Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis
Abstract
:1. Introduction
2. Ammonia Wastewater Utilization for Energy Recovery
2.1. Electricity Generation via Low-Temperature Ammonia Fuel Cells
2.2. Noble-Metal-Free Catalysts for the AOR
3. Nitrate Wastewater Utilization for Energy Recovery
3.1. Ethanol–Nitrate Fuel Cell
3.2. Ammonia–Nitrate Fuel Cell
4. Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erisman, J.W. How ammonia feeds and pollutes the world. Science 2021, 374, 685–686. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.-X.; Wernick, D.G.; Liao, J.C. Toward nitrogen neutral biofuel production. Curr. Opin. Biotechnol. 2012, 23, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.E.; Allen, M.S.; Laser, M.; Lynd, L.R. Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuels Bioprod. Biorefining 2009, 3, 219–230. [Google Scholar] [CrossRef]
- Lan, R.; Irvine, J.T.S.; Tao, S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Interna-Tional J. Hydrog. Energy 2012, 37, 1482–1494. [Google Scholar] [CrossRef]
- Morrissy, J.G.; Currell, M.J.; Reichman, S.M.; Surapaneni, A.; Megharaj, M.; Crosbie, N.D.; Hirth, D.; Aquilina, S.; Ra-jendram, W.; Ball, A.S. Nitrogen contamination and bioremediation in groundwater and the environment: A review. Earth-Sci. Rev. 2021, 222, 103816. [Google Scholar] [CrossRef]
- Jauzein, C.; Couet, D.; Blasco, T.; Lemée, R. Uptake of dissolved inorganic and organic nitrogen by the benthic toxic di-noflagellate Ostreopsis cf. ovata. Harmful Algae 2017, 65, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Provins, A.; Holland, M.; Mills, G.; Hayes, F.; Emmett, B.; Hall, J.; Sheppard, L.; Smith, R.; Sutton, M.; et al. A review and application of the evidence for nitrogen impacts on eco-system services. Ecosyst. Serv. 2014, 7, 76–88. [Google Scholar] [CrossRef] [Green Version]
- Townsend, A.R.; Howarth, R.W.; Bazzaz, F.A.; Booth, M.S.; Cleveland, C.C.; Collinge, S.K.; Dobson, A.P.; Epstein, P.R.; Holland, E.A.; Keeney, D.R.; et al. Human health effects of a changing global nitrogen cycle. Front. Ecol. Environ. 2003, 1, 240–246. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, Y.; Huang, D.; Fan, J.; Du, R. Enhanced Nitrogen Removal from Domestic Wastewater by Par-tial-Denitrification/Anammox in an Anoxic/Oxic Biofilm Reactor. Processes 2022, 10, 109. [Google Scholar] [CrossRef]
- Chys, M.; Declerck, W.; Audenaert, W.T.M.; Van Hulle, S.W.H. UV/H2O2, O3 and (photo-) Fenton as treatment prior to granular activated carbon filtration of biologically stabilized landfill leachate. J. Chem. Technol. Biotechnol. 2015, 90, 525–533. [Google Scholar] [CrossRef]
- Prüsse, U.; Hähnlein, M.; Daum, J.; Vorlop, K.-D. Improving the catalytic nitrate reduction. Catal. Today 2000, 55, 79–90. [Google Scholar] [CrossRef]
- Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214. [Google Scholar] [CrossRef]
- Mandal, P.; Dubey, B.K.; Gupta, A.K. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope. Waste Manag. 2017, 69, 250–273. [Google Scholar] [CrossRef]
- Fellah Jahromi, A.; Elektorowicz, M. Modified electrochemical processes for industrial-scale treatment of wastewater having high TKN content. Electrochim. Acta 2020, 354, 136724. [Google Scholar] [CrossRef]
- Jeerh, G.; Zhang, M.; Tao, S. Recent progress in ammonia fuel cells and their potential applications. J. Mater. Als Chem. A 2021, 9, 727–752. [Google Scholar] [CrossRef]
- Rollinson, A.N.; Jones, J.; Dupont, V.; Twigg, M.V. Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ. Sci. 2011, 4, 1216–1224. [Google Scholar] [CrossRef] [Green Version]
- Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct Electrolytic Splitting of Seawater: Opportunities and Challenges. ACS Energy Lett. 2019, 4, 933–942. [Google Scholar] [CrossRef]
- Estejab, A.; Daramola, D.A.; Botte, G.G. Mathematical model of a parallel plate ammonia electrolyzer for combined wastewater remediation and hydrogen production. Water Res. 2015, 77, 133–145. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Kou, Y.; Liu, Z.; Chen, X.; Li, Y.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. J. Mater. Chem. A 2016, 4, 11060–11068. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Pillai, H.S.; Lattimer, J.; Mohd Adli, N.; Karakalos, S.; Chen, M.; Guo, L.; Xu, H.; Yang, J.; et al. Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation. ACS Catal. 2020, 10, 3945–3957. [Google Scholar] [CrossRef]
- Li, Y.; Pillai, H.S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q.; Karakalos, S.; Chen, M.; Yang, J.; et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460. [Google Scholar] [CrossRef]
- Barbosa, J.R.; Leon, M.N.; Fernandes, C.M.; Antoniassi, R.M.; Alves, O.C.; Ponzio, E.A.; Silva, J.C.M. PtSnO2/C and Pt/C with preferential (100) orientation: High active electrocatalysts for ammonia electro-oxidation reaction. Appl. Catal. B Environ. 2020, 264, 118458. [Google Scholar] [CrossRef]
- Jing, H.; Yang, H.; Yu, X.; Hu, C.; Li, R.; Li, H. Treatment of organic matter and ammonia nitrogen in wastewater by elec-trocatalytic oxidation: A review of anode material preparation. Environ. Sci. Water Res. Technol. 2022, 8, 226–248. [Google Scholar] [CrossRef]
- Xu, W.; Lan, R.; Du, D.; Humphreys, J.; Walker, M.; Wu, Z.; Wang, H.; Tao, S. Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 2017, 218, 470–479. [Google Scholar] [CrossRef]
- Xu, W.; Du, D.; Lan, R.; Humphreys, J.; Miller, D.N.; Walker, M.; Wu, Z.; Irvine, J.T.S.; Tao, S. Electrodeposited NiCu bi-metal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 2018, 237, 1101–1109. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, P.; Jeerh, G.; Chen, S.; Shields, J.; Wang, H.; Tao, S. Electricity Generation from Ammonia in Landfill Leachate by an Alkaline Membrane Fuel Cell Based on Precious-Metal-Free Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 12817–12824. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wang, Y.F.; Kwok, Y.H.; Wu, Z.C.; Xia, D.H.; Leung, D.Y.C. A Direct Ammonia Microfluidic Fuel Cell using NiCu Nanoparticles Supported on Carbon Nanotubes as an Electrocatalyst. ChemSusChem 2018, 11, 2889–2897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, W.; Wang, H.; Tong, X.; Wang, Y.; Yang, X.; Wu, Z.; Liu, Z. A core-shell NiCu@NiCuOOH 3D electrode induced by surface electrochemical reconstruction for the ammonia oxidation reaction. Int. J. Hydrog. Energy 2022, 47, 16080–16091. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Jeerh, G.; Zou, P.; Sun, B.; Walker, M.; Xie, K.; Tao, S. A symmetric direct ammonia fuel cell using ternary NiCuFe alloy embedded in a carbon network as electrodes. J. Mater. Chem. A 2022, 10, 18701–18713. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Y.; Xi, S.; Diao, C.; Yu, Z.; Lee, W.S.V.; Xue, J. Deciphering NH3 Adsorption Kinetics in Ternary Ni–Cu–Fe Oxyhydroxide toward Efficient Ammonia Oxidation Reaction. Small 2021, 17, 2005616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, H.; Tong, X.; Zhou, L.; Yang, X.; Wang, Y.; Zhang, M.; Wu, Z. Sulfur induced surface reconfiguration of Ni1Cu3-S-T/CP anode for high-efficiency ammonia electro-oxidation. Chem. Eng. J. 2023, 452, 139582. [Google Scholar] [CrossRef]
- Zhang, M.; Li, H.; Duan, X.; Zou, P.; Jeerh, G.; Sun, B.; Chen, S.; Humphreys, J.; Walker, M.; Xie, K.; et al. An Efficient Symmetric Electrolyzer Based On Bifunctional Perovskite Catalyst for Ammonia Electrolysis. Adv. Sci. 2021, 8, 2101299. [Google Scholar] [CrossRef]
- Jeerh, G.; Zou, P.; Zhang, M.; Chen, S.; Humphreys, J.; Tao, S. Electrooxidation of ammonia on A-site deficient perov-skite oxide La0.9Ni0.6Cu0.35Fe0.05O3−δ for wastewater treatment. Sep. Purif. Technol. 2022, 297, 121451. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, P.; Jeerh, G.; Sun, B.; Walker, M.; Tao, S. Oxygen Vacancy-Rich La0.5Sr1.5Ni0.9Cu0.1O4–δ as a High-Performance Bifunctional Catalyst for Symmetric Ammonia Electrolyzer. Adv. Funct. Mater. 2022, 32, 2204881. [Google Scholar] [CrossRef]
- Zou, P.; Chen, S.; Lan, R.; Humphreys, J.; Jeerh, G.; Tao, S. Investigation of perovskite oxide SrFe0.8Cu0.1Nb0.1O3−δ as cathode for a room temperature direct ammonia fuel cell. Int. J. Hydrog. Energy 2019, 44, 26554–26564. [Google Scholar] [CrossRef]
- Jeerh, G.; Zou, P.; Zhang, M.; Tao, S. Perovskite oxide LaCr0.25Fe0.25Co0.5O3−δ as an efficient non-noble cathode for direct ammonia fuel cells. Appl. Catal. B Environ. 2022, 319, 121919. [Google Scholar] [CrossRef]
- Zou, P.; Chen, S.; Lan, R.; Tao, S. Investigation of Perovskite Oxide SrCo0.8Cu0.1Nb0.1O3–δ as a Cathode Material for Room Temperature Direct Ammonia Fuel Cells. ChemSusChem 2019, 12, 2788–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Xiao, Q.; Xiao, D.; Wang, Z.; Gui, F.; Lei, Y.; Ni, J.; Yang, D.; Zhang, C.; Ming, P. Synthesis of Anti-poisoning Spinel Mn–Co–C as Cathode Catalysts for Low-Temperature Anion Exchange Membrane Direct Ammonia Fuel Cells. ACS Appl. Mater. Interfaces 2021, 13, 53945–53954. [Google Scholar] [CrossRef]
- Cucu, A.; Tiliakos, A.; Tanase, I.; Serban, C.E.; Stamatin, I.; Ciocanea, A.; Nichita, C. Microbial Fuel Cell for Nitrate Reduc-tion. Energy Procedia 2016, 85, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Oon, Y.S.; Ong, S.A.; Ho, L.N.; Wong, Y.S.; Oon, Y.L.; Lehl, H.K.; Thung, W.E. Microbial fuel cell operation using nitrate as terminal electron acceptor for simultaneous organic and nutrient removal. Int. J. Environ. Sci. Technol. 2017, 14, 2435–2442. [Google Scholar] [CrossRef]
- Fang, C.; Min, B.; Angelidaki, I. Nitrate as an Oxidant in the Cathode Chamber of a Microbial Fuel Cell for Both Power Generation and Nutrient Removal Purposes. Appl. Biochem. Biotechnol. 2011, 164, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cheng, S.; Yang, J.; Li, C.; Sun, Y.; Cen, K. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells. Chem. Eng. J. 2018, 337, 661–670. [Google Scholar] [CrossRef]
- Feng, C.; Huang, L.; Yu, H.; Yi, X.; Wei, C. Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Res. 2015, 76, 160–170. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Bai, J.; Li, X.; Shen, Z.; Xia, L.; Chen, S.; Xu, Q.; Zhou, B. Total organic carbon and total nitrogen removal and simultaneous electricity generation for nitrogen-containing wastewater based on the catalytic reactions of hydroxyl and chlorine radicals. Appl. Catal. B Environ. 2018, 238, 168–176. [Google Scholar] [CrossRef]
- Ma, K.-B.; Han, S.-B.; Kwon, S.-H.; Kwak, D.-H.; Park, K.-W. High-performance direct ethanol fuel cell using nitrate reduc-tion reaction. Int. J. Hydrog. Energy 2018, 43, 17265–17270. [Google Scholar] [CrossRef]
- Xu, W.; Yang, X.; Zhang, H.; Wu, Z. PdCu/C Catalyst with Electricity Self-Generation via a Fuel Cell for Electroreduction of Nitrate. ACS Appl. Energy Mater. 2022, 5, 10767–10775. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W.; Feng, D.; Liu, Z.; Wu, Z. Self-powered denitration of landfill leachate through ammonia/nitrate cou-pled redox fuel cell reactor. Bioresour. Technol. 2016, 203, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Nangan, S.; Ding, Y.; Alhakemy, A.Z.; Liu, Y.; Wen, Z. Hybrid alkali-acid urea-nitrate fuel cell for degrading nitrogen-rich wastewater. Appl. Catal. B Environ. 2021, 286, 119892. [Google Scholar] [CrossRef]
- Giesbrecht, P.K.; Freund, M.S. Recent Advances in Bipolar Membrane Design and Applications. Chem. Mater. 2020, 32, 8060–8090. [Google Scholar] [CrossRef]
- Zhou, C.; Bai, J.; Zhang, Y.; Li, J.; Li, Z.; Jiang, P.; Fang, F.; Zhou, M.; Mei, X.; Zhou, B. Novel 3D Pd-Cu(OH)2/CF cathode for rapid reduction of nitrate-N and simultaneous total nitrogen removal from wastewater. J. Hazard. Mater. 2021, 401, 123232. [Google Scholar] [CrossRef]
- Su, L.; Li, K.; Zhang, H.; Fan, M.; Ying, D.; Sun, T.; Wang, Y.; Jia, J. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 2017, 120, 1–11. [Google Scholar] [CrossRef] [PubMed]
- van Langevelde, P.H.; Katsounaros, I.; Koper, M.T.M. Electrocatalytic Nitrate Reduction for Sustainable Ammonia Pro-duction. Joule 2021, 5, 290–294. [Google Scholar] [CrossRef]
- Zhou, C.; Li, J.; Zhang, Y.; Bai, J.; Li, L.; Mei, X.; Guan, X.; Zhou, B. Novel Denitrification Fuel Cell for Energy Recovery of Nitrate-N and TN Removal Based on NH4+ Generation on a CNW@CF Cathode. Environ. Sci. Technol. 2022, 56, 2562–2571. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; He, W.; Zhao, Y.; Wang, X. Lattice Boltzmann simulation of the structural degradation of a gas diffusion layer for a proton exchange membrane fuel cell. J. Power Sources 2023, 556, 232452. [Google Scholar] [CrossRef]
- Slade, R.; Bauen, A.; Gross, R. Global bioenergy resources. Nat. Clim. Chang. 2014, 4, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Rittmann, B. Opportunities for renewable bioenergy using microorganisms. Biotechnol. Bioeng. 2008, 100, 203–212. [Google Scholar] [CrossRef]
- Haberl, H.; Beringer, T.; Bhattacharya, S.; Erb, K.; Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sustain. 2010, 2, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Cho, K.; Rivera, J.; Monte, E.; Shen, C.; Yan, Y.; Liao, J. Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol. 2011, 29, 346–352. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Xu, W.; Jin, Y. Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis. Processes 2023, 11, 1096. https://doi.org/10.3390/pr11041096
Yu B, Xu W, Jin Y. Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis. Processes. 2023; 11(4):1096. https://doi.org/10.3390/pr11041096
Chicago/Turabian StyleYu, Binbin, Wei Xu, and Yanxian Jin. 2023. "Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis" Processes 11, no. 4: 1096. https://doi.org/10.3390/pr11041096
APA StyleYu, B., Xu, W., & Jin, Y. (2023). Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis. Processes, 11(4), 1096. https://doi.org/10.3390/pr11041096