer Fluid through heat sink | 0.55 kW/kg/s | NREL, SAM | Collector type selection. | FLABEG Ultimate Trough RP6 (with 89-mm OD receiver for oil HTF) | Assume |
Hours of storage at design point | 6 | NREL, SAM | Receiver selection or heat collection element | ||
Solar field | Receiver selection | Schott PTR70 | Assume | ||
Row spacing | 15 m | NREL, SAM | Thermal storage | ||
Header Pipe roughness | 4.57 × 10−5 m | NREL, SAM | Tank height | 15 m | NREL, SAM |
HTP pump efficiency | 85% | NREL, SAM | Tank fluid minimum height | 0.5 m | NREL, SAM |
Piping thermal loss coefficient | 0.45 W/m2 K | NREL, SAM | Parallel tank pairs | 1 | NREL, SAM |
Wind stock speed | 25 m/s | NREL, SAM | Water loss coefficient | 0.3 Wt/m2-K | NREL, SAM |
Receiver startup delay time | 0.2 h | NREL, SAM | Initial hot Heat Transfer Fluid percent | 30% | NREL, SAM |
Receiver startup delay energy fraction | 25% | NREL, SAM | Cold tank heater temperature set point | 60 °C | NREL, SAM |
Collector startup energy | 0.021 kWhe/SCA | NREL, SAM | Cold tank heater capacity | 0.5 MWe | NREL, SAM |
Tracking power per Solar Collector Assembly | 125 W/SCA | NREL, SAM | Hot tank heater temperature set point | 110 °C | NREL, SAM |
Field heat transfer Fluid | Therminol VP-1 | Assume | Hot tank heater capacity | 1 MWe | NREL, SAM |
Freeze protection temperature | 12 °C | NREL, SAM | Tank heater efficiency | 0.99 | NREL, SAM |
Minimum single loop flow rate | 1 kg/s | NREL, SAM | System control | ||
Maximum single loop flow rate | 12 kg/s | NREL, SAM | Fraction of rated gross power consumed all times | 0.0055 MWe/MWtcap | NREL, SAM |
Header design minimum flow velocity | 2 m/s | NREL, SAM | Balance of plant parasitic | 0 MWe/MWtcap | NREL, SAM |
Metric | Value |
---|---|
Annual energy (year 1) | 910,011.53 MWh-t |
Annual thermal freeze protection (year 1) | 0 kWh-t |
Capacity factor | 41.1% |
Annual electricity load (year 1) | 5,930,754 kWh-e |
Total field area (ha) | 224.6 |
Concept | CHP with PCC | CHP with PCC and PTC |
---|---|---|
Net power output to grid (MW) | 511.8 | 511.8 |
Gas turbine power (MW) | 511.8 | 511.8 |
Steam turbine power (MW) | 0 | 0 |
Electric consumption compression (MW) | 20.1 | 20.1 |
Net Power output to grid after compression (MW) | 491.7 | 491.7 |
Natural gas consumption (MW) | 1344 | 1344 |
Steam mass flow to the process (tonne/h) (20 bar and 350 °C) | 700 | 826 |
Additional steam mass flow generated in the PTC (tonne/h) | ||
Flue gas composition (% vol.) | ||
Ar | 0.87 | 0.87 |
N2 | 73.27 | 73.27 |
O2 | 11.16 | 11.16 |
CO2 | 4.37 | 4.37 |
H2O | 10.33 | 10.33 |
Flue gas flow rate (tonne/h) | 4000.7 | 4000.7 |
Post-combustion (MW) | 77.3 | 77.3 |
Steam for the capture plant (tonne/h) (Saturated at 3.5 bar) | 406.7 | 406.7 |
CHP efficiency + PCC + CO2 compression (%) | 72.86% | 80.18% |
Carbon intensity of the CHP (kg CO2/MW) without PCC | 220 | 220 |
CHP CO2 + PCC + CO2 compression emissions (kg CO2/MW) | 27.84 | 25.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaraz Calderón, A.M.; Jaramillo Salgado, O.A.; Velazquez Limón, N.; Robles Perez, M.; Aguilar, J.O.A.; González Díaz, M.O.; González Díaz, A. Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy. Processes 2023, 11, 155. https://doi.org/10.3390/pr11010155
Alcaraz Calderón AM, Jaramillo Salgado OA, Velazquez Limón N, Robles Perez M, Aguilar JOA, González Díaz MO, González Díaz A. Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy. Processes. 2023; 11(1):155. https://doi.org/10.3390/pr11010155
Chicago/Turabian StyleAlcaraz Calderón, Agustín Moisés, Oscar Alfredo Jaramillo Salgado, Nicolas Velazquez Limón, Miguel Robles Perez, Jorge Ovidio Aguilar Aguilar, Maria Ortencia González Díaz, and Abigail González Díaz. 2023. "Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy" Processes 11, no. 1: 155. https://doi.org/10.3390/pr11010155
APA StyleAlcaraz Calderón, A. M., Jaramillo Salgado, O. A., Velazquez Limón, N., Robles Perez, M., Aguilar, J. O. A., González Díaz, M. O., & González Díaz, A. (2023). Optimisation of an Integrated System: Combined Heat and Power Plant with CO2 Capture and Solar Thermal Energy. Processes, 11(1), 155. https://doi.org/10.3390/pr11010155