Optimal Scheduling of Combined Electric and Heating Considering the Control Process of CHP Unit and Electric Boiler
Abstract
:1. Introduction
2. CHP Uuit Optimal Control Process Modeling
2.1. Dynamic Relational Mechanism Modeling
2.2. Optimized Control Methods
3. CEHS Scheduling Model
4. Solution Strategy
4.1. Discrete Format
4.2. Optimal Solution
5. Case Study
5.1. CEHS Scheduling Results Analysis
5.1.1. Analysis of the Power Output of Each Unit
5.1.2. Comparative Analysis of Scheduling Solutions
5.2. Dynamic Process Analysis Considering Optimal Control of the CHP Unit
5.2.1. CHP Unit Electric Power Output Dynamic Process Analysis
5.2.2. CHP Unit Main Steam Pressure Dynamic Process Analysis
5.2.3. CHP Unit Heat Output Dynamic Process Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Static Paramete | Dynamic Parameter | Work Point | |||
---|---|---|---|---|---|
2.37 | 15 | 126.58 | |||
0.00035 | 120 | 66.895 | |||
0.269 | 3300 | 54.526 | |||
0.651 | 12 | 235 | |||
2.096 | 160 | 400 | |||
0.00039 | 2500 | 0.35 | |||
6.1538 | 70 | 16.67 |
Control system Parameter | Thermal System Parameter | ||
---|---|---|---|
−0.9 | |||
0.1 | |||
0.01 | |||
−1 | |||
0.01 | |||
10 |
Coefficient | Value | Coefficient | Value |
---|---|---|---|
(RMB/h) | 2740 | (RMB/MW2h) | 0.00254 |
(RMB/MW2h) | 0.00698 | (RMB/MW2h) | 0.000233 |
(RMB/MWh) | 112 | (RMB/MWh) | 38.4 |
Parameter | G1 | G2 | G3 | |
---|---|---|---|---|
Upper limit of power/MW | 20 | 30 | 50 | |
Lower limit of power/MW | 10 | 12 | 25 | |
Ramping rate/(MW/5 min) | 3 | 4.5 | 7.5 | |
Cost coefficient | (RMB/MW2h) | 0.0004 | 0.0009 | 0.0015 |
(RMB/MWh) | 100 | 150 | 225 | |
(RMB/h) | 200 | 500 | 167 |
Parameter | Value |
---|---|
Electrical power upper and lower limits/MW | [40, 10] |
Ramping rate/(MW/5 min) | 30 |
Electrical–heat conversion coefficient | 0.98 |
Maintenance costs/(MW/RMB) | 21 |
References
- Shipley, A.; Hampson, A.; Hedman, B.; Garland, P.; Bautista, P. DOE report: Combined heat and power: Effective energy solutions for a sustainable future. Cogener. Distrib. Gener. J. 2009, 24, 71–74. [Google Scholar] [CrossRef]
- Ge, S.; Xu, L.; Liu, H.; Fang, J. Low-carbon benefit analysis on DG penetration distribution system. J. Mod. Power Syst. Clean Energy 2015, 3, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kang, C.; O’Malley, M.; Xia, Q.; Bai, J.; Liu, C.; Sun, R.; Wang, W.; Li, H. Increasing the Flexibility of Combined Heat and Power for Wind Power Integration in China: Modeling and Implications. IEEE Trans. Power Syst. 2015, 30, 1848–1857. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, Y.; Gao, Y. Flexibility Improvement of CHP Unit for Wind Power Accommodation. J. Mod. Power Syst. Clean Energy 2022, 10, 731–742. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Zhang, S.; Gao, M.; Ma, H.; Li, G.; Gu, C. Economic dispatch of combined heat and power energy systems using electric boiler to accommodate wind power. IEEE Access 2020, 8, 41288–41297. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Wu, Q. Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition. Appl. Energy 2017, 206, 1508–1522. [Google Scholar] [CrossRef]
- Li, H.; Mu, Y.; Jia, H.; Yu, X.; Zhang, J.; Tang, Z. Optimal Scheduling of Multi-regional Integrated Power and Heating System Considering Quantified Thermal Storage. Proc. CSEE 2021, 41, 16–27. [Google Scholar]
- Zhang, Z.; Yang, X.; Li, Z.; Yuan, Z.; Xu, C.; Chen, S. Low-carbon economic scheduling of solar thermal storage considering heat storage transformation and optimal energy abandonment. Power Syst. Prot. Control 2022, 50, 33–43. [Google Scholar]
- Wang, W.; Jing, S.; Sun, Y.; Liu, J.; Niu, Y.; Zeng, D.; Cui, C. Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation. Energy 2019, 169, 988–999. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Gan, Z.; Niu, Y.; Zeng, D. Flexible control of combined heat and power units based on heat-power estimation and coordination. Int. J. Electr. Power Energy Syst. 2020, 123, 106261. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, D.; Tian, L.; Gao, M.; Wang, W.; Niu, Y.; Fang, F. Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems. Proc. CSEE 2015, 35, 5385–5394. [Google Scholar]
- Zhang, L.; Luo, Y.; Luo, H.; Miao, S.; Ye, J.; Zhou, G.P.; Sun, L. Scheduling of integrated heat and power system considering multiple time-scale flexibility of CHP unit based on heat characteristic of DHS. Proc. CSEE 2018, 38, 985–998. [Google Scholar]
- Baringo, L.; Conejo, A.J. Offering strategy of wind-power producer: A multi-stage risk-constrained approach. IEEE Trans. Power Syst. 2016, 31, 1420–1429. [Google Scholar] [CrossRef]
- Chen, H.; Yao, X.; Li, J.; Xu, G.; Yang, Y.; Liu, W.; Chen, H. Thermodynamic analysis of a novel combined heat and power system incorporating a CO2 heat pump cycle for enhancing flexibility. Appl. Therm. Eng. 2019, 161, 114160. [Google Scholar] [CrossRef]
- Chen, H.; Yu, Y.; Jiang, X. Optimal scheduling of combined heat and power units with heat storage for the improvement of wind power integration. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 1508–1512. [Google Scholar]
- Tatarinova, N.V.; Suvorov, D.M. Development of adequate computational mathematical models of cogeneration steam turbines for solving problems of optimization of operating modes of CHP plants. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 19–20 May 2016; pp. 1–6. [Google Scholar]
- Chen, J.; Zhang, Y. lagrange relaxation-based alternating iterative algorithm for non-convex combined heat and power dispatch problem. Electr. Power Syst. Res. 2019, 177, 105982. [Google Scholar] [CrossRef]
- Huang, S.; Tang, W.; Wu, Q.; Li, C. Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming. Energy 2019, 179, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy. Appl. Energy 2019, 237, 646–670. [Google Scholar] [CrossRef]
- Ghasemi, M.; Aghaei, J.; Akbari, E.; Ghavidel, S.; Li, L. A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems. Energy 2016, 107, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Davoodi, E.; Zare, K.; Babaei, E. A GSO-based algorithm for combined heat and power dispatch problem with modified scrounger and ranger operators. Appl. Therm. Eng. 2017, 120, 36–48. [Google Scholar] [CrossRef]
- Yang, D.; Xi, Y.; Cai, G. Day-ahead dispatch model of electro-thermal integrated energy system with power to gas function. Appl. Sci. 2017, 7, 21326. [Google Scholar] [CrossRef] [Green Version]
- Murugan, R.; Mohan, M.; Rajan, C.C.A.; Sundari, P.D.; Arunachalam, S. Hybridizing bat algorithm with artificial bee colony for combined heat and power economic dispatch. Appl. Soft Comput. 2018, 72, 189–217. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Zeng, D.; Fang, F.; Niu, Y. Modeling and flexible load control of combined heat and power units. Appl. Therm. Eng. 2020, 166, 114624. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Yan, S.; Zeng, D.-L.; Hu, Y.; Lv, Y. A dynamic model used for controller design of a coal fired once-through boiler-turbine unit. Energy 2015, 93, 2069–2078. [Google Scholar] [CrossRef]
- Li, W.; Fang, F. H∞-LQR-based coordinated control for large coalfired boiler-turbine generation units. IEEE Trans. Ind. Electron. 2017, 64, 5212–5221. [Google Scholar]
- Deng, T. Characteristic Analysis on Energy Storage and Control Methods of Rapid Load Change for Heat Supply Units. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2016. [Google Scholar]
- Chen, W.; Shao, Z. Simultaneous approach with partial error control on non-collocation points based satellite formation reconfiguration. Control Decis. 2014, 29, 1793–1797. [Google Scholar]
- Li, B.; Wang, K.; Shao, Z. Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic optimization approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3263–3274. [Google Scholar] [CrossRef]
- Zhu, Q.; Shao, Z.; Song, Z. Design and optimization of low-thrust gravity-assist trajectory in multi gravitational fields. Control Theory Appl. 2018, 35, 741–750. [Google Scholar]
- Wang, K. Study on Theory and Algorithm for Large-Scale Nonlinear Process System Optimization. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Sun, J.; Zhan, Z. Multi-stage nonlinear model polymerization reaction predictive control based on direct radau configuration. Comput. Eng. Appl. 2018, 54, 244–250. [Google Scholar]
- Yuan, R.; Ye, J.; Lei, J.; Li, T. Integrated combined heat and power system dispatch considering electrical and thermal energy storage. Energies 2016, 9, 474. [Google Scholar] [CrossRef] [Green Version]
Scheme Indicators | Mode 1 | Mode 2 | Mode 3 | Mode 4 |
---|---|---|---|---|
Calculation time/s | 4.48 | 4.75 | 109.42 | 111.38 |
Total cost/RMB | 154,827 | 126,310 | 128,817 | 101,490 |
TP output/MWh | 124.68 | 128.27 | 109.78 | 119.73 |
TP cost/RMB | 23,404 | 23,757 | 21,102 | 22,161 |
CHP electric output/MWh | 393.03 | 410.27 | 381.58 | 384.44 |
CHP heat output/MWh | 529.09 | 474.20 | 529.09 | 484.33 |
CHP cost/RMB | 70,854 | 70,702 | 69,541 | 68,130 |
AWP/MWh | 71.26 | 36.09 | 44.91 | 12.05 |
Penalty cost/RMB | 60,570 | 30,675 | 38,174 | 10,240 |
EB heat output/MWh | - | 54.89 | - | 44.76 |
EB cost/RMB | - | 1176 | - | 959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Chen, Q.; Zhang, Z.; Liu, X.; Tu, J.; Zhang, L. Optimal Scheduling of Combined Electric and Heating Considering the Control Process of CHP Unit and Electric Boiler. Processes 2023, 11, 753. https://doi.org/10.3390/pr11030753
Huang Y, Chen Q, Zhang Z, Liu X, Tu J, Zhang L. Optimal Scheduling of Combined Electric and Heating Considering the Control Process of CHP Unit and Electric Boiler. Processes. 2023; 11(3):753. https://doi.org/10.3390/pr11030753
Chicago/Turabian StyleHuang, Yuehua, Qing Chen, Zihao Zhang, Xingtao Liu, Jintong Tu, and Lei Zhang. 2023. "Optimal Scheduling of Combined Electric and Heating Considering the Control Process of CHP Unit and Electric Boiler" Processes 11, no. 3: 753. https://doi.org/10.3390/pr11030753
APA StyleHuang, Y., Chen, Q., Zhang, Z., Liu, X., Tu, J., & Zhang, L. (2023). Optimal Scheduling of Combined Electric and Heating Considering the Control Process of CHP Unit and Electric Boiler. Processes, 11(3), 753. https://doi.org/10.3390/pr11030753