A Review of Pressure Fluctuations in Centrifugal Pumps without or with Clearance Flow
Abstract
:1. Introduction
2. Pressure Fluctuations in Centrifugal Pumps without Clearance Flow
2.1. Study of the Effect of Flow Conditions on Pressure Fluctuations
2.2. Study of the Influence of Structure Parameters on Pressure Fluctuations
3. Pressure Fluctuations in Centrifugal Pumps with Clearance Flow
3.1. Study of Pressure Fluctuation Characteristics in the Wear Ring
3.2. Study of Pressure Fluctuation Characteristics in Pump Chambers
3.3. Other Research on the Pressure Fluctuation Characteristics
3.4. Study of Pressure Fluctuation Characteristics in the Mainstream Area
3.5. Study of the Effect of Clearance Flow on Pump External Characteristics
4. Precautions and Countermeasures
4.1. Initiatives to Reduce the Intensity of Pressure Fluctuations in Pumps
4.2. Initiatives to Reduce Forces in Pumps
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
cp (-) | Pressure coefficient |
p (Pa) | Static pressure |
pref (Pa) | Reference pressure |
ρ (kg/m3) | Water density |
u2 (m/s) | Impeller circumferential velocity |
H (m) | Pump head |
η (%) | Pump efficiency |
Q (m3/h) | Flow rate |
An (Pa) | Pressure amplitude |
3D | Three-dimensional |
RMS | Root mean square |
LES | Large eddy simulation |
PAT | Pump as turbine |
References
- Yu, T.; Shuai, Z.J.; Wang, X.; Jian, J.; He, J.X.; Meng, C.L.; Dong, L.Y.; Liu, S.; Li, W.Y.; Jiang, C.X. Mechanism of the rotor−stator interaction in a centrifugal pump with guided vanes based on dynamic mode decomposition. Phys. Fluids 2022, 34, 087103. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.H.; Hang, J.W.; Shi, W.D.; Yan, H.; Zhu, Y. Numerical investigation of a high-speed electrical submersible pump with different end clearances. Water 2020, 12, 1116. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Song, Y.C.; Gu, X.Y.; Lin, B.; Wang, D.Z. Research on the inlet preswirl effect of clearance flow in canned motor reactor coolant pump. Nucl. Eng. Technol. 2022, 54, 2540–2549. [Google Scholar] [CrossRef]
- Spence, R.; Amaral-Teixeira, J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump. Comput. Fluids 2009, 38, 1243–1257. [Google Scholar] [CrossRef] [Green Version]
- Egusquiza, E.; Valero, C.; Huang, X.X.; Jou, E.; Guardo, A.; Rodriguez, C. Failure investigation of a large pump-turbine runner. Eng. Failure Anal. 2012, 23, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.Q.; Yu, J.L.; Li, B.; Zhang, L.; Zhu, Z.C. Effect of incident angle of wear-ring clearance on pressure pulsation and vibration performance of centrifugal pump. Front. Energy Res. 2022, 10, 250. [Google Scholar] [CrossRef]
- Barrio, R.; Blanco, E.; Parrondo, J.; González, J.; Fernández, J. The effect of impeller cutback on the fluid-dynamic pulsations and load at the blade-passing frequency in a centrifugal pump. J. Fluids Eng. 2008, 130, 111102. [Google Scholar] [CrossRef]
- Zheng, L.L.; Chen, X.P.; Dou, H.S.; Zhang, W.; Zhu, Z.C.; Cheng, X.L. Effects of clearance flow on the characteristics of centrifugal pump under low flow rate. J. Mech. Sci. Technol. 2020, 34, 189–200. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, J.F.; Wang, T.; Xiao, J.J.; Jia, X.Q.; Zhang, L. Pressure distribution on the inner wall of the volute casing of a centrifugal pump. Sci. Technol. Nucl. Install. 2022, 2022, 3563459. [Google Scholar] [CrossRef]
- Jia, X.Q.; Cui, B.L.; Zhu, Z.C.; Yu, X.L. Numerical investigation of pressure distribution in a low specific speed centrifugal pump. J. Therm. Sci. 2018, 27, 25–33. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Yang, Y.; Zhou, L.; Jiang, L.; Shi, W.D.; Huang, G.Y. Influence of impeller gap drainage width on the performance of low specific speed centrifugal pump. J. Mar. Sci. Eng. 2021, 9, 106. [Google Scholar] [CrossRef]
- Wu, D.H.; Ren, Y.; Mou, J.G.; Gu, Y.Q. Investigation of pressure pulsations and flow instabilities in a centrifugal pump at part-load conditions. Int. J. Fluid Mach. Syst. 2017, 10, 355–362. [Google Scholar] [CrossRef]
- Zheng, L.L.; Dou, H.S.; Chen, X.P.; Zhu, Z.C.; Cui, B.L. Pressure fluctuation generated by the interaction of blade and tongue. J. Therm. Sci. 2018, 27, 8–16. [Google Scholar] [CrossRef]
- Ma, X.J.; Zheng, L.L.; Qu, J.L.; Wang, M.M. Numerical study of unsteady pressure fluctuation at impeller outlet of a centrifugal pump. Sci. Technol. Nucl. Install. 2022, 2022, 1758382. [Google Scholar] [CrossRef]
- Ren, X.M.; Fan, H.G.; Xie, Z.F.; Liu, B. Stationary stall phenomenon and pressure fluctuation in a centrifugal pump at partial load condition. Heat Mass Transfer 2019, 55, 2277–2288. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, D.S.; Yang, X.Q.; Xu, B.; Zhao, X.T.; Van Esch, B.P.M. Study on the flow pattern and pressure fluctuation in a vertical volute centrifugal pump with vaned diffuser under near stall conditions. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 118. [Google Scholar] [CrossRef]
- Alubokin, A.A.; Gao, B.; Zhang, N.; Yan, L.L.; Jiang, J.X.; Quaye, E.K. Numerical simulation of complex flow structures and pressure fluctuation at rotating stall conditions within a centrifugal pump. Energy Sci. Eng. 2022, 10, 2146–2169. [Google Scholar] [CrossRef]
- Zhao, X.R.; Xiao, Y.X.; Wang, Z.W.; Luo, Y.Y.; Cao, L. Unsteady flow and pressure pulsation characteristics analysis of rotating stall in centrifugal pumps under off design conditions. J. Fluids Eng. 2018, 140, 021105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Gao, B.; Ni, D.; Liu, X.K. Coherence analysis to detect unsteady rotating stall phenomenon based on pressure pulsation signals of a centrifugal pump. Mech. Syst. Signal. Pr. 2021, 148, 107161. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhu, Z.C.; Dou, H.S.; Cui, B.L.; Li, Y. Influence of pumped medium on startup performance of centrifugal pump. Int. J. Fluid Mech. Res. 2015, 42, 13–25. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhu, Z.C.; Dou, H.S.; Cui, B.L.; Li, Y.; Zhou, Z.Z. Numerical investigation of transient flow in a prototype centrifugal pump during startup period. Int. J. Turbo. Jet. Eng. 2017, 34, 167–176. [Google Scholar] [CrossRef]
- Li, Q.; Ma, X.; Wu, P.; Yang, S.; Huang, B.; Wu, D.Z. Study on the transient characteristics of the centrifugal pump during the startup period with assisted valve. Processes 2020, 8, 1241. [Google Scholar] [CrossRef]
- Ye, D.X.; Wu, J.C.; Liu, A.L.; Chen, J.L.; Zhai, F.L.; Lai, X.D. Investigation of unsteady pressure pulsations of reactor coolant pump passage under flow coast-down. Machines 2023, 11, 55. [Google Scholar] [CrossRef]
- Liu, S.F.; Cao, H.F.; Chen, Y.X.; Ni, S.W.; Zhao, G.F.; Jiang, C.X. Numerical examination of the dynamic evolution of fluctuations in cavitation and pressure in a centrifugal pump during startup. Machines 2023, 11, 67. [Google Scholar] [CrossRef]
- Ye, W.X.; Qian, Z.D.; Huang, R.F.; Li, X.J.; Zhu, Z.C.; Luo, X.W. Instability analysis for a centrifugal pump with straight inlet pipe using partially averaged Navier–Stokes model. Proc. Inst. Mech. Eng. Part A 2020, 235, 211–226. [Google Scholar] [CrossRef]
- Ye, W.X.; Li, X.J.; Zhu, Z.C.; Luo, X.W. Effect of the flow upstream the impeller inlet on flow instability of a centrifugal pump. In Proceedings of the 2nd IAHR-Asia Symposium on Hydraulic Machinery and Systems, Busan, South Korea, 24–25 September 2019. [Google Scholar]
- Wang, Y.C.; Tan, L.; Zhu, B.S.; Cao, S.L.; Wang, B.H. Numerical investigation of influence of inlet guide vanes on unsteady flow in a centrifugal pump. Proc. Inst. Mech. Eng. Part C 2015, 229, 3405–3416. [Google Scholar]
- Lin, P.F.; Li, Y.Z.; Xu, W.B.; Chen, H.; Zhu, Z.C. Numerical study on the influence of inlet guide vanes on the internal flow characteristics of centrifugal pump. Processes 2020, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; Tan, L.; Liu, M.; Hao, Y.; Xu, Y. Influence of prewhirl angle and axial distance on energy performance and pressure fluctuation for a centrifugal pump with inlet guide vanes. Energies 2017, 10, 695. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tan, L.; Cao, S.L. Influence of geometry of inlet guide vanes on pressure fluctuations of a centrifugal pump. J. Fluids Eng. 2018, 140, 091204. [Google Scholar] [CrossRef]
- Song, Y.; Fan, H.G.; Zhang, W.; Xie, Z.F. Flow characteristics in volute of a double-suction centrifugal pump with different impeller arrangements. Energies 2019, 12, 669. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.Q.; Zhu, D.S.; Luo, M.H.; Chang, A.L.; Wu, P.; Guo, C.L. Investigation on the pressure fluctuation characteristics for a regenerative flow pump under different blade arrangements. J. Fluids Eng. 2022, 144, 101208. [Google Scholar] [CrossRef]
- Shim, H.S.; Kim, K.Y. Effects of the number of blades on impeller-volute interaction and flow instability of a centrifugal pump. Proc. Inst. Mech. Eng. Part A 2022, 236, 1500–1517. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, S.Q.; Liu, J.R.; Zhang, F.; Tao, J.P. The influence of the blade thickness on the pressure pulsations in a ceramic centrifugal slurry pump with annular volute. Proc. Inst. Mech. Eng. Part A 2017, 231, 415–431. [Google Scholar] [CrossRef]
- Zhang, J.F.; Li, G.D.; Mao, J.Y.; Yuan, S.Q.; Qu, Y.F.; Jia, J. Numerical investigation of the effects of splitter blade deflection on the pressure pulsation in a low specific speed centrifugal pump. Proc. Inst. Mech. Eng. Part A 2019, 234, 420–432. [Google Scholar] [CrossRef]
- Kuang, R.F.; Zhang, Z.M.; Wang, S.L.; Chen, X.P. Effect of hub inclination angle on internal and external characteristics of centrifugal pump impellers. AIP Advances 2021, 11, 025043. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Chen, F.X.; Ma, Z.; He, J.W.; Liu, H.; Liu, C. Research on improving the dynamic performance of centrifugal pumps with twisted gap drainage blades. J. Fluids Eng. 2019, 141, 091101. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Xu, H.; Shi, W.D.; Yang, Y.; Wang, W.H.; Zhou, L. Experimental and numerical investigation of pressure fluctuation in a low-specific-speed centrifugal pump with a gap drainage impeller. Shock Vib. 2021, 2021, 5571178. [Google Scholar] [CrossRef]
- Zeng, Y.S.; Yao, Z.F.; Tao, R.; Liu, W.C.; Xiao, R.F. Effects of lean mode of blade trailing edge on pressure fluctuation characteristics of a vertical centrifugal pump with vaned diffuser. J. Fluids Eng. 2021, 143, 111201. [Google Scholar] [CrossRef]
- Patil, S.R.; Chavan, S.T.; Jadhav, N.S.; Vadgeri, S.S. Effect of volute tongue clearance variation on performance of centrifugal blower by numerical and experimental analysis. Mater. Today Proc. 2018, 5, 3883–3894. [Google Scholar] [CrossRef]
- Shen, Z.; Han, W.; Zhong, Y.M.; Luo, B.; Li, R.N.; Chu, W.L. Influence of grooved volute casing parameters on pressure pulsation and erosion wear characteristics in a centrifugal pump. Mod. Phys. Lett. B 2022, 36, 2150556. [Google Scholar] [CrossRef]
- Li, Y.Q.; Yuan, S.W.; Lai, H.X. Numerical study of unsteady flows with cavitation in a high-speed micro centrifugal pump. J. Therm. Sci. 2017, 26, 18–24. [Google Scholar] [CrossRef]
- Liu, H.L.; Luo, K.K.; Wu, X.F.; Chen, H.L.; Wang, K. Effect of inlet splitter on pressure fluctuations in a double-suction centrifugal pump. J. Vibroeng. 2017, 19, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.Y.; Yao, Z.F.; Li, D.M.; Xiao, R.F.; Wang, F.J.; He, C.L. Experimental investigation of transient characteristics of a double suction centrifugal pump system during starting period. Energies 2019, 12, 4135. [Google Scholar] [CrossRef] [Green Version]
- Binama, M.; Su, W.T.; Cai, W.H.; Li, X.B.; Muhirwa, A.; Li, B.; Bisengimana, E. Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions. Renew. Energ. 2019, 136, 33–47. [Google Scholar] [CrossRef]
- Chai, B.D.; Yang, J.H.; Wang, X.H.; Jiang, B.X. Pressure fluctuation characteristics analysis of centrifugal pump as turbine in its start-up process. Actuators 2022, 11, 132. [Google Scholar] [CrossRef]
- Bruurs, K.A.J.; Van Esch, B.P.M.; Van der Schoot, M.S.; Van der Zijden, E.J.J. Axial thrust prediction for a multi-stage centrifugal pump. In Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July–3 August 2017. [Google Scholar]
- Bruurs, K.A.J.; Van Esch, B.P.M.; Van der Schoot, M.S. Exit loss model for plain axial seals in multi-stage centrifugal pumps. In Proceedings of the ASME 2017 Fluids Engineering Division Summer Meeting, Fluids Engineering Division Summer Meeting, Waikoloa, HI, USA, 30 July–3 August 2017. [Google Scholar]
- Liu, H.L.; Ding, J.; Dai, H.W.; Tan, M.G. Investigation into transient flow in a centrifugal pump with wear ring clearance variation. Adv. Mech. Eng. 2014, 2014, 693097. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Wang, Z.; Yang, L.; Du, W.Q.; Wu, C.B. Analysis and test of performance and hydraulic excitation characteristics of centrifugal pump with different seal ring clearances. Trans. Chin. Soc. Agric. Eng. 2016, 32, 79–85. [Google Scholar]
- Gu, Y.D.; Pei, J.; Yuan, S.Q.; Zhang, J.F. A pressure model for open rotor–stator cavities an application to an adjustable-speed centrifugal pump with experimental validation. J. Fluids Eng. 2020, 142, 101301. [Google Scholar] [CrossRef]
- Zheng, L.L.; Chen, X.P.; Zhang, W.; Zhu, Z.C.; Qu, J.L.; Wang, M.M.; Ma, X.J.; Cheng, X.L. Investigation on characteristics of pressure fluctuation in a centrifugal pump with clearance flow. J. Mech. Sci. Technol. 2020, 34, 3657–3666. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Z.; Xiao, Y.; Luo, Y. Numerical investigation of pressure fluctuation characteristics in a centrifugal pump with variable axial clearance. Int. J. Rotating Mach. 2016, 2016, 9306314. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Xiao, Y.X.; Wang, Z.W.; Luo, Y.Y.; Zhao, X. Pressure fluctuation characteristics in the sidewall gaps of a centrifugal dredging pump. Eng. Computation. 2017, 34, 1054–1069. [Google Scholar] [CrossRef]
- Liu, H.L.; Xia, R.C.; Wang, K.; Jing, Y.C.; He, X.H. Experimental analysis on pressure fluctuation characteristics of a centrifugal pump with vaned-diffuser. Water 2019, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Chu, W.L. Numerical investigation of fluid flow mechanism in the back shroud cavity of a centrifugal pump. J. Appl. Fluid Mech. 2018, 11, 709–719. [Google Scholar] [CrossRef]
- Dong, W.; Chu, W.L. Numerical investigation of the fluid flow characteristics in the hub plate crown of a centrifugal pump. Chin. J. Mech. Eng. 2018, 31, 64. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Liu, Z.; Zhang, H.C.; Zhang, G.; Jiang, H.Q.; Li, P.X. Effects of the balance hole diameter on the flow characteristics of the rear chamber and the disk friction loss in the centrifugal pump. Processes 2022, 10, 613. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Cao, S.L. Performance prediction and geometry optimization for application of pump as turbine: A review. Front. Energy Res. 2022, 9, 818118. [Google Scholar] [CrossRef]
- Lin, T.; Li, X.J.; Zhu, Z.C.; Xie, R.H.; Lin, Y.P. Investigation of flow separation characteristics in a pump as turbines impeller under the best efficiency point condition. J. Fluids Eng. 2021, 143, 061204. [Google Scholar] [CrossRef]
- Hu, J.X.; Su, X.H.; Huang, X.; Wu, K.X.; Jin, Y.Z.; Chen, C.G.; Chen, X.L. Hydrodynamic behavior of a pump as turbine under transient flow conditions. Processes 2022, 10, 408. [Google Scholar] [CrossRef]
- Wang, S.L.; Chen, X.P.; Li, X.J.; Cui, B.L.; Zhu, Z.C. Weak compressibility effects on the pressure fluctuation at RSI in a highspeed centrifugal pump. J. Mech. Sci. Technol. 2022, 36, 5047–5057. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.Y.; Wu, D.Z.; Yang, S.; Wu, P. Effect of suction and discharge conditions on the unsteady flow phenomena of axial-flow reactor coolant pump. Energies 2020, 13, 1592. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Li, Z.B.; Fu, J.G.; Lv, Y.T.; Ji, Q.W.; Jian, H.F. Numerical and experimental analysis of transient flow field and pressure pulsations of an axial-flow pump considering the pump–pipeline interaction. J. Therm. Sci. 2022, 10, 258. [Google Scholar] [CrossRef]
- Liu, Y.B.; Han, Y.D.; Tan, L.; Wang, Y.M. Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode. Energy 2020, 206, 118084. [Google Scholar] [CrossRef]
- Zhang, J.S.; Tan, L. Energy performance and pressure fluctuation of a multiphase pump with different gas volume fractions. Energies 2018, 11, 1216. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; He, X.K.; Shi, W.D.; Wang, X.K.; Wang, X.L.; Qiu, N. Numerical study on pressure fluctuation of a multistage centrifugal pump based on whole flow field. AIP Advances 2019, 9, 035118. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.L.; Chao, L.; Guo, J.; Zhu, Z.C.; Cui, B.L. Flow characteristics and energy loss of a multistage centrifugal pump with blade-type guide vanes. J. Therm. Sci. 2022, 10, 180. [Google Scholar] [CrossRef]
- Zhang, J.S.; Fan, H.G.; Zhang, W.; Xie, Z.F. Energy performance and flow characteristics of a multiphase pump with different tip clearance sizes. Adv. Mech. Eng. 2019, 11, 1–14. [Google Scholar] [CrossRef]
- Yu, H.T.; Zhang, Z.G.; Hua, H.X. Numerical investigation of tip clearance effects on propulsion performance and pressure fluctuation of a pump-jet propulsor. Ocean Eng. 2019, 192, 106500. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, D.S.; Xu, B.; Shi, W.D.; Van Esch, B.P.M. Experimental and numerical investigation on the effect of tip leakage vortex induced cavitating flow on pressure fluctuation in an axial flow pump. Renewable Energy 2021, 163, 1195–1209. [Google Scholar]
- Shi, L.J.; Yuan, Y.; Jiao, H.F.; Tang, F.P.; Cheng, L.; Yang, F.; Jin, Y.; Zhu, J. Numerical investigation and experiment on pressure pulsation characteristics in a full tubular pump. Renewable Energy 2021, 163, 987–1000. [Google Scholar] [CrossRef]
- Lu, J.X.; Luo, Z.Y.; Chen, Q.; Liu, X.B.; Zhu, B.S. Study on pressure pulsation induced by cavitation at the tongue of the volute in a centrifugal pump. Arab. J. Sci. Eng. 2022, 47, 16033–16048. [Google Scholar] [CrossRef]
- Posa, A. LES study on the influence of the diffuser inlet angle of a centrifugal pump on pressure fluctuations. Int. J. Heat Fluid Flow 2021, 89, 108804. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, B.; Wang, X.J.; Liu, X.K.; Ni, D. Effects of cutting the blade on the performance and pressure pulsation of a centrifugal pump. Energy Sci. Eng. 2020, 8, 1510–1523. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Jiang, J.X.; Gao, B.; Liu, X.K. DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump. Renew. Energ. 2020, 153, 193–204. [Google Scholar] [CrossRef]
- Lu, J.X.; Chen, Q.; Liu, X.B.; Zhu, B.S.; Yuan, S.Q. Investigation on pressure fluctuations induced by flow instabilities in a centrifugal pump. Ocean Eng. 2022, 258, 111805. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Qian, Z.D.; Lu, J.; Wu, P.F. Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump. Energy 2019, 170, 212–227. [Google Scholar] [CrossRef]
- Li, X.J.; Zhu, Z.C.; Li, Y.; Chen, X.P. Experimental and numerical investigations of head-flow curve instability of a single-stage centrifugal pump with volute casing. Proc. Inst. Mech. Eng. Part A 2016, 230, 633–647. [Google Scholar] [CrossRef]
- Jiang, C.X.; Wang, X.; Kang, N.X.; Zhang, X.Y.; Shuai, Z.J.; Li, W.Y. Numerical study on transient dynamics in a centrifugal pump considering clearance flow. In Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers, Montreal, Canada, 15–20 July 2018. [Google Scholar]
- Zhao, W.G.; Li, Y.B.; Wang, X.Y.; Sun, J.P.; Wu, G.X. Research on the effect of wear-ring clearances to the performance of centrifugal pump. In Proceedings of the 26th IAHR Symposium on Hydraulic Machinery and Systems, Beijing, China, 19–23 August 2012. [Google Scholar]
- DaqiqShirazi, M.; Torabi, R.; Riasi, A.; Nourbakhsh, S.A. The effect of wear ring clearance on flow field in the impeller sidewall gap and efficiency of a low specific speed centrifugal pump. Proc. Inst. Mech. Eng. Part C 2017, 232, 3062–3073. [Google Scholar] [CrossRef]
- Shi, W.D.; Gao, X.F.; Zhang, Q.H.; Zhang, D.S.; Ye, D.X. Numerical investigations on effect of wear-ring clearance on performance of a submersible well pump. Adv. Mech. Eng. 2017, 9, 1687814017704155. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Wang, Z.; Yang, L.; Du, W.Q.; Li, C.J. Effect of wear-ring clearance on performance and flow characteristics of centrifugal pump. J. Drain. Irrig. Mach. Eng. 2017, 35, 13–17. [Google Scholar]
- Yang, C.X.; Qiang, P.; An, S.; Xu, N.; Liu, J.N. Effect of wear-ring clearance on performance of high-speed centrifugal pump. J. Drain. Irrig. Mach. Eng. 2017, 35, 18–24. [Google Scholar]
- Yan, J.R.; Zuo, Z.T.; Guo, W.B.; Hou, H.C.; Zhou, X.; Chen, H.S. Influences of wear-ring clearance leakage on performance of a small-scale pump-turbine. Proc. Inst. Mech. Eng. Part A 2019, 234, 454–469. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Y.Y.; Wang, Z.W.; Xiao, Y.X.; Liu, R.X. Effect of axial clearance on the efficiency of a shrouded centrifugal pump. J. Fluids Eng. 2015, 137, 071101. [Google Scholar]
- Dong, W.; Chu, W.L.; Liu, Z.L. Influences of the diameter of the balance hole on the flow characteristics in the hub cavity of the centrifugal pump. J. Hydrodyn. 2019, 31, 1060–1068. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, M.G.; Gao, B.; Li, Z.; Ni, D. Experimental investigation on unsteady pressure pulsation in a centrifugal pump with special slope volute. J. Fluids Eng. 2015, 137, 061103. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, M.G.; Gao, B.; Li, Z.; Ni, D. Experimental and numerical analysis of unsteady pressure pulsation in a centrifugal pump with slope volute. J. Mech. Sci. Technol. 2015, 29, 4231–4238. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, N.; Li, Z.; Ni, D.; Yang, M.G. Influence of the blade trailing edge profile on the performance and unsteady pressure pulsations in a low specific speed centrifugal pump. J. Fluids Eng. 2016, 138, 051106. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.K.; Gao, B.; Wang, X.J.; Xia, B. Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump. Int. J. Heat Fluid Flow 2019, 75, 227–238. [Google Scholar] [CrossRef]
- Wu, C.S.; Zhang, W.Q.; Wu, P.; Yi, J.L.; Ye, H.J.; Huang, B.; Wu, D.Z. Effects of blade pressure side modification on unsteady pressure pulsation and flow structures in a centrifugal pump. J. Fluids Eng. 2021, 143, 111208. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, B.; Alubokin, A.A.; Li, G.P. Effects of the hydrofoil blade on the pressure pulsation and jet-wake flow in a centrifugal pump. Energy Sci. Eng. 2021, 9, 588–601. [Google Scholar] [CrossRef]
- Huan, B.; Zeng, G.T.; Qian, B.; Wu, P.; Shi, P.L.; Qian, D.Q. Pressure fluctuation reduction of a centrifugal pump by blade trailing edge modification. Processes 2021, 9, 1408. [Google Scholar] [CrossRef]
- Lin, Y.P.; Li, X.J.; Li, B.W.; Jia, X.Q.; Zhu, Z.C. Influence of impeller sinusoidal tubercle trailing-edge on pressure pulsation in a centrifugal pump at nominal flow rate. J. Fluids Eng. 2021, 143, 091205. [Google Scholar] [CrossRef]
- Jiang, J.J.; Zhang, N.; Liu, X.K.; Gao, B.; Cao, P.Y. Effect of the staggered impeller on reducing unsteady pressure pulsations of a centrifugal pump. Energy Sci. Eng. 2021, 10, 194–207. [Google Scholar] [CrossRef]
- Li, Q.Q.; Li, S.Y.; Wu, P.; Huang, B.; Wu, D.Z. Investigation on reduction of pressure fluctuation for a double-suction centrifugal pump. Chin. J. Mech. Eng. 2021, 34, 12. [Google Scholar] [CrossRef]
- Sonawat, A.; Kim, S.; Ma, S.B.; Kim, S.J.; Lee, J.B.; Yu, M.S.; Kim, J.H. Investigation of unsteady pressure fluctuations and methods for its suppression for a double suction centrifugal pump. Energy 2022, 252, 124020. [Google Scholar] [CrossRef]
- Zeng, Y.; Yao, Z.F.; Wang, F.J.; Xiao, R.F.; He, C.L. Experimental investigation on pressure fluctuation reduction in a double suction centrifugal pump: Influence of impeller stagger and blade geometry. J. Fluids Eng. 2020, 142, 041202. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, B.; Li, C.; Ni, D.; Li, G.P. Effects of the staggered blades on unsteady pressure pulsations and flow structures of a centrifugal pump. Proc. Inst. Mech. Eng. Part A 2021, 235, 1451–1462. [Google Scholar] [CrossRef]
- Cui, B.L.; Wang, Z.; Zhang, Y.B.; Han, X.T. Drag and pressure pulsation reduction of a low-specific-speed centrifugal pump by employing bionic structure. Mod. Phys. Lett. B 2022, 36, 2150611. [Google Scholar] [CrossRef]
- Lei, T.; Zhu, B.S.; Cao, S.L.; Bing, H.; Wang, Y.M. Influence of blade wrap angle on centrifugal pump performance by numerical and experimental study. Chin. J. Chem. Eng. 2014, 27, 171–177. [Google Scholar]
- Tan, L.W.; Shi, W.D.; Zhang, D.S.; Wang, C.; Zhou, L.; Mahmoud, E. Numerical and experimental investigations on the hydrodynamic radial force of single-channel pumps. J. Mech. Sci. Technol. 2018, 32, 4571–4581. [Google Scholar] [CrossRef]
- Song, Y.; Fan, H.G.; Huang, Z.W. Study on radial force characteristics of double-suction centrifugal pumps with different impeller arrangements under cavitation condition. Proc. Inst. Mech. Eng. Part A 2020, 235, 421–431. [Google Scholar] [CrossRef]
- Jin, F.Y.; Tao, R.; Wei, Z.C.; Wu, Y.Z.; Xiao, R.F. Investigation of the axial force on a varying-speed centrifugal pump impeller. Proc. Inst. Mech. Eng. Part A 2021, 236, 714–726. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Lin, Y.P.; Li, X.J.; Zhai, L.L.; Lin, T. Axial thrust instability analysis and estimation theory of high speed centrifugal pump. Phys. Fluids 2022, 34, 075118. [Google Scholar] [CrossRef]
- Wang, C.; Shi, W.D.; Zhang, L. Calculation formula optimization and effect of ring clearance on axial force of multistage pump. Math. Probl. Eng. 2013, 2013, 749375. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.L.; Chen, X.C.; Wang, D.W.; Hou, Y.H. Experiment and analysis of balance hole liquid leakage in centrifugal pump. Trans. Chin. Soc. Agric. Eng. 2017, 33, 67–74. [Google Scholar]
- Liu, Z.L.; Lu, W.Q.; Zhao, W.G.; Chen, T.L. Effect of balance holes and back blades on axial thrust of centrifugal pump. J. Drain. Irrig. Mach. Eng. 2019, 37, 834–840. [Google Scholar]
- Qian, C.; Yang, C.X.; Fu, Y.; Zhang, Y.; Hou, K.W. Influence of balance drum clearance on pressure of front cavity of first stage impeller and axial force of multistage pump. Trans. Chin. Soc. Agric. Eng. 2019, 35, 33–39. [Google Scholar]
- Dong, W.; Liu, Z.; Dong, Y.; Yang, Z.B.; Lu, Q.; Li, Q.W. Study on pressure distribution of pump chamber and axial force in particle-laden flow of centrifugal pump. Proc. Inst. Mech. Eng. Part A 2022, 236, 831–839. [Google Scholar] [CrossRef]
- Zhu, D.; Xiao, R.F.; Yao, Z.F.; Yang, W.; Liu, W.C. Optimization design for reducing the axial force of a vaned mixed-flow pump. Eng. Appl. Comp. Fluid 2020, 14, 882–896. [Google Scholar] [CrossRef]
- Song, Y.; Yu, Z.Y.; Shi, G.T.; Liu, X.B. Influence of impeller staggered arrangement on radial force and pressure fluctuation for a double-suction centrifugal pump. Adv. Mech. Eng. 2018, 10, 1687814018781467. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.L.; Li, J.C.; Zhang, C.L.; Zhang, Y.B. Analysis of radial force and vibration energy in a centrifugal pump. Math. Probl. Eng. 2020, 2020, 6080942. [Google Scholar] [CrossRef]
- Zhou, R.; Yang, J.; Liu, H.L.; Dong, L. Effect of volute geometry on radial force characteristics of centrifugal pump during startup. J. Appl. Fluid Mech. 2022, 15, 25–36. [Google Scholar]
- Deng, Q.F.; Pei, J.; Wang, W.J.; Lin, B.; Zhang, C.Y.; Zhao, J.T. Energy loss and radial force variation caused by impeller trimming in a double-suction centrifugal pump. Entropy 2021, 23, 1228. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Tan, L.W.; Shi, W.D.; Chen, C.; Francis, E.M. Research on influence of rotation center eccentricity on radial force of single-blade centrifugal pump. Water 2022, 14, 2252. [Google Scholar] [CrossRef]
References | Object | Brief Conclusion |
---|---|---|
Li et al. [42] | high-speed micro centrifugal pump | In cavitation or noncavitation conditions, the main frequency of pressure fluctuation is still dominated by the blade-passing frequency. |
Liu et al. [43] | double suction centrifugal pump | Inlet splitter can effectively reduce the intensity of pressure fluctuation. |
Jin et al. [44] | double suction centrifugal pump | Impeller types that are staggered in the circumferential direction may be beneficial for pressure fluctuations. |
Binama et al. [45] | pump as turbine | The blade-passing frequency and its harmonics are the main frequencies in the pump as turbine (PAT). Blade trailing edge positions may increase or decrease the pressure fluctuation intensity. |
Chai et al. [46] | pump as turbine | The pressure fluctuation amplitude is greatest at initial startup time. As the speed increases, the pressure fluctuation amplitude decays rapidly in the volute, but decays slowly in the impeller. |
References | Object | Brief Conclusion |
---|---|---|
Zhang et al. [69] | multiphase pump | The dominant frequency and maximum amplitude of pressure fluctuations increase with the increase in tip clearance. |
Yu et al. [70] | pump–jet propulsor | The pressure fluctuation amplitude on the blade surface increases significantly with the increase in tip clearance. |
Shen et al. [71] | axial flow pump | The rotation of the impeller dominates the pressure pulsations in tip region. |
Shi et al. [72] | full tubular pump | The dominant frequency of pressure pulsation in a full tubular pump decreases with the increase in flow rate, and the pressure pulsation at impeller inlet is dominated by blade-passing frequency. |
Lu et al. [73] | centrifugal pump | The main frequency amplitude of pressure fluctuation near the tongue gradually decreases with the occurrence and development of tongue cavitation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Chen, X.; Qu, J.; Ma, X. A Review of Pressure Fluctuations in Centrifugal Pumps without or with Clearance Flow. Processes 2023, 11, 856. https://doi.org/10.3390/pr11030856
Zheng L, Chen X, Qu J, Ma X. A Review of Pressure Fluctuations in Centrifugal Pumps without or with Clearance Flow. Processes. 2023; 11(3):856. https://doi.org/10.3390/pr11030856
Chicago/Turabian StyleZheng, Lulu, Xiaoping Chen, Jinglei Qu, and Xiaojie Ma. 2023. "A Review of Pressure Fluctuations in Centrifugal Pumps without or with Clearance Flow" Processes 11, no. 3: 856. https://doi.org/10.3390/pr11030856
APA StyleZheng, L., Chen, X., Qu, J., & Ma, X. (2023). A Review of Pressure Fluctuations in Centrifugal Pumps without or with Clearance Flow. Processes, 11(3), 856. https://doi.org/10.3390/pr11030856