Research on the Thermal Stability in High-Temperature Air of Cr-Fe Composite Oxide Solar Coatings by Chemical-Colored of Stainless Steel
Abstract
:1. Introduction
2. Experiment and Test
2.1. Sample Preparation
2.1.1. Pretreatment
2.1.2. Preparation of the Absorber Coatings
2.2. Durability Experiment in High-Temperature Air
2.3. Experimental Results Characterization
3. Experimental Results and Discussions
3.1. Consistence of Optical Performance of the Fabricated Coatings
3.2. Optical Performance of the Coatings through High-Temperature Aging
3.3. Performance Decay Coefficient of the Coatings through High-Temperature Aging
3.4. Morphology Analysis of the Coatings through High-Temperature Aging
3.5. Composition and Phase Components of the Coatings through High-Temperature Aging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.T.; Huda, N.; Abdullah, A.B.; Saidur, R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sustain. Energy Rev. 2018, 91, 987–1018. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renew. Sustain. Energy Rev. 2011, 15, 1777–1790. [Google Scholar] [CrossRef]
- Schnitzer, H.; Brunner, C.; Gwehenberger, G. Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes. J. Clean. Prod. 2007, 15, 1271–1286. [Google Scholar] [CrossRef]
- Wu, S.; Cheng, C.-H.; Hsiao, Y.-J.; Juang, R.-C.; Wen, W.-F. Fe2O3 films on stainless steel for solar absorbers. Renew. Sustain. Energy Rev. 2016, 58, 574–580. [Google Scholar] [CrossRef]
- Joshi, R.; Chhibber, R. High temperature wettability studies for development of unmatched glass-metal joints in solar receiver tube. Renew. Energy 2018, 119, 282–289. [Google Scholar] [CrossRef]
- Carling-Plaza, A.; Muhammad, A.K.; Maxime, B.; Audrey, S.-G.; Laurent, T.; Laurent, D. Demonstration of long term stability in air at high temperature for TiAlN solar selective absorber coatings. AIP Conf. Proc. 2019, 2126, 030026. [Google Scholar]
- Sibin, K.P.; John, S.; Barshilia, H.C. Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications. Sol. Energy Mater. Sol. Cells 2015, 133, 1–7. [Google Scholar] [CrossRef]
- Lee, D.B.; Nguyen, T.D.; Kim, S.K. Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C. Surf. Coat. Technol. 2009, 203, 1199–1204. [Google Scholar] [CrossRef]
- Lu, B.; Peng, Y.; Ren, T.; Yao, H.; Wang, Y.; Liu, H.; Zhu, Y. Preparation and thermal stability of a novel mid-temperature air-stable solar selective coating. Appl. Surf. Sci. 2019, 487, 840–847. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, S.; Yang, J.; Li, Y.; Yang, X.; Deng, J. Study on the solar selectivity and air thermal stability of cobalt–nickel–iron oxide coating fabricated by spraying method. Opt. Mater. 2021, 111, 110573. [Google Scholar] [CrossRef]
- Niranjan, K.; Soum-Glaude, A.; Carling-Plaza, A.; Bysakh, S.; John, S.; Barshilia, H.C. Extremely high temperature stable nanometric scale multilayer spectrally selective absorber coating: Emissivity measurements at elevated temperatures and a comprehensive study on ageing mechanism. Sol. Energy Mater. Sol. Cells 2021, 221, 110905. [Google Scholar] [CrossRef]
- Elton, D.N.; Arunachala, U.C. Parabolic Trough Solar Collector for Medium Temperature Applications: An Experimental Analysis of the Efficiency and Length Optimization by Using Inserts. J. Sol. Energy Eng. 2018, 140, 061012. [Google Scholar] [CrossRef]
- Venkatalaxmi, A.; Padmavathi, B.S.; Amaranath, T. A general solution of unsteady Stokes equations. Fluid Dyn. Res. 2004, 35, 229–236. [Google Scholar] [CrossRef]
- Randich, E.; Allred, D.D. Chemically vapor-deposited ZrB2 as a selective solar absorber. Thin Solid Film. 1981, 83, 393–398. [Google Scholar] [CrossRef]
- Liu, H.D.; Yang, B.; Mao, M.R.; Liu, Y.; Chen, Y.M.; Cai, Y.; Fu, D.J.; Ren, F.; Wan, Q.; Hu, X.J. Enhanced thermal stability of solar selective absorber based on nano-multilayered TiAlON films deposited by cathodic arc evaporation. Appl. Surf. Sci. 2020, 501, 144025. [Google Scholar] [CrossRef]
- Anastasiou, E.; Lorentz, K.O.; Stein, G.J.; Mitchell, P.D. Prehistoric schistosomiasis parasite found in the Middle East. Lancet Infect. Dis. 2014, 14, 553–554. [Google Scholar] [CrossRef]
- AL-Rjoub, A.; Rebouta, L.; Costa, P.; Vieira, L.G. Multi-layer solar selective absorber coatings based on W/WSiAlNx /WSiAlOyNx/SiAlOx for high temperature applications. Sol. Energy Mater. Sol. Cells 2018, 186, 300–308. [Google Scholar] [CrossRef]
- Torres, J.F.; Tsuda, K.; Murakami, Y.; Guo, Y.; Hosseini, S.; Asselineau, C.-A.; Taheri, M.; Drewes, K.; Tricoli, A.; Lipiński, W.; et al. Highly efficient and durable solar thermal energy harvesting via scalable hierarchical coatings inspired by stony corals. Energy Environ. Sci. 2022, 15, 1893–1906. [Google Scholar] [CrossRef]
- Wang, H.; Alshehri, H.; Su, H.; Wang, L. Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air. Sol. Energy Mater. Sol. Cells 2018, 174, 445–452. [Google Scholar] [CrossRef]
- Prasad, M.S.; Mallikarjun, B.; Ramakrishna, M.; Joarder, J.; Sobha, B.; Sakthivel, S. Zirconia nanoparticles embedded spinel selective absorber coating for high performance in open atmospheric condition. Sol. Energy Mater. Sol. Cells 2018, 174, 423–432. [Google Scholar] [CrossRef]
- Atchuta, S.R.; Sakthivel, S.; Barshilia, H.C. Transition metal based CuxNiyCoz-x-yO4 spinel composite solar selective absorber coatings for concentrated solar thermal applications. Sol. Energy Mater. Sol. Cells 2019, 189, 226–232. [Google Scholar] [CrossRef]
- Dutra, K.H.; Freire, F.N.A.; Pinho, D.C.; Araújo, F.A.A. Characterization of a Selective Surface Based on Chromium, Iron and Aluminum Oxides for Application in Solar-Thermal Collectors. Mater. Res. 2022, 25, e20210489. [Google Scholar] [CrossRef]
- Corredor, J.; Bergmann, C.P.; Pereira, M.; Dick, L.F.P. Coloring ferritic stainless steel by an electrochemical–photochemical process under visible light illumination. Surf. Coat. Technol. 2014, 245, 125–132. [Google Scholar] [CrossRef]
- Yangyang, Z.; Likui, N.; Chaohui, D. Effects of Ti-Nb Microalloying on the Microstructure and Mechanical Properties of Ultra-pure 30% Cr Super Ferritic Stainless Steel. Rare Met. Mater. Eng. 2022, 51, 1845–1856. [Google Scholar]
- Fan, C.; Shi, J.; Sharafeev, A.; Lemmens, P.; Dilger, K. Optical spectroscopic and electrochemical characterization of oxide films on a ferritic stainless steel. Mater. Corros. 2020, 71, 440–450. [Google Scholar] [CrossRef] [Green Version]
Specimens | Cr | Mo | Ti | Nb | C | N | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|
TTS445J1 | 30 | 2 | 0.05 | 0.05 | 0.0021 | 0.0008 | 0.0021 | 0.006 | Bal. |
No. | Solar Absorptance (AM1.5) | Thermal Emittance (90 °C) | Spectral Selectivity (α/ε) |
---|---|---|---|
1 | 0.9343 | 0.1331 | 7.02 |
2 | 0.9312 | 0.1309 | 7.11 |
3 | 0.9334 | 0.1206 | 7.74 |
4 | 0.9328 | 0.1371 | 6.80 |
5 | 0.9352 | 0.1415 | 6.61 |
Average value | 0.9334 | 0.1326 | 7.04 |
Standard deviation σ | 0.15% | 0.79% | - |
Optical Properties of the Coatings | t1 = 200 h | t2 = 400 h | t3 = 600 h | t4 = 800 h | t5 = 1000 h | |
---|---|---|---|---|---|---|
α | 0.9343 | 0.9283 | 0.9213 | 0.9153 | 0.9062 | 0.8891 |
ε (90 °C) | 0.1331 | 0.1410 | 0.1415 | 0.1553 | 0.1684 | 0.1951 |
PC | 0.0100 | 0.0172 | 0.0301 | 0.0458 | 0.0762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; He, Y.; Song, Z.; Zhang, X.; Xue, Y.; Feng, L. Research on the Thermal Stability in High-Temperature Air of Cr-Fe Composite Oxide Solar Coatings by Chemical-Colored of Stainless Steel. Processes 2023, 11, 213. https://doi.org/10.3390/pr11010213
Yu H, He Y, Song Z, Zhang X, Xue Y, Feng L. Research on the Thermal Stability in High-Temperature Air of Cr-Fe Composite Oxide Solar Coatings by Chemical-Colored of Stainless Steel. Processes. 2023; 11(1):213. https://doi.org/10.3390/pr11010213
Chicago/Turabian StyleYu, Hongwen, Yi He, Ziye Song, Xinyu Zhang, Yibing Xue, and Lei Feng. 2023. "Research on the Thermal Stability in High-Temperature Air of Cr-Fe Composite Oxide Solar Coatings by Chemical-Colored of Stainless Steel" Processes 11, no. 1: 213. https://doi.org/10.3390/pr11010213
APA StyleYu, H., He, Y., Song, Z., Zhang, X., Xue, Y., & Feng, L. (2023). Research on the Thermal Stability in High-Temperature Air of Cr-Fe Composite Oxide Solar Coatings by Chemical-Colored of Stainless Steel. Processes, 11(1), 213. https://doi.org/10.3390/pr11010213