Decision-Making Method for Mine Cable Insulation Monitoring and Grounding Fault Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zero-Sequence Network of a Power System under Single-Phase Insulation Degradation
2.2. Zero-Sequence Network of a Power System under Two-Phase Insulation Degradation—Abbreviations and Acronyms
2.3. The Criterion for Insulation State Diagnosis
2.4. Cable Insulation Diagnosis Monitoring System
2.5. Cable Insulation Diagnosis Method Base on Decision Tree
3. Simulation Verification and Results
3.1. Construction of the Simulation Model
3.2. Analysis of Neutral Grounding System Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Li, J.; Wu, L.; Wang, Y. High-voltage cable insulation online monitoring in coal mine based on pattern recognition. In Proceedings of the International Conference on Advances in Materials, Machinery, Electronics, AMME, Tianjin, China, 10–11 June 2017. [Google Scholar]
- Li, C. Analysis on Online Supervision System of High Voltage Cable Insulation Condition of Coal Mine. Mech. Manag. Dev. 2016, 31, 70–71+86. [Google Scholar]
- Rathinam, S.; Vanila, C. Phasor measurement unit based wide area backup protection scheme for power transmission lines. Energy Procedia 2017, 117, 1172–1181. [Google Scholar] [CrossRef]
- Urooj, S.; Sood, V. Phasor measurement unit (PMU) based wide area protection system. In Proceedings of the International Conference on Computing for Sustainable Global Development, New Delhi, India, 11–13 March 2015; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Orton, H. History of underground power cables. IEEE Electr. Insul. Mag. 2013, 29, 52–57. [Google Scholar] [CrossRef]
- Feng, C.; Yang, M.; Zeng, X.; Chen, P. Mine Cable Insulation Double-End Synchronous Monitoring with 5G Transmission Technology. In Proceedings of the 2020 IEEE Student Conference on Electric Machines and Systems (SCEMS), Jinan, China, 4–6 December 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Li, Z.; Xu, Y.; Wang, P. Coordinated preparation and recovery of a post-disaster multi-energy distribution system considering thermal inertia and diverse uncertainties. Appl. Energy 2023, 336, 120736. [Google Scholar] [CrossRef]
- Lu, D.; Liu, J.Q.; Yin, X.G. Study on Single-phase Earth Fault Location Method in Mine Non-effectively Grounded Network Based on WAMS. Appl. Mech. Mater. 2014, 602–605, 2110–2113. [Google Scholar] [CrossRef]
- Zhou, C.; Song, X.; Michel, M. Online partial discharge monitoring in medium voltage underground cables. Iet Sci. Meas. Technol. 2017, 3, 354–363. [Google Scholar] [CrossRef]
- Pan, W.; Zhao, K.; Xie, C.; Li, X.; Chen, J.; Hu, L. Distributed Online Monitoring Method and Application of Cable Partial Discharge Based on -OTDR. IEEE Access 2019, 7, 144444–144450. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, X.; Peng, N. Study on the grounding in superposing DC current method for the online monitoring of XLPE cable. High Volt. Eng. 2003, 7, 34–36+51. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Xiao, L. Hot-line XLPE cable insulation monitoring based on quick positive and negative DC superposition method. In Electronics and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 139–148. [Google Scholar]
- Lei, L.; Zhong, L. Additional Low Frequency Signal Measurement Method of Insulation Resistance about Mine Cable. In Proceedings of the 2016 International Symposium on Computer, Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; pp. 891–894. [Google Scholar]
- Fouracre, R.; Macgregor, S.J.; Banford, H.M. Irradiated cable insulation-Monitoring ageing by measurements for Electrical loss at high and low frequencies. IEE Symp. Pulsed Power 1998, 258, 44/1–44/6. [Google Scholar]
- Yang, Y.; Hepburn, D.M.; Zhou, C.; Zhou, W.; Bao, Y. On-line monitoring of relative dielectric losses in cross-bonded cables using sheath currents. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2677–2685. [Google Scholar] [CrossRef] [Green Version]
- Tong, N.; Liang, J.; Li, H.; Lin, X.; Li, Z. Single-phase earth fault location method based on harmonic analysis for the NUGS. In Proceedings of the 2016 Annual IEEE Systems Conference (SysCon), Orlando, FL, USA, 16–21 April 2016. [Google Scholar]
- Tong, N.; Liang, J.; Li, H.; Lin, X.; Li, Z. Fault Location Method Based on Transient Frequency in Non-Effectively Grounded Distribution Network. Adv. Mater. Res. 2015, 1070–1072, 774–778. [Google Scholar]
- Zhu, G.; Zhou, K.; Lu, L.; Li, Y.; Xi, H.; Zeng, Q. Online Monitoring of Power Cables Tangent Delta Based on Low-Frequency Signal Injection Method. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Wang, Z.; Zhang, P. Online Monitoring for Underground Power Cable Insulation Based on Common-Mode Signal Injection. IEEE Trans. Ind. Electron. 2021, 69, 7360–7371. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Q.; Shang, Y. Design Method of Cable Fault Diagnosis Knowledge Base Based on Machine Learning. Autom. Instrum. 2022, 5, 151–154+159. [Google Scholar] [CrossRef]
- Zhao, W.; Xia, X.; Li, M.; Huang, H.; Chen, S.; Wang, R.; Liu, Y. Online monitoring method based on locus-analysis for high-voltage cable faults. Chin. J. Electr. Eng. 2019, 5, 42–48. [Google Scholar] [CrossRef]
- Cao, H.; Long, F.; Wang, B.; Peng, X.; Chen, X.; Tao, X. Deep Fault Net: Predicting Fault Severity of Communication Cable With Hybrid-Res CNN. IEEE Trans. Circuits Syst. Express Briefs 2023, 70, 826–830. [Google Scholar] [CrossRef]
- Haberman, M.A.; Spinelli, E.M. Noncontact AC voltage measurements: Error and noise analysis. IEEE Trans. Instrum. Meas. 2018, 67, 1946–1953. [Google Scholar] [CrossRef]
- Wen, W.Y.; Dan, L.; Yan, G. Fault section locating algorithm for coalmine high-voltage power network based on wide area synchronized measurement technology. J. China Coal Soc. 2015, 40, 285–291. [Google Scholar] [CrossRef]
- Zhao, Z.; See, K.Y. A multiprobe inductive coupling method for online impedance measurement of electrical devices distributed in multibranch cables. IEEE Trans. Instrum. Meas. 2020, 69, 5975–5977. [Google Scholar] [CrossRef]
- Meng, L.; Gao, P.; Haji, M.M. Magnetic sensor array-based AC current measurement for multiconductor cables using evolutionary computation method. IEEE Trans. Instrum. Meas. 2015, 64, 2747–2758. [Google Scholar] [CrossRef]
- Xu, T.Q.; Yin, X.G.; You, D.H. Analysis on functionality and feasible structure of wide area protection system. Power Syst. Prot. Control. 2009, 11, 1. [Google Scholar]
- Metwally, I.A. Coaxial-cable wound rogowski coils for measuring large-magnitude short-duration current pulses. IEEE Trans. Instrum. Meas. 2013, 62, 119–128. [Google Scholar] [CrossRef]
- Ghaderi, A.; Mingotti, A.; Peretto, L.; Tinarelli, R. Effects of Mechanical Pressure on the Tangent Delta of MV Cable Joints. IEEE Trans. Instrum. Meas. 2019, 68, 2656–2658. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Sun, Y.; Feng, C. A Comprehensive Operation Status Evaluation Method for Mining XLPE Cables. Sensors 2022, 22, 7174. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, C.; Chen, F. Security Assessment of Coal Mine Power Grid Voltage Based on an Improved AHP-FCE. Math. Probl. Eng. 2022, 2022, 5256285. [Google Scholar]
Object | Resistance | Evaluation | Classification | Operation |
---|---|---|---|---|
The total insulation | >10 | good | S1 | use |
1~10 | moderate attention | S2 | use and attention | |
<1 | high attention | S3 | replace |
Branch Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Ci (F) | 0.059 × 3 | 0.117 × 3 | 0.422 × 3 | 0.750 × 3 |
Gi (μS) | 0.0025 × 3 | 0.005 × 3 | 0.018 × 3 | 0.032 × 3 |
Load power (kW) | 100 × 3 | 100 × 3 | 100 × 3 | 100 × 3 |
L (H) | 3.757 | |||
The model is taken from the power supply circuit diagram of an industrial and mining enterprise. |
Branch Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Calculated Ci (F) | 0.059 × 3 | 0.117 × 3 | 0.422 × 3 | 0.750 × 3 |
Calculated Gi (μS) | 0.0025 × 3 | 0.005 × 3 | 0.018 × 3 | 0.032 × 3 |
Load power (kW) | 100 × 3 | 100 × 3 | 100 × 3 | 100 × 3 |
Phasor | ||||
---|---|---|---|---|
Phase angle | −0.3 | 0 | 240 | 120 |
The judgment of faulty phase | a |
Insulation Parameters | |||
---|---|---|---|
Numerical value | 0.180 | 0.0078 | 0.500 |
Calculation error | 1.6% | 4% | 0 |
Branch Number | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Calculated Ci (F) | −0.813 | 0.361 | 1.298 | 2.308 |
Calculated Gi (μS) | −0.328 | 0.015 | 0.054 | 0.096 |
The judgment of insulation state | asymmetrical | symmetrical and good | symmetrical and good | symmetrical and good |
Phasor | ||||
---|---|---|---|---|
Phase angle | 253.4 | −0.2 | 239.8 | 119.8 |
The judgment of faulty phase | a, b |
Insulation Parameters | C | G | Gad | Gbd |
---|---|---|---|---|
Numerical value | 0.150 | 0.0088 | 0.54 | 2.105 |
Calculation error | −15% | 17.3% | 8% | 5.25% |
Faulty Branch | Branch Number | Calculated Results of the Pattern Recognition | Phasor | Phase Angle | Gd (μs) | Calculation Error of Gd | |
---|---|---|---|---|---|---|---|
2 | 1 | 0.181 | 0.0074 | I | 0 | 0.5 | 0 |
2 | −0.211 | −0.123 | Uad | 0 | |||
3 | 1.301 | 0.054 | Ubd | 240 | |||
4 | 2.314 | 0.095 | Ucd | 120 | |||
3 | 1 | 0.181 | 0.0075 | I | 0 | 0.5 | 0 |
2 | 0.362 | 0.014 | Uad | 0 | |||
3 | −0.728 | −0.101 | Ubd | 240 | |||
4 | 2.314 | 0.097 | Ucd | 120 | |||
4 | 1 | 0.181 | 0.0076 | I | 0 | 0.499 | −0.2% |
2 | 0.362 | 0.015 | Uad | 0 | |||
3 | 1.301 | 0.055 | Ubd | 240 | |||
4 | 1.741 | −0.122 | Ucd | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Ye, P.; Sun, Y.; Li, J.; Zang, X.; Sun, C. Decision-Making Method for Mine Cable Insulation Monitoring and Grounding Fault Diagnosis. Processes 2023, 11, 795. https://doi.org/10.3390/pr11030795
Feng C, Ye P, Sun Y, Li J, Zang X, Sun C. Decision-Making Method for Mine Cable Insulation Monitoring and Grounding Fault Diagnosis. Processes. 2023; 11(3):795. https://doi.org/10.3390/pr11030795
Chicago/Turabian StyleFeng, Chen, Pingfeng Ye, Yanying Sun, Jingrui Li, Xiangyu Zang, and Chenhao Sun. 2023. "Decision-Making Method for Mine Cable Insulation Monitoring and Grounding Fault Diagnosis" Processes 11, no. 3: 795. https://doi.org/10.3390/pr11030795
APA StyleFeng, C., Ye, P., Sun, Y., Li, J., Zang, X., & Sun, C. (2023). Decision-Making Method for Mine Cable Insulation Monitoring and Grounding Fault Diagnosis. Processes, 11(3), 795. https://doi.org/10.3390/pr11030795