Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a
Abstract
:1. Introduction
2. Experimental Apparatus and Test Conditions
- Refrigerant flow rate.
- Type of refrigerant used.
- Kind of application viz air-conditioning, refrigeration, dehumidification, etc.
- The operation design parameters.
- The system equipment/components proposed to be used in the system.
2.1. Description of CYCLE_D-HX 2.0 Model
2.2. CYCLE_D-HX 2.0 Simulation Model Validation
2.3. Exergy Analysis
- Define the system boundary and identify the components within the boundary. This would typically include the compressor, condenser, expansion valve, and evaporator.
- Calculate the thermodynamic properties of the refrigerant at various points in the system, such as the temperature, pressure, and specific enthalpy. This can be completed using thermodynamic tables or software.
- Calculate the exergy at each component and at each state point using the following equation-
- Calculate the exergy destruction at each component by taking the difference between the exergy input and output. This represents the amount of exergy lost due to irreversibilities and inefficiencies in the component.
- Calculate the overall system exergy efficiency, which is the ratio of the exergy output to the exergy input. This represents the percentage of the available exergy that is being used to perform useful work.
3. Results and Discussion
4. Conclusions
- Maximum pressure at the compressor is recorded by the blended refrigerant mixture of R32/R41/R1234ze(E) at 1448.6 kPa and the minimum value is recorded by R1336mzz(Z) at 38.7 KPa.
- Refrigerants R1216 and R227ea consume minimum work of 17.64 kJ/kg and 17.37 kJ/kg, respectively, and refrigerant RE170 requires a high amount of work of 63.43 kJ/kg in the compressor.
- The maximum rate of heat transfer in the evaporator is recorded by RE170 as 368.75 kJ/kg which is 23% higher than R134a and the least value is recorded by refrigerants R1216 and R227ea at 93 and 93.55 kJ/kg, respectively.
- The highest rate of heat transfer in the condenser unit is obtained by RE170 at 432.18 kJ/kg which is around 23.5% higher than R134a.
- R32/R41/R1234ze(E) recorded the highest rate of cooling of 8290.5 kJ/m3 recorded and it is 27% higher than the refrigerant R134a.
- Pure refrigerants RE170, R245fa, R1234ze, R1233zd(E), and R1224yd(Z) have higher efficiency of 5.8 which is slightly higher than the efficiency of R134a.
- A higher compressor suction volume flow rate is attained by R1336mzz(Z) of 105.3 m3/h it is 80% higher than the R134a and blended refrigerant R32/R41/R1234ze(E) is noted as the least value of 5.128 m3/h.
5. Problems in the System due to Blending or Mixing
- During the running condition of the system, the effectiveness of the system is reduced due to the phase change in refrigerant in the condenser and evaporator unit as the properties of the blended refrigerant change.
- Due to uncertain non-isothermal behaviour and a mixture of refrigerants, the manufacturers are unable to design and select the appropriate component for the system from the catalogue.
- Only specific heat exchangers such as a flat plate and counter flow, concentric tube, shell, and tube heat exchangers perform well due to their geometry.
- Components of refrigeration systems are designed for pure refrigerants; therefore, these designs are not suitable for blended refrigerants.
- It is noted that blended refrigerants can reduce the temperature difference in the heat exchangers due to their non-linearity results as a bigger size of heat exchanger is required.
- Due to the blending of refrigerants the temperature, pressure capacity, and efficiency of the system are changed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
GWP | Global warming potential |
ODP | Ozone depletion potential |
HFO | Hydro fluoro-olefin |
HC | Hydrocarbon |
HCFC | Hydro-chlorofluorocarbon |
CFC | Chlorofluorocarbon |
TEWI | Total equivalent warming impact |
COP | Coefficient of performance |
LLSL-HX | Liquid-line/suction-line heat exchanger |
P1 | Compressor inlet pressure (bar) |
P2 | Compressor outlet pressure (bar) |
T1 | The refrigerant temperature at the inlet of the compressor (°C) |
T2 | The refrigerant temperature at the outlet of the compressor (°C) |
T3 | The refrigerant temperature at the inlet of the expansion valve (°C) |
T4 | The refrigerant temperature at the outlet of the expansion valve (°C) |
T5 | Water temperature in evaporator(°C) |
h1 | Enthalpy at the inlet of compressor (KJ/Kg) |
h2 | Enthalpy at the outlet of compressor (KJ/Kg) |
h3 | Enthalpy at the inlet of expansion valve (KJ/Kg) |
h4 | Enthalpy at the outlet of expansion valve (KJ/Kg) |
Emc | Energy meter constant |
WD | Work done (KW) |
RE | Refrigerating effect (KW) |
mw | Mass of water in the evaporator unit (litre) |
cp | Specific heat at constant pressure |
ΔT | Temperature difference (°C) |
COPactual | Actual coefficient of performance |
COPtheory | Theoretical coefficient of performance |
References
- Maxwell, J.C. Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Spaushus, H.O. CF-134a as a substitute refrigerant for CFC 12. Int. J. Refrig. 1988, 11, 389–392. Available online: https://docs.lib.purdue.edu/iracc/70/ (accessed on 12 April 2022). [CrossRef]
- Richardson, R.N.; Butterworth, J.S. The performance of propane/isobutene mixtures in vapour-compression refrigerant system. Int. J. Refrig. 1995, 18, 58–62. [Google Scholar] [CrossRef]
- Havelsky, V. Investigation of refrigerating system with R12 refrigerant replacements. Appl. Therm. Eng. 2000, 20, 133–140. [Google Scholar] [CrossRef]
- Brown, J.S.; Yana-Motta, S.F.; Domanski, P.A. Comparative analysis of an automotive air conditioning systems operating with CO2 and R134a. Int. J. Refrig. 2002, 25, 19–32. [Google Scholar] [CrossRef]
- Sekhar, S.; Lal, D.; Renganarayanan, S. Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone friendly HFC134a. Int. J. Therm. Sci. 2004, 43, 307–314. [Google Scholar] [CrossRef]
- Gigiel, A. Safety testing of domestic refrigerators using flammable refrigerants. Int. J. Refrig. 2004, 27, 621–628. [Google Scholar] [CrossRef]
- Hoşöz, M. Performance comparison of single-stage and cascade refrigeration systems using R134a as the working fluid. Turk. J. Eng. Environ. Sci. 2005, 29, 285–296. [Google Scholar]
- He, M.-G.; Li, T.-C.; Liu, Z.-G.; Zhang, Y. Testing of the mixing refrigerants HFC152a/HFC125 in domestic refrigerator. Appl. Therm. Eng. 2005, 25, 1169–1181. [Google Scholar] [CrossRef]
- Wongwises, S.; Chimres, N. Experimental studies of hydrocarbon mixture to replace HFC134a in a domestic refrigerator. Energy Convers. Manag. 2005, 46, 85–100. [Google Scholar] [CrossRef]
- Fatouh, M.; ELKafafy, M. Assessment of propane / commercial butane mixtures as possible alternatives to R134a in domestic refrigerators. Energy Convers. Manag. 2006, 47, 2644–2658. [Google Scholar] [CrossRef]
- Ding, G.-L. Recent developments in simulation techniques for vapour-compression refrigeration systems. Int. J. Refrig. 2007, 30, 1119–1133. [Google Scholar] [CrossRef]
- Jwo, C.-S. Effect of nanolubricant on the performance of hydrocarbon refrigerant system. J. Vac. Sci. Technol. B 2009, 27, 1473–1477. [Google Scholar] [CrossRef]
- Mohanraj, M.; Jayaraj, S.; Muraleedharan, C.; Chandrasekar, P. Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. Int. J. Therm. Sci. 2009, 48, 1036–1042. [Google Scholar] [CrossRef]
- Padilla, M.; Revellin, R.; Bonjour, J. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Convers. Manag. 2010, 51, 2195–2201. [Google Scholar] [CrossRef]
- Agarwal, B.; Vipin, S. Retrofitting of vapour compression refrigeration trainer by an eco-friendly refrigerant. Indian J. Sci. Technol. 2010, 3, 455–458. [Google Scholar] [CrossRef]
- Dalkilic, A.; Wongwises, S. A performance comparison of vapour- compression refrigeration system using various alternatives refrigerants. Int. Commun. Heat Mass Transf. 2010, 37, 1340–1349. [Google Scholar] [CrossRef]
- Tiwari, A.; Gupta, R. Experimental Study of R404A and R134A in Domestic Refrigerator. Int. J. Eng. Sci. Technol. 2011, 3, 8. Available online: https://ijcrr.com/article_html.php?did=2139 (accessed on 14 September 2022).
- Bolaji, B.O.; Akintunde, M.; Falade, T.O. Comparative Analysis of Performance of Three Ozone-Friends HFC Refrigerants in a Vapour Compression Refrigeration. J. Sustain. Environ. 2011, 2, 61–64. Available online: http://repository.fuoye.edu.ng/handle/123456789/1231 (accessed on 14 September 2022).
- Liu, Z.; Haider, I.; Liu, B.; Radermacher, R. Test Result of Hydro Carbon Mixtures in Domestic Refrigerators Freezers; Centre Environmental Energy Engineering, University of Maryland: College Park, MD, USA, 1994; Available online: https://p2infohouse.org/ref/14/13828.pdf (accessed on 14 September 2022).
- Mishra, R.S. Thermal Performance of three stage cascade vapour compression refrigeration systems using new HFO in high and intermediate temperature cycle and R32 ethylene and hydrocarbons in ultra-low temperature cycle refrigerants. Int. J. Adv. Res. Innov. 2020, 4, 109–123. [Google Scholar] [CrossRef]
- Domanski, P.A.; Brignoli, R.; Brown, J.S.; Kazakov, A.F.; McLinden, M.O. Low-GWP refrigerants for medium and high-pressure applications. Int. J. Refrig. 2017, 84, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database: REFPROP Reference Fluid Thermodynamic and Transport Properties, Version 9.4.4.44. 2018. Available online: https://www.nist.gov/srd/refprop (accessed on 8 November 2022).
- Bell, I.H.; Domanski, P.A.; McLinden, M.O.; Linteris, G.T. The hunt for nonflammable refrigerant blends to replace R134a. Int. J. Refrig. 2020, 104, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Domanski, P.A.; McLinden, M.O. A Simplified Cycle Simulation Model for the Performance Rating of Refrigerants and Refrigerant Mixtures. In International Refrigeration and Air Conditioning Conference; 1990; Volume 132, Available online: http://docs.lib.purdue.edu/iracc/132 (accessed on 8 November 2022).
- CAN/ANSI/AHRI540. Performance Rating of Positive Displacement Refrigerant Compressors and Compressor Units; AHRI: Aiken, SC, USA, 2015; Volume 5. [Google Scholar]
- Brignoli, R.; Brown, J.S.; Skye, H.M.; Domanski, P.A. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers. Int. J. Refrig. 2017, 80, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Gil, B.; Kasperski, J. Efficiency Evaluation of the Ejector Cooling Cycle using a New Generation of HFO/HCFO Refrigerant as a R134a Replacement. Energies 2018, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Barati-Harooni, A.; Najafi-Marghmaleki, A. Prediction of Vapor-Liquid Equilibrium for Binary Mixtures Containing R1234yf or R1234ze (E). Int. J. Refrig. 2018, 88, 239–247. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Varga, S.; Dvorak, V. HFO1234ze(e) As an Alternative Refrigerant for Ejector Cooling Technology. Energies 2019, 12, 4045. [Google Scholar] [CrossRef] [Green Version]
- Emmi, G.; Bordignon, S.; Carnieletto, L.; De Carli, M.; Poletto, F.; Tarabotti, A.; Poletto, D.; Galgaro, A.; Mezzasalma, G.; Bernardi, A. A Novel Ground-Source Heat Pump with R744 and R1234ze as Refrigerants. Energies. 2020, 13, 5654. [Google Scholar] [CrossRef]
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-Ung, S.; Theppaya, T. Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies 2020, 13, 1514. [Google Scholar] [CrossRef] [Green Version]
- Gil, B.; Szczepanowska, A.; Rosiek, S. New HFC/HFO Blends as Refrigerants for the Vapor-Compression Refrigeration System (VCRS). Energies. 2021, 14, 946. [Google Scholar] [CrossRef]
- Karageorgis, A.; Hinopoulos, G.; Kim, M.-H. A Comparative Study on the Condensation Heat Transfer of R-513A as an Alternative to R134a. Machines 2021, 9, 114. [Google Scholar] [CrossRef]
- Bharanitharan, K.J.; Senthilkumar, S.; Chen, K.-L.; Luo, K.-Y.; Kang, S.-W. Correlations Based on Numerical Validation of Oscillating Flow Regenerator. Processes 2022, 10, 1400. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, M.-R.; Hung, K.-S.; Liu, C.-C.; Wang, C.-C. A Comprehensive Review Regarding Condensation of Low-GWP Refrigerants for Some Major Alternatives of R134a. Processes 2022, 10, 1882. [Google Scholar] [CrossRef]
- Nikitin, A.; Farahnak, M.; Deymi-Dashtebayaz, M.; Muraveinikov, S.; Nikitina, V.; Nazeri, R. Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis. Renew. Energy 2022, 185, 1481. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Sulin, A.; Ryabova, T.; Sankina, I.; Farahnak, M.; Nazeri, R. Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants. J. Environ. Chem. Eng. 2021, 9, 106473. [Google Scholar] [CrossRef]
- Nikitin, A.; Deymi-Dashtebayaz, M.; Muraveinikov, S.; Nikitina, V.; Nazeri, R.; Farahnak, M. Comparative study of air source and ground source heat pumps in 10 coldest Russian cities based on energy-exergy-economic-environmental analysis. J. Clean. Prod. 2021, 321, 128979. [Google Scholar] [CrossRef]
- Deymi, M.; Maddah, S.; Goodarzi, M.; Maddah, O. Investigation of the effect of using various HFC refrigerants in geothermal heat pump with residential heating applications. J. Therm. Anal. Calorim. 2020, 141, 361–372. [Google Scholar] [CrossRef]
- Deymi-Dashtebayaz, M.; Valipour-Namanlo, S. Thermoeconomic and environmental feasibility of waste heat recovery of a data center using air source heat pump. J. Clean. Prod. 2019, 219, 117–126. [Google Scholar] [CrossRef]
- Honda, H.; Wijayanta, A.; Takata, N. Condensation of R407C in a horizontal microfin tube. Int. J. Refrig. 2005, 28, 203–211. [Google Scholar] [CrossRef]
- Cavallini, A.; Del Col, D.; Mancin, S.; Rossetto, L. Condensation of pure and near-azeotropic refrigerants in microfin tubes: A new computational procedure. Int. J. Refrig. 2009, 32, 162–174. [Google Scholar] [CrossRef]
- Manoj, I.V.; Soni, H.; Narendranath, S.; Mashinini, P.M.; Kara, F. Examination of Machining Parameters and Prediction of Cutting Velocity and Surface Roughness Using RSM and ANN Using WEDM of Altemp HX. Adv. Mater. Sci. Eng. 2022, 2022, 5192981. [Google Scholar] [CrossRef]
- Chen, C.; Teng, J.-T.; Cheng, C.-H.; Jin, S.; Huang, S.; Liu, C.; Lee, M.-T.; Pan, H.-H.; Greif, R. A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators. Int. J. Heat Mass Transf. 2014, 69, 203–214. [Google Scholar] [CrossRef]
- Hsieh, S.-S.; Lee, R.-Y.; Shyu, J.-C.; Chen, S.-W. Thermal performance of flat vapor chamber heat spreader. Energy Convers. Manag. 2008, 49, 1774–1784. [Google Scholar] [CrossRef]
- Hamid, K.; Sajjad, U.; Yang, K.S.; Wu, S.-K.; Wang, C.-C. Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling. Energy 2022, 238, 121819. [Google Scholar] [CrossRef]
S. No | Refrigerants/Properties | Unit | R134a | R404A [R-125/143a/134a] | R407A [R-32/125/134a] | R32 | R152a | R245fa | R227ea | RS50 |
---|---|---|---|---|---|---|---|---|---|---|
1 | Name of the refrigerant | - | 1,1,1,2-Tetrafluoroethane | Dichloromethane | 1,1-Difluoroethane | 1,1,1,3,3-Pentafluoropropane | 1,1,1,2,3,3,3-Heptafluoropropano | |||
2 | Molecular Formula | - | C2H2F4 | C2HF5/C2H3F3/C2H2F4 | CH2F2/C2HF5/C2H2F4 | CH2F2 | C2H4F2 | C3H3F5 | C3HF7 | CH2F2/C2HF5/CH2FCF3/C3HF7/C2H4F2 |
3 | Composition (weight share) | - | 100 | 0.44/0.52/0.04 | 20/40/40 | Dichloromethane | 1,1-Difluoroethane | 1,1,1,3,3-Pentafluoropropane | 1,1,1,2,3,3,3-Heptafluoropropano | HFC-32 HFC-125 R134a HFC-227ea HFC-152a |
4 | Category (type) | - | HFC | HFC blend | HFC Blend | HFC | HFC | HFC | HFC | HFC Blend |
5 | GWP | - | 1430 | 3922 | 2107 | 675 | 124 | 1030 | 1888 | |
6 | ODP | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | Critical temperature | °C | 101 °C | 72.12 | 82 | 78.1 | 113.26 | 153.86 | 101.75 | 82.4 |
8 | Critical pressure | bar | 13.6 | 37.35 | 44.94 | 57.82 | 45.16 | 36.5 | 29.25 | 47.5738 |
9 | Normal boiling point | °C | −26.1 °C | −45.74 | −45 | −51.62 | −24.9 | 15.3 | −16 | −46.5 |
10 | Molar weight | g/mol | 102.03 | 97.6 | 90.1 | 52.02 | 66.05 | 134.05 | 170.03 | 81.8 |
S. No | Refrigerants/Properties | Unit | R32/R41/R1234ze(E) | R134a | R161/R41/R1234ze(E) | R448A | R449A | R449B | R449C | R450A | R452A | R452B | R454B | R454C | R515A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Name of the refrigerant | - | 1,1,1,2-Tetrafluoroethane | HFC32—HFC125—HFC134a—HFO 1234ze—HFO 1234yf | HFC32—HFC125—HFC134a—HFO 1234yf | HFC32—HFC125—HFC134a—HFO 1234yf | HFC32—HFC125—HFC134a—HFO 1234yf | HFC134a—HFO 1234ze (E) | HFC32—HFC125—HFO 1234yf | HFC32—HFC125—HFO 1234yf | HFC32-HFO 1234yf | HFC32-HFO 1234yf | HFCR227ea—HFO 1234ze (E) | ||
2 | Molecular Formula | - | CH2F2/CH3F/C3H2F4 | C2H2F4 | C2H5F/CH3F/C3H2F4 | CH2F2/C2HF5/CH2FCF3/C3H2F4/C3H2F4 | CH2F2/C2HF5/CH2FCF3/C3H2F4 | CH2F2/C2HF5/CH2FCF3/C3H2F4 | CH2F2/C2HF5/CH2FCF3/C3H2F4 | CH2FCF3/C3H2F4 | CH2F2/C2HF5/C3H2F4 | CH2F2/C2HF5/C3H2F4 | CH2F2/C3H2F4 | CH2F2/C3H2F4 | C3HF7/C3H2F4 |
3 | Composition (weight share) | - | 0.1/0.9/0 | 100 | 0.8/0.1/0.1 | (26/26/21/7/20) | 24/25/26/25 | 25.2/24.3/23.2/27.3 | 20/20/31/29 | 42/58 | 11/59/30 | 67/7/26 | 68.9/31.1 | 21.5/78.5 | 88/12 |
4 | Category (type) | - | HFC + HFO | HFC | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO | HFC + HFO |
5 | GWP | - | 608 | 1430 | 20 | 1387 | 1397 | 1412 | 1251 | 605 | 2140 | 698 | 466 | 148 | 393 |
6 | ODP | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | Critical temperature | °C | 80.58 | 101 °C | 95.99 | 82.68 | 82.07 | 82.2 | 84.21 | 104.47 | 75.05 | 77.1 | 78.1 | 85.6 | 108.71 |
8 | Critical pressure | bar | 58.07 | 13.6 | 53.1 | 45.94 | 44.9 | 45.3 | 43.98 | 38.22 | 40.14 | 52.2 | 52.66 | 43.18 | 35.65 |
9 | Normal boiling point | °C | −50.23 | −26.1 °C | −39.77 | −46 | −46 | −46.1 | −44.6 | −23.4 | −47 | −51 | −50 | −46 | −18 |
10 | Molar weight | g/mol | 55.02 | 102 | 48.87 | 189.9 | 87.2 | 86.3 | 90.3 | 109.0 | 103.5 | 63.53 | 62.6 | 90.8 | 117.4 |
S. No | Refrigerants/Properties | Unit | R134a | R1216 | R1224yd(Z) | R1233zd(E) | R1234yf | R1234ze(E) | R1234ze(Z) | R1243zf | R1336mzz(Z) | R290 | R600a | RE170 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Name of the refrigerant | - | 1,1,1,2-Tetrafluoroethane | Hexafluoropropylene | 1-Chloro-2,3,3,3-tetrafluoropropene | Trans-1-chloro-3,3,3-Trifluoropropene | 2,3,3,3-Tetrafluoropropene | 1,3,3,3-Tetrafluoropropene | CIS-1, 3,3,3-Tetrafluoropropene | 3,3,3-Trifluoropropene | 1,1,1,4,4,4-Hexafluoro-2 butane | Propane | Isobutano | Dimethyl ether |
2 | Molecular Formula | - | C2H2F4 | C3F6 | (Z)-CF3-CF=CHCl | C3H2ClF3 | C3H2F4 | C3H2F4 | C3H2F4 | C3ClF3H2 | cis-CF3CH=CHCF3 | CH3CH2CH3 | C4H10 | C2H6O |
3 | Composition (weight share) | - | 100 | Hexafluoropropylene | 1-Chloro-2,3,3,3-tetrafluoropropene | Trans-1-chloro-3,3,3-Trifluoropropene | 2,3,3,3-Tetrafluoropropene | 1,3,3,3-Tetrafluoropropene | CIS-1, 3,3,3-Tetrafluoropropene | 3,3,3-Trifluoropropene | 1,1,1,4,4, 4-Hexafluoro-2 butane | Propane | Isobutano | Dimethyl ether |
4 | Category (type) | - | HFC | PFO | HFO | HFO | HFO | HFO | HFO | HFO | HFO | HC | HC | HC |
5 | GWP | - | 1430 | 17,340 | 4 | 1030 | 1 | 7 | 2 | |||||
6 | ODP | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | Critical temperature | °C | 101 | 85.8 | 155.54 | 166.45 | 94.3 | 109.36 | 150.2 | 103.7 | 171.35 | 96.7 | 134.7 | 127.2 |
8 | Critical pressure | bar | 13.6 | 31.49 | 33.37 | 36.23 | 33.82 | 35.34 | 35.3 | 35.17 | 29.03 | 42.5 | 36.3 | 53.37 |
9 | Normal boiling point | °C | −26.1 | −29.6 | 15 | 18.31 | −29.48 | −19 | 9.8 | −25.42 | 33.4 | −42 | −12 | −24.78 |
10 | Molar weight | g/mol | 102.03 | 150.03 | 148.5 | 130.5 | 114 | 114 | 114.04 | 96.05 | 164 | 44.1 | 58.12 | 46.07 |
S. No | Energy Meter Reading for 10 Rev in Sec. | Compressor Inlet Pressure, P1 (Bar) | Compressor Outlet Pressure, P2 (Bar) | Refrigerant Temperature at Inlet of Compressor, T1 (°C) | Refrigerant Temperature at Outlet of Compressor, T2 (°C) | Refrigerant Temperature at Inlet of Expansion Valve, T3 (°C) | Refrigerant Temperature at Outlet of Expansion Valve, T4 (°C) | Water Temperature in Evaporator, T5 (°C) |
---|---|---|---|---|---|---|---|---|
1. | 8.5 | 6.4 | 8.3 | 15.2 | 90.3 | 49.3 | 6.3 | 8.6 |
2. | 9.7 | 6.3 | 8.5 | 16.5 | 91.6 | 51.1 | 5.9 | 7.9 |
3. | 10.6 | 6.5 | 8.7 | 17.8 | 92.7 | 52.3 | 5.2 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, U.S.; Mishra, R.S.; Das, R.K.; Soni, H. Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a. Processes 2023, 11, 814. https://doi.org/10.3390/pr11030814
Prasad US, Mishra RS, Das RK, Soni H. Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a. Processes. 2023; 11(3):814. https://doi.org/10.3390/pr11030814
Chicago/Turabian StylePrasad, Uma Shankar, Radhey Shyam Mishra, Ranadip Kumar Das, and Hargovind Soni. 2023. "Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a" Processes 11, no. 3: 814. https://doi.org/10.3390/pr11030814
APA StylePrasad, U. S., Mishra, R. S., Das, R. K., & Soni, H. (2023). Experimental and Simulation Study of the Latest HFC/HFO and Blend of Refrigerants in Vapour Compression Refrigeration System as an Alternative of R134a. Processes, 11(3), 814. https://doi.org/10.3390/pr11030814