Control of Precalciner Temperature in the Cement Industry: A Novel Method of Hammerstein Model Predictive Control with ISSA
Abstract
:1. Introduction
- (1)
- To solve the time-delay and nonlinear problems of the precalciner system, the CNN-GRU network architecture is proposed to extract the operating states of the precalciner and an attention mechanism is employed to find and emphasize the important historical information in the extracted states.
- (2)
- To address the problem of poor dynamic properties of conventional neural networks, deep learning and dynamic equations are combined in the form of a Hammerstein model to achieve dynamic prediction of the precalciner temperature.
- (3)
- A model predictive control framework based on a deep learning Hammerstein model is proposed for precalciner systems whose volatility makes it difficult to control the temperature accurately.
- (4)
- To solve the problem of solving deep learning sessions with constraints in the Hammerstein model, an improved sparrow search algorithm is proposed.
2. Analysis of Cement Pre-Calcination Systems
2.1. Cement Pre-Calcination Process
2.2. Internal Structure and Thermodynamic Analysis of the Precalciner
3. Prediction of Precalciner Temperature Based on the CGA-ARX Model
3.1. Basic Structure of Hammerstein Model
3.2. CGA-ARX Model
4. Control of Precalciner Temperature Based on CGA-ARX Model
4.1. Prediction and Control of Linear Part
4.2. Optimal Solution Strategy for Nonlinear Complex Problem
4.2.1. Principle of Sparrow Search Algorithm
4.2.2. Principle of Improved Sparrow Search Algorithm
4.2.3. ISSA Specific Process
4.3. Specific Control Process
5. Experimental Results and Analysis
5.1. CGA-ARX Performance
5.2. ISSA Performance
5.3. CGA-ARX-HMPC Experiment Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adams, D.; Oh, D.H.; Kim, D.W.; Lee, C.H.; Oh, M. Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine. J. Clean. Prod. 2020, 270, 122310. [Google Scholar] [CrossRef]
- Ahmad, J.; Martinez-Garcia, R.; de Prado-Gil, J.; Irshad, K.; El-Shorbagy, M.A.; Fediuk, R.; Vatin, N.I. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate. Materials 2022, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Imam, M.K.; Irshad, K.; Ali, H.M.; Hasan, M.A.; Islam, S. Comparative Overview of the Performance of Cementitious and Non-Cementitious Nanomaterials in Mortar at Normal and Elevated Temperatures. Nanomaterials 2021, 11, 911. [Google Scholar] [CrossRef] [PubMed]
- De Lena, E.; Arias, B.; Romano, M.C.; Abanades, J.C. Integrated Calcium Looping System with Circulating Fluidized Bed Reactors for Low CO2 Emission Cement Plants. Int. J. Greenh. Gas Control. 2022, 114, 103555. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, X.; Zhang, Z.; Li, S. Modeling De-NOx by Injection Ammonia in High Temperature Zone of Cement Precalciner. J. Therm. Sci. 2020, 30, 636–643. [Google Scholar] [CrossRef]
- Qiao, J.; Chai, T. Intelligence-Based Temperature Switching Control for Cement Raw Meal Calcination Process. IEEE Trans. Control. Syst. Technol. 2015, 23, 644–661. [Google Scholar] [CrossRef]
- Kurdowski, W.; Jelito, E. Rotary kilns in current cement industry. Cem. Wapno Beton 2020, 25, 127–136. [Google Scholar] [CrossRef]
- Fellaou, S.; Harnoune, A.; Seghra, M.A.; Bounahmidi, T. Statistical modeling and optimization of the combustion efficiency in cement kiln precalciner. Energy 2018, 155, 351–359. [Google Scholar] [CrossRef]
- Santos, T.A.; Cilla, M.S.; Ribeiro, E.D.V. Use of asbestos cement tile waste (ACW) as mineralizer in the production of Portland cement with low CO2 emission and lower energy consumption. J. Clean. Prod. 2022, 335, 130061. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, S.; Liu, R.; Duan, E. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization. Chemosphere 2020, 258, 127420. [Google Scholar] [CrossRef]
- Soni, A.; Das, P.K.; Yusuf, M.; Pasha, A.A.; Irshad, K.; Bourchak, M. Synergy of RHA and silica sand on physico-mechanical and tribological properties of waste plastic-reinforced thermoplastic composites as floor tiles. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Shan, Y. Research on a forecasted load-and time delay-based model predictive control (MPC) district energy system model. Energy Build. 2021, 231, 110631. [Google Scholar] [CrossRef]
- Scattolini, R. Architectures for distributed and hierarchical Model Predictive Control—A review. J. Process. Control 2009, 19, 723–731. [Google Scholar] [CrossRef]
- Mayne, D.Q. Model predictive control: Recent developments and future promise. Automatica 2014, 50, 2967–2986. [Google Scholar] [CrossRef]
- Cheng, C.; Peng, C.; Zhang, T. Fuzzy K-Means Cluster Based Generalized Predictive Control of Ultra Supercritical Power Plant. IEEE Trans. Ind. Informatics 2021, 17, 4575–4583. [Google Scholar] [CrossRef]
- Shi, K.; Wang, B.; Chen, H. Fuzzy generalised predictive control for a fractional-order nonlinear hydro-turbine regulating system. IET Renew. Power Gener. 2018, 12, 1708–1713. [Google Scholar] [CrossRef]
- Patil, B.V.; Bhartiya, S.; Nataraj, P.S.V.; Nandola, N.N. Multiple-model based predictive control of nonlinear hybrid systems based on global optimization using the Bernstein polynomial approach. J. Process. Control. 2012, 22, 423–435. [Google Scholar] [CrossRef]
- Cordero, R.; Estrabis, T.; Gentil, G.; Batista, E.A.; Andrea, C.Q. Development of a Generalized Predictive Control System for Polynomial Reference Tracking. IEEE Trans. Circuits Syst. II: Express Briefs 2021, 68, 2875–2879. [Google Scholar] [CrossRef]
- Tian Zhongda, L.S.; Wang Yanhong, W.X. SVM predictive control for calcination zone temperature in lime rotary kiln with improved PSO algorithm. Trans. Inst. Meas. Control 2018, 40, 3134–3146. [Google Scholar] [CrossRef]
- Diaz, P.; Salas, J.C.; Cipriano, A.; Núñez, F. Random forest model predictive control for paste thickening. Miner. Eng. 2021, 163, 106760. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, L.; Du, W. Hybrid model of a cement rotary kiln using an improved attention-based recurrent neural network. ISA Trans. 2022, 129, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, H.; Liu, C. MILM hybrid identification method of fractional order neural-fuzzy Hammerstein model. Nonlinear Dyn. 2022, 108, 2337–2351. [Google Scholar] [CrossRef]
- Mehta, U.; Majhi, S. Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains. ISA Trans. 2010, 49, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Wang, J.; Su, B. Output feedback model predictive control for Hammerstein model with bounded disturbance. IET Control Theory Appl. 2022, 16, 1032–1041. [Google Scholar] [CrossRef]
- Cao, Q.; Tan, Y. Online Optimization Method for Nonlinear Model-Predictive Control in Angular Tracking for MEMS Micromirror. Micromachines 2022, 13, 1867. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Li, G. Nonlinear modeling and predictive functional control of Hammerstein system with application to the turntable servo system. Mech. Syst. Signal Process. 2016, 72–73, 383–394. [Google Scholar] [CrossRef]
- Kayedpour, N.; Samani, A.E.; De Kooning, J.D.; Vandevelde, L.; Crevecoeur, G. Model Predictive Control with a Cascaded Hammerstein Neural Network of a Wind Turbine Providing Frequency Containment Reserve. IEEE Trans. Energy Convers. 2022, 37, 198–209. [Google Scholar] [CrossRef]
- Oleynik, A.; Ponosov, A.; Kostrykin, V.; Sobolev, A.V. Spatially localized solutions of the Hammerstein equation with sigmoid type of nonlinearity. J. Differ. Equat. 2016, 261, 5844–5874. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, R.; Liu, H.; Xie, X.; Yan, L. A novel method for solar panel temperature determination based on a wavelet neural network and Hammerstein-Wiener model. Adv. Space Res. 2020, 66, 2035–2046. [Google Scholar] [CrossRef]
- Liutkevičius, R. Fuzzy Hammerstein Model of Nonlinear Plant. Nonlinear Anal. Model. Control. 2008, 2, 201–212. [Google Scholar] [CrossRef]
- Schulze, J.C.; Doncevic, D.T.; Mitsos, A. Identification of MIMO Wiener-type Koopman models for data-driven model reduction using deep learning. Comput. Chem. Eng. 2022, 161, 107781. [Google Scholar] [CrossRef]
- Wang, B.; Shahzad, M.; Zhu, X.; Rehman, K.U.; Uddin, S. A Non-linear Model Predictive Control Based on Grey-Wolf Optimization Using Least-Square Support Vector Machine for Product Concentration Control in L-Lysine Fermentation. Sensors 2020, 20, 3335. [Google Scholar] [CrossRef]
- Xu, Q.; Hao, X.; Shi, X.; Zhang, Z.; Sun, Q.; Di, Y. Control of denitration system in cement calcination process: A Novel method of Deep Neural Network Model Predictive Control. J. Clean. Prod. 2022, 332, 129970. [Google Scholar] [CrossRef]
- Alfarizi, M.G.; Stanko, M.; Bikmukhametov, T. Well control optimization in waterflooding using genetic algorithm coupled with Artificial Neural Networks. Upstream Oil Gas Technol. 2022, 9, 100071. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, B.; Zhang, Y.; Yang, L.; Hao, X. Online cement clinker quality monitoring: A soft sensor model based on multivariate time series analysis and CNN. ISA Trans. 2021, 117, 180–195. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, T.; Li, C. Construction of perfect dispatch learning model based on adaptive GRU. Energy Rep. 2022, 8, 668–677. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, J.; Wu, O.; Yu, T.; Yao, R. Method and Dataset Entity Mining in Scientific Literature: A CNN + Bi-LSTM Model with Self-attention. Artif. Intell. 2020, 235, 107621. [Google Scholar] [CrossRef]
- Dridi, N.; Hadzagic, M. Akaike and Bayesian Information Criteria for Hidden Markov Models. IEEE Signal Process. Lett. 2019, 26, 302–306. [Google Scholar] [CrossRef]
- Li, S.; Shi, Y.; Hu, L.; Sun, Z. A generalized model predictive control method for series elastic actuator driven exoskeleton robots. Comput. Electr. Eng. 2021, 94, 107328. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Hui, X.; Guangbin, C.; Shengxiu, Z.; Xiaogang, Y.; Mingzhe, H. Hypersonic reentry trajectory optimization by using improved sparrow search algorithm and control parametrization method. Adv. Space Res. 2022, 69, 2512–2524. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Guo, Q. Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [Google Scholar] [CrossRef]
- Ma, J.; Hao, Z.; Sun, W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems. Inf. Process. Manag. 2022, 59, 102854. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, H.; Zhang, C.; Hua, Y.; Zhang, W.; Chen, Q.; Gu, G.; Sui, X. Wavefront-shaping focusing based on a modified sparrow search algorithm. Optik 2021, 244, 167516. [Google Scholar] [CrossRef]
Manipulated Variable (MV) | Disturbance Variable (DV) | Feedforward Variable (FV) | Controlled Variable (CV) |
---|---|---|---|
Coal feed rate of precalciner | Raw meal feeding amount | O2 content of primary cylinder | precalciner temperature (y) |
CO content of primary cylinder | |||
High-temperature fan speed | Primary cylinder temperature | ||
Opening degree of feeding baffle | |||
EP fan speed |
1 | //ISSA initialization |
---|---|
2 | Set parameters of the ISSA: |
3 | Generating random sparrow population distributions by Equation (22) |
4 | Calculate the fitness for each sparrow in the population and record the global best fitness, the global worst fitness and the corresponding positions |
5 | //Main processes |
6 | While do |
7 | for |
8 | Update the finders’ positions by Equation (24) |
9 | end for |
10 | for |
11 | Update the scroungers’ positions by Equation (20) |
12 | end for |
13 | Update the number of reporters by Equation (23) |
14 | for |
15 | Update the reporters’ position by Equation (21) |
16 | end for |
17 | Mutate the sparrow population by Equation (26) |
18 | Get each sparrows’ new position |
19 | Calculate the global best fitness, the global worst fitness and the corresponding positions |
20 | |
21 | end while |
22 | //Output |
22 | Output the global best fitness and the corresponding positions |
1 | // Initialization of CGA-ARX-HMPC |
---|---|
2 | Set parameters of the CGA-ARX-HMPC: |
3 | //Main loop |
4 | for to ∞ do |
5 | Get present status of the system. |
6 | Soften the set point according to the current state. |
7 | Get variable in the calculation based on the current state by CGA model. |
8 | Get multi-step prediction using variables by Equation (12) |
9 | According to the objective function Equation (9), the optimal intermediate variable at the next time is obtained through the calculated by Equation (17) |
10 | According to Equation (18), the actual solved operating variable is calculated by using ISSA. |
11 | Compare the predicted value with the actual output value and calculate the error for using to correct the predicted value at the next time. |
12 | end for |
Model | MAE | RMSE | SMAPE | R2 |
---|---|---|---|---|
CGA-ARX | 0.726508 | 0.933491 | 0.084649 | 0.992694 |
CNN-GRU | 1.541640 | 1.989638 | 0.1780471 | 0.966811 |
SVM | 4.078943 | 4.578986 | 0.4759183 | 0.824213 |
lightGBM | 3.321726 | 4.006017 | 0.3885314 | 0.865453 |
ARX | 5.545393 | 7.768894 | 0.6455793 | 0.493981 |
SigmoidNet-ARX | 1.811976 | 2.261587 | 0.2111099 | 0.957118 |
Algorithm | Time/Year | Parameter Settings |
---|---|---|
ISSA | 2022 | ST = 0.5, PD = 20% |
SSA | 2020 | ST = 0.5, PD = 20%, SD = 10% |
WOA | 2016 | a = [2 0], a2 = [−2 −1], b = 1 |
SBO | 2017 | z = 0.02, r_mutate = 0.1, alpha = 0.94 |
CSA | 2016 | ap = 0.1 |
SCA | 2016 | a = 2, r4 = 0.5 |
WPS | 2007 | step = 0.5 |
PSO | 1995 | c1 = 0.5, c2 = 0.5 |
Multimodal Functions | Dimension | Upper and Lower Bounds | Optimal Solution |
---|---|---|---|
30 | [−5.12, 5.12] | 0 | |
30 | [−500, 500] | −12,569.49 | |
30 | [−600, 600] | 0 | |
30 | [−100, 100] | 0 |
Index | Test Function | ISSA | SSA | WOA | SBO | CSA | SCA | WPS | PSO |
---|---|---|---|---|---|---|---|---|---|
Best | F1 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.30E+01 | 1.75E+02 | 1.81E-02 | 8.40E-02 | 1.39E+02 |
F2 | −1.26E+04 | −9.02E+03 | −1.26E+04 | −4.47E+03 | −8.93E+03 | −4.73E+03 | −3.58E+03 | −7.87E+03 | |
F3 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 5.96E-02 | 2.28E+00 | 2.85E-01 | 5.02E+02 | 1.22E+02 | |
F4 | 0.00E+00 | 6.40E-208 | 4.00E-130 | 8.38E-06 | 6.61E+05 | 1.54E+02 | 3.03E+07 | 4.30E+07 | |
Mean | F1 | 0.00E+00 | 9.93E-07 | 0.00E+00 | 2.17E+01 | 2.36E+02 | 4.07E+01 | 1.21E+02 | 2.38E+02 |
F2 | −1.26E+04 | −9.02E+03 | −1.02E+04 | −2.96E+03 | −7.81E+03 | −3.82E+03 | −2.29E+03 | −6.90E+03 | |
F3 | 0.00E+00 | 6.80E-10 | 3.70E-18 | 1.58E-01 | 5.40E+00 | 9.69E-01 | 5.68E+02 | 2.92E+02 | |
F4 | 0.00E+00 | 6.13E-17 | 3.30E-108 | 1.03E-04 | 2.48E+06 | 3.91E+05 | 8.35E+08 | 2.34E+09 | |
Std. | F1 | 0.00E+00 | 3.99E-06 | 0.00E+00 | 6.62E+00 | 2.15E+01 | 5.21E+01 | 1.10E+02 | 4.49E+01 |
F2 | 2.57E+00 | 1.29E-02 | 1.76E+03 | 5.42E+02 | 6.81E+02 | 3.06E+02 | 5.15E+02 | 5.89E+02 | |
F3 | 0.00E+00 | 3.65E-09 | 2.03E-17 | 6.46E-02 | 2.49E+00 | 3.13E-01 | 3.63E+01 | 1.07E+02 | |
F4 | 0.00E+00 | 3.10E-16 | 1.74E-107 | 9.34E-05 | 1.45E+06 | 1.39E+06 | 7.42E+08 | 1.68E+09 |
ISSA | CSA | SSA | SBO | SCA | WPS | PSO | |
---|---|---|---|---|---|---|---|
MAX | 2.91996159 | 3.182715 | 7.548995 | 3.182715 | 4.602504 | 3.453404 | 3.134625515 |
MEAN | 0.745520552 | 0.880005 | 1.259097 | 0.822138 | 1.29503 | 0.801814 | 0.812415188 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Liu, P.; Guo, H.; Di, Y.; Xu, Q.; Hao, X. Control of Precalciner Temperature in the Cement Industry: A Novel Method of Hammerstein Model Predictive Control with ISSA. Processes 2023, 11, 214. https://doi.org/10.3390/pr11010214
Sun C, Liu P, Guo H, Di Y, Xu Q, Hao X. Control of Precalciner Temperature in the Cement Industry: A Novel Method of Hammerstein Model Predictive Control with ISSA. Processes. 2023; 11(1):214. https://doi.org/10.3390/pr11010214
Chicago/Turabian StyleSun, Chao, Pengfei Liu, Haoran Guo, Yinlu Di, Qingquan Xu, and Xiaochen Hao. 2023. "Control of Precalciner Temperature in the Cement Industry: A Novel Method of Hammerstein Model Predictive Control with ISSA" Processes 11, no. 1: 214. https://doi.org/10.3390/pr11010214
APA StyleSun, C., Liu, P., Guo, H., Di, Y., Xu, Q., & Hao, X. (2023). Control of Precalciner Temperature in the Cement Industry: A Novel Method of Hammerstein Model Predictive Control with ISSA. Processes, 11(1), 214. https://doi.org/10.3390/pr11010214