ABTS/TAC Methodology: Main Milestones and Recent Applications
Abstract
:1. Introduction
2. Different Strategies for the ABTS/TAC Method
3. ABTS/TAC Methods for Hydrophilic and Lipophilic Antioxidants
4. Adaptation of the ABTS Assay to Different Techniques
5. Recent Applications of the ABTS/TAC Assay
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deadman, N. Detection of faecal occult blood using ABTS as reagent. Clin. Chim. Acta 1973, 48, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Majkić, N.; Djordjević, S.; Berkeš, I. Eine kinetische methode zur bestimmung von “aeroben transhydrogenases”. Clin. Chim. Acta 1975, 65, 227–233. [Google Scholar] [CrossRef]
- Childs, R.E.; Bardsley, W.G. The steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145, 93–103. [Google Scholar] [CrossRef]
- Del Río, J.A.; Acosta, M.; Bravo, J.S.; Arnao, M.B.; Sabater, F. Control del catabolismo auxínico. Inactivación de peroxidasas. In Metabolismo y Modo de Acción de Fitohormonas; Universidad de León: León, Spain; Servicio de Publicaciones: León, Spain, 1988; pp. 10–14. ISBN 84-7719-120-4. [Google Scholar]
- Acosta, M.; Arnao, M.B.; del Río, J.A.; Casas, J.L.; Sánchez-Bravo, J.; García-Cánovas, F. Inactivation of Peroxidase: Its Role in Plant Senescence. In Plant Aging: Basic and Applied Approaches; Rodríguez, R., Tamés, R.S., Durzan, D.J., Eds.; NATO ASI Series; Springer US: Boston, MA, USA, 1990; pp. 417–421. ISBN 978-1-4684-5760-5. [Google Scholar]
- Arnao, M.; Acosta, M.; del Rio, J.A.; Garcia-Canovas, F. Inactivation of peroxidase by hydrogen peroxide and its protection by a reductant agent. Biochim. Biophys. Acta (BBA) Prot. Struct. Mol. Enz. 1990, 1038, 85–89. [Google Scholar] [CrossRef]
- Cano, A.; Arnao, M.B. ABTS/TEAC (2,2′-Azino-Bis-(3-Ethylbenzothiazoline-6-Sulfonic Acid)/Trolox®-Equivalent Antioxidant Capacity) Radical Scavenging Mixed-Mode Assay. In Measurement of Antioxidant Activity & Capacity; Apak, R., Capanoglu, E., Shahidi, F., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2018; pp. 117–139. ISBN 978-1-119-13538-8. [Google Scholar]
- Cano, A.; Acosta, M.; Arnao, M.B. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D. Comparative Reaction Rates of Various Antioxidants with ABTS Radical Cation. J. Agric. Food Chem. 2009, 57, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Apak, R. Current Issues in Antioxidant Measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2011, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnao, M.B.; Casas, J.L.; del Río, J.A.; Acosta, M.; García-Cánovas, F. An enzymatic colorimetric method for measuring naringin using 2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of peroxidase. Anal. Biochem. 1990, 185, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Fuster, M.D. Study of the Decarboxylative Route of Indole-3-Acetic Acid. Stability and Reactivity of Indole-3-Carbinol. Licentiate Thesis, Faculty of Biology, University of Murcia, Murcia, Spain, 1992. [Google Scholar]
- Arnao, M.B.; Sanchez-Bravo, J.; Acosta, M. Indole-3-carbinol as a scavenger of free radicals. Biochem. Mol. Biol. Int. 1996, 39, 1125–1134. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J.; García-Cánovas, F.; Acosta, M. Inhibition by L-ascorbic acid and other antioxidants of the 2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase. A new approach for determining total antioxidant status of foods. Anal. Biochem. 1996, 236, 255–261. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 1996, 384, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pellegrini, N.; Re, R.; Yang, M.; Rice-Evans, C. Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azino-bis-(3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 379–389. [Google Scholar]
- Arts, M.J.T.J.; Dallinga, J.S.; Voss, H.-P.; Haenen, G.R.M.M.; Bast, A. A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem. 2004, 88, 567–570. [Google Scholar] [CrossRef]
- Geletii, Y.V.; Balavoine, G.G.A.; Efimov, O.N.; Kulikova, V.S. The Determination of Total Concentration and Activity of Antioxidants in Foodstuffs. Russ. J. Bioorganic Chem. 2002, 28, 501–514. [Google Scholar] [CrossRef]
- Campos, A.M.; Lissi, E.A. Evaluation of the antioxidant capacity of herbal teas by a procedure based on the bleaching of ABTS radical cations. Bol. Soc. Chil. Quim. 1995, 40, 375–381. [Google Scholar]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.M.; Domínguez, C.; Guillén, D.A.; Barroso, C.G. Determination of antioxidant power of red and white wines by a new electrochemical method and tis correlation with polyphenolic content. J. Agric. Food Chem. 2002, 50, 3112–3115. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.M.; Guillén, D.A.; Barroso, C.G. Development of an electrochemical method for the determination of antioxidant activity. Application to grape-derived products. Eur. Food Res. Technol. 2003, 216, 445–448. [Google Scholar] [CrossRef]
- Liang, Y.; Li, R.; Sun, H.; Dan, J.; Su, Z.; Kang, Y.; Zhang, Q.; Shi, S.; Wang, J.; Zhang, W. Functionalized natural melanin nanoparticle mimics natural peroxidase for total antioxidant capacity determination. Sens. Actuators B Chem. 2022, 359, 131541. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Li, X.; Liu, R.; Sang, Y.; Wang, X.; Wang, S. Nanozyme-enabled sensing strategies for determining the total antioxidant capacity of food samples. Food Chem. 2022, 384, 132412. [Google Scholar] [CrossRef]
- Laight, D.W.; Gunnarsson, P.; Kaw, A.V.; Änggård, E.E.; Carrier, M.J. Physiological microassay of plasma total antioxidant status in a model of endothelial dysfunction in the rat following experimental oxidant stress in vivo. Environ. Toxicol. Pharmacol. 1999, 7, 27–31. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Koleva, I.I.; Niederländer, H.A.G.; van Beek, T.A. Application of ABTS radical cation for selective on-line detection of radical scavengers in HPLC eluates. Anal. Chem. 2001, 73, 3373–3381. [Google Scholar] [CrossRef]
- Pannala, A.S.; Chan, T.S.; O’Brien, P.J.; Rice-Evans, C.A. Flavonoid B-Ring Chemistry and Antioxidant Activity: Fast Reaction Kinetics. Biochem. Biophys. Res. Commun. 2001, 282, 1161–1168. [Google Scholar] [CrossRef]
- Pellegrini, N.; Del Rio, D.; Colombi, B.; Bianchi, M.; Brighenti, F. Application of the 2,2‘-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) Radical Cation Assay to a Flow Injection System for the Evaluation of Antioxidant Activity of Some Pure Compounds and Beverages. J. Agric. Food Chem. 2002, 51, 260–264. [Google Scholar] [CrossRef]
- Puangbanlang, C.; Sirivibulkovit, K.; Nacapricha, D.; Sameenoi, Y. A paper-based device for simultaneous determination of antioxidant activity and total phenolic content in food samples. Talanta 2019, 198, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Cano, A.; Acosta, M. Methods to Measure the Antioxidant Activity in Plant Material. A Comparative Discussion. Free. Radic. Res. 1999, 31, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A.A.L.T. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Tian, X.; Schaich, K.M. Effects of Molecular Structure on Kinetics and Dynamics of the Trolox Equivalent Antioxidant Capacity Assay with ABTS+•. J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: Fast- and slow-reacting antioxidant behavior. Chem. Pap. 2018, 72, 1917–1925. [Google Scholar] [CrossRef]
- Cano, A.; Arnao, M.B. Hydrophilic and Lipophilic Antioxidant Activity in Different Leaves of Three Lettuce Varieties. Int. J. Food Prop. 2005, 8, 521–528. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Alcolea, J.F.; Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activities of grapes. Food/Nahrung 2002, 46, 353–356. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Cano, A.; Arnao, M.B. Actividad Antioxidante Hidrofílica y Lipofílica y Contenido En Vitamina C De Zumos De Naranja Comerciales: Relación Con Sus Características Organolépticas Lipophilic and Hydrophilic Antioxidant Activity and Vitamin C Content of Commercial Orange Juices: Correlation with Organoleptic Parameters Actividade Antioxidante Hidrofílica E Lipofílica E Contido En Vitamina C De Zumos De Laranxa Comerciais: Relación Coas Características Organolépticas. Cienc. Tecnol. Aliment. 2004, 4, 185–189. [Google Scholar]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Hydrophilic and Lipophilic Antioxidant Activity in Spinach Leaves (Spinacia oleracea L.); UMH: Orihuela, Spain, 2003; Volume 1, pp. 233–236. [Google Scholar]
- Cano, A.; Artés, F.; Arnao, M.B.; Sánchez-Bravo, J.; Acosta, M. Inhibition of Etiolated Lupin Hypocotyl Growth and Rooting by Peroxides, Ascorbate and Glutathione. J. Plant Physiol. 1996, 147, 721–728. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Changes in hydrophilic antioxidant activity in Avena sativa and Triticum aestivum leaves of different age during de-etiolation and high-light treatment. J. Plant Res. 2006, 119, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.Á.; Castillo, J.; Zamora, S. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chem. 2014, 160, 134–140. [Google Scholar] [CrossRef]
- El Omari, B.; Fleck, I.; Aranda, X.; Abadía, A.; Cano, A.; Arnao, M.B. Total antioxidant activity in Quercus ilex resprouts after fire. Plant Physiol. Biochem. 2003, 41, 41–47. [Google Scholar] [CrossRef] [Green Version]
- El Mihyaoui, A.; Castillo, M.E.C.; Cano, A.; Hernández-Ruiz, J.; Lamarti, A.; Arnao, M.B. Comparative study of wild chamomile plants from the north-west of Morocco: Bioactive components and total antioxidant activity. J. Med. Plants Res. 2021, 5, 431–441. [Google Scholar]
- Alcolea, J.F.; Cano, A.; Acosta, M.; Arnao, M.B. Antioxidant Qualities of the Fruit and the Wine of the Variety of a Cabernet-Sauvignon; Instituto Canario de Investigaciones Agrarias: Tenerife, Spain, 2000; pp. 229–232. [Google Scholar]
- Alcolea, J.; Cano, A.; Acosta, M.; Arnao, M.B. Determination of the hydrophilic and lipophilic antioxidant activity of white- and red wines during the wine-making process. Ital. J. Food Sci. 2003, 15, 207–214. [Google Scholar]
- Plaza, F.; Arnao, M.B.; Zamora, S.; Madrid, J.; Rol de Lama, M. Validación de un microensayo con ABTS+ para cuantificar la contribución de la melatonina al estatus antioxidante total del plasma de rata. Nutr. Hosp. 2001, 16, 202. [Google Scholar]
- Espinosa, C.; López-Jiménez, J.A.; Pérez-Llamas, F.; Guardiola, F.A.; Esteban, M.A.; Arnao, M.B.; Zamora, S. Long-term intake of white tea prevents oxidative damage caused by adriamycin in kidney of rats. J. Sci. Food Agric. 2015, 96, 3079–3087. [Google Scholar] [CrossRef] [Green Version]
- Gázquez, A.; Rodríguez, F.; Sánchez-Campillo, M.; Martínez-Gascón, L.E.; Arnao, M.B.; Saura-Garre, P.; Albaladejo-Otón, M.D.; Larqué, E. Adiponectin agonist treatment in diabetic pregnant rats. J. Endocrinol. 2021, 251, 1–13. [Google Scholar] [CrossRef]
- Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Arnao, M.B.; Cerón, J.J. Validation of three automated assays for total antioxidant capacity determination in canine serum samples. J. Veter. Diagn. Investig. 2016, 28, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Gázquez, A.; Sánchez-Campillo, M.; Rodriguez, F.; Arnao, M.B.; Larqué, E. Effect of Adiponectin Agonist Administration during Pregnancy on Oxidative and Inflammatory Status in the Adult Offspring of Diabetic Rats; Karger: Basel, Switzerland, 2020; Volume 76, p. 69. [Google Scholar]
- Espinosa, C.; López-Jiménez, J.A.; Cabrera, L.; Larqué, E.; Almajano, M.P.; Arnao, M.B.; Zamora, S.; Pérez-Llamas, F. Protective effect of white tea extract against acute oxidative injury caused by adriamycin in different tissues. Food Chem. 2012, 134, 1780–1785. [Google Scholar] [CrossRef]
- Hernández, M.; Cano, A.; Arnao, M.B.; Lucas, X.; Vázquez, J.; Martinez, E.; Roca, J. Antioxidant Capacity of Boar Seminal Plasma. Reprod. Fertil. Dev. 2005, 17, 283. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, L.M.; Barreiros, L.; Reis, S.; Segundo, M.A. Kinetic matching approach applied to ABTS assay for high-throughput determination of total antioxidant capacity of food products. J. Food Compos. Anal. 2014, 33, 187–194. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Campos, A.M.; Lissi, E.A. Total antioxidant potential of Chilean wines. Nutr. Res. 1996, 16, 385–389. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M.M. Total antioxidant activity in plant material and its interest in food technology. Recent Research Development Series. Agric. Food Chem. 1998, 2, 893–905. [Google Scholar]
- Miller, N.J.; Rice-Evans, C.A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem. 1997, 60, 331–337. [Google Scholar] [CrossRef]
- Queirós, R.B.; Tafulo, P.A.R.; Sales, M.G.F. Assessing and Comparing the Total Antioxidant Capacity of Commercial Beverages: Application to Beers, Wines, Waters and Soft Drinks Using TRAP, TEAC and FRAP Methods. Comb. Chem. High Throughput Screen. 2013, 16, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y.; Hitomi, Y.; Nakamura, H.; Ogino, K. Efficient Assay for Total Antioxidant Capacity in Human Plasma Using a 96-Well Microplate. J. Clin. Biochem. Nutr. 2009, 44, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, A.; Alcaraz, O.; Acosta, M.; Arnao, M.B. On-line antioxidant activity determination: Comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+ assay. Redox Rep. 2002, 7, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Acosta, M.; Cano, A. Antioxidant Activity: An Adaptation for Measurement by HPLC. In Encyclopedia of Chromatography; CRC Press: New York, NY, USA, 2005; pp. 105–110. [Google Scholar] [CrossRef]
- Zayed, A.; Farag, M.A. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT 2020, 132, 109883. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Prenzler, P.D.; Ryan, D.; Robards, K. (Eds.) Handbook of Antioxidant Methodology: Approaches to activity Determination; Food Chemistry, Function and Analysis No28; Royal Society of Chemistry: Cambridge, UK, 2021; ISBN 978-1-83916-155-1. [Google Scholar]
- Mota, J.C.; Almeida, P.P.; Freitas, M.Q.; Stockler-Pinto, M.B.; Guimarães, J.T. Far from being a simple question: The complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem. 2023, 402, 134351. [Google Scholar] [CrossRef]
Year | Milestone | Ref. |
---|---|---|
1990 | Horseradish peroxidase (HRP)/H2O2 generation method. First use of for determining antioxidant activity of the flavonoid naringin. End-point strategy. | [17] |
1992 | HRP/H2O2 generation method. used to estimate antioxidant activity of indole-3-carbinol. End-point strategy | [18,19] |
1993 | Myoglobin/H2O2 generation method. Kinetic strategy: reaction inhibition at fixed time. | [16] |
1996 | HRP/H2O2 generation method. Kinetic strategy: lag time. | [20] |
1996 | ABTS methods for carotenoid determination. MnO2 oxidation method. End-point strategy. | [21] |
1999 | Microassay using microplate reader. HRP/H2O2 generation method. Kinetic strategy: reaction inhibition at fixed time. | [32] |
2000 | Direct generation of in lipophilic media. HRP/H2O2 generation method. End-point strategy. Adaptation of lipophilic to a microplate reader. | [8] |
2001 | Total antioxidant activity (TAA) as a combination of hydrophilic antioxidant activity (HAA) and lipophilic antioxidant activity (LAA) TAA = HAA + LAA. Use of in both hydro- and lipophilic media. | [33] |
2001 | Adaptation of to HPLC technique. | [34] |
2001 | Adaptation of to stopped-flow technique. | [35] |
2002 | Electrochemical generation of . | [28] |
2003 | Adaptation of to flow injection technique. | [36] |
2004 | generation at low pH with H2O2. | [27] |
2019 | Paper-based device for assay. | [37] |
2022 | Smartphone-based assay, nanozyme use. | [30,31] |
Sample | Type | TAC a | Ref. |
---|---|---|---|
Coffee | Beverage | 47.16 | [36,62] |
Grape, black | Fruit | 35.93 | [36,44,63] |
Blackberry | Fruit | 20.24 | [36] |
Red wine | Beverage | 18.85 | [36,54,62,64] |
Raspberry | Fruit | 16.79 | [36] |
Artichoke | Vegetable | 15.03 | [36,50] |
Black olive | Fruit | 14.73 | [36] |
Redcurrant | Fruit | 14.05 | [36] |
Blueberry | Fruit | 13.09 | [36] |
Strawberry | Fruit | 11.05 | [36,63] |
Pork | Meat | 3.50 | [65] |
Grapefruit | Fruit | 3.43 | [36,45,63] |
Radish | Vegetable | 3.22 | [36] |
Orange juice | Beverage | 2.90 | [36,66,67] |
Beef | Meat | 2.90 | [65] |
Zucchini | Vegetable | 2.86 | [36] |
Grapefruit juice | Beverage | 2.75 | [36,66,67] |
Bean kidney | Vegetable | 2.70 | [63] |
Lemon | Fruit | 2.68 | [45] |
Chicken | Meat | 2.56 | [65] |
Banana | Fruit | 0.64 | [36] |
Flavored water | Beverage | 0.50 | [68] |
Celery | Vegetable | 0.49 | [36] |
Carrot | Vegetable | 0.44 | [36] |
Cucumber | Vegetable | 0.43 | [36] |
Fennel | Vegetable | 0.43 | [36] |
Iceberg lettuce | Vegetable | 0.32 | [42] |
Endive | Vegetable | 0.30 | [36] |
Baby head lettuce | Vegetable | 0.24 | [42] |
Soft drink | Beverage | 0.07 | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes 2023, 11, 185. https://doi.org/10.3390/pr11010185
Cano A, Maestre AB, Hernández-Ruiz J, Arnao MB. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes. 2023; 11(1):185. https://doi.org/10.3390/pr11010185
Chicago/Turabian StyleCano, Antonio, Ana B. Maestre, Josefa Hernández-Ruiz, and Marino B. Arnao. 2023. "ABTS/TAC Methodology: Main Milestones and Recent Applications" Processes 11, no. 1: 185. https://doi.org/10.3390/pr11010185
APA StyleCano, A., Maestre, A. B., Hernández-Ruiz, J., & Arnao, M. B. (2023). ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes, 11(1), 185. https://doi.org/10.3390/pr11010185