The Process and Kinetics of Pesticide Desorption from Clay as a Function of Cleaning Polluted Waters
Abstract
:1. Introduction
Properties
2. Materials and Methods
Methods for Characterization
3. Results and Discussion
23 December 2020 PANalytical Results quantitative—Selected archive: Number of results Selected: | 20 | ||||||||
Seq. | Sample name (1–20) | Fe | SiO2 | MgO | Al2O3 | Ni | Co | CaO | Cr2O3 |
Fe | Si | Mg | Al | Ni | Co | Ca | Cr | ||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||
1 | 1-B | 5.96 | 46.31 | 6.13 | 5.91 | 0.07 | 0.01 | 8.50 | 0.44 |
2 | 2-B | 6.17 | 46.55 | 6.36 | 5.98 | 0.08 | 0.00 | 8.58 | 0.44 |
3 | 3-B | 6.60 | 44.53 | 6.45 | 6.34 | 0.08 | 0.00 | 8.51 | 0.45 |
4 | 4-B | 6.53 | 44.25 | 6.28 | 6.59 | 0.08 | 0.01 | 8.58 | 0.45 |
5 | 5-B | 6.38 | 44.50 | 6.28 | 6.52 | 0.07 | 0.01 | 8.60 | 0.44 |
6 | 6-B | 6.55 | 43.80 | 6.28 | 6.48 | 0.07 | 0.00 | 8.75 | 0.44 |
7 | 7-B | 4.36 | 30.51 | 4.01 | 3.76 | 0.07 | 0.01 | 5.28 | 0.43 |
8 | 8-B | 6.79 | 43.95 | 6.43 | 6.39 | 0.08 | 0.01 | 8.91 | 0.45 |
9 | 9-B | 6.66 | 43.48 | 6.49 | 6.63 | 0.08 | 0.00 | 8.87 | 0.45 |
10 | 10-B | 6.76 | 43.92 | 7.06 | 6.81 | 0.07 | 0.01 | 8.59 | 0.44 |
11 | 1-D | 5.38 | 48.68 | 6.09 | 5.02 | 0.07 | 0.01 | 9.86 | 0.47 |
12 | 2-D | 5.45 | 48.88 | 5.82 | 5.26 | 0.07 | 0.01 | 9.15 | 0.46 |
13 | 3-D | 5.49 | 48.67 | 5.81 | 5.15 | 0.07 | 0.00 | 9.73 | 0.46 |
14 | 4-D | 5.42 | 48.86 | 6.49 | 5.00 | 0.07 | 0.01 | 10.00 | 0.46 |
15 | 5-D | 5.53 | 48.87 | 5.82 | 4.98 | 0.08 | 0.01 | 9.75 | 0.46 |
16 | 6-D | 5.39 | 47.25 | 5.73 | 4.84 | 0.07 | 0.00 | 10.28 | 0.47 |
17 | 7-D | 5.33 | 48.91 | 6.01 | 5.00 | 0.07 | 0.01 | 10.59 | 0.47 |
18 | 8-D | 5.64 | 49.00 | 5.75 | 5.22 | 0.08 | 0.00 | 8.81 | 0.45 |
19 | 9-D | 5.63 | 48.85 | 5.98 | 5.45 | 0.07 | 0.00 | 9.19 | 0.45 |
20 | 10-D | 5.49 | 49.03 | 6.10 | 5.21 | 0.07 | 0.00 | 9.65 | 0.45 |
3.1. Electron Microscope for Scanning
3.2. Kinetics of the Desorption of Pesticides from Clay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaikosen, E.N.; Davidson, C.M.; Olu-Owolabi, B.I.; Gibson, L.T.; Agunbiade, F.O.; Kashimawo, A.J.; Adebowale, K.O. Kinetic and isotherm studies on the adsorption–desorption of technical-grade endosulfan in loamy soils under Theobroma cacao L cultivation, Southwestern Nigeria. Environ. Sci. Adv. 2023, 2, 257–277. [Google Scholar] [CrossRef]
- Rojas, R.; Repetto, G.; Morillo, J.; Usero, J. Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes. Toxics 2022, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shan, R.; Fan, Y.; Sun, X. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil. Environ. Sci. Pollut. Res. 2021, 28, 4503–4514. [Google Scholar] [CrossRef] [PubMed]
- Lizethly, C.-J.; Rodríguez-Becerra, J.; Garrido, C.; Escudey, M.; Barrientos, L.; Parra-Rivero, J.; Domínguez-Vera, V.; Loch-Arellano, B. Study of Sorption Kinetics and Sorption–Desorption Models to Assess the Transport Mechanisms of 2,4-Dichlorophenoxyacetic Acid on Volcanic Soils. Int. J. Environ. Res. Public. Health 2021, 18, 6264. [Google Scholar]
- Ahmad, K.S.; Rashid, N.; Azhar, S. Adsorption and desorption characteristics of chlorosulfuron in selected minerals and Pakistani soils. EJSS 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Chandra, R.; Srivastava, P.C. Kinetics of sorption-desorption of benfuracarb insecticide in mollisols. Pest Manag. Sci. 2011, 67, 209–212. [Google Scholar] [CrossRef]
- Otero, R.; Fernández, J.M.; González, M.A.; Pavlovic, I.; Ulibarri, M.A. Pesticides adsorption–desorption on Mg–Al mixed oxides. Kinetic modeling, competing factors and recyclability. Chem. Eng. J. 2013, 221, 214–221. [Google Scholar] [CrossRef]
- Torrents, A.; Jayasundera, S. The sorption of nonionic pesticides onto clays and the influence of natural organic carbon. Chemosphere 1997, 35, 1549–1565. [Google Scholar] [CrossRef]
- Lima, D.L.D.; Schneider, R.J.; Scherer, H.W.; Duarte, A.C.; Santos, E.B.H.; Esteves, V.I. Sorption−Desorption Behavior of Atrazine on Soils Subjected to Different Organic Long-Term Amendments. J. Agric. Food Chem. 2010, 58, 3101–3106. [Google Scholar] [CrossRef] [Green Version]
- Chorover, J.; Brusseau, M.L. Kinetics of Sorption—Desorption. In Kinetics of Water-Rock Interaction; Brantley, S.L., Kubicki, J.D., White, A.F., Eds.; Springer: New York, NY, USA, 2008; pp. 109–149. [Google Scholar]
- DeSutter, T.M.; Clay, S.A.; Clay, D.E. Atrazine Sorption and Desorption as Affected by Aggregate Size, Particle Size, and Soil Type. Weed Sci. 2003, 51, 456–462. [Google Scholar] [CrossRef]
- Young, H.A.; Mills, P.K.; Riordan, D.G.; Cress, R.D. Triazine Herbicides and Epithelial Ovarian Cancer Risk in Central California. J. Occup. Environ. Med. 2005, 47, 1148–1156. [Google Scholar] [CrossRef]
- Singh, A.K.; Cameotra, S.S. Adsorption and Desorption Behavior of Chlorotriazine Herbicides in the Agricultural Soils. J. Pet. Environ. Biotechnol. 2013, 4, 154. [Google Scholar] [CrossRef] [Green Version]
- Cortez, A.O.; Das Chagas, P.S.F.; Silva, T.S.; Silva, D.V.; Freitas, C.D.M.; Pamplona, J.d.P.; De Mesquita, H.C.; Souza, M.d.F. Sorption and desorption of ametryn in different types of soils. Biosci. J. 2019, 35, 1718–1787. [Google Scholar] [CrossRef]
- Morton, P.A.; Fennell, C.; Cassidy, R.; Doody, D.; Fenton, O.; Mellander, P.-E.; Jordan, P. A review of the pesticide MCPA in the land-water environment and emerging research needs. WIREs Water 2020, 7, e1402. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Abrol, I.P.; Finkl, C.W.; Kirkham, M.B.; Arbestain, M.C.; Macías, F.; Chesworth, W.; Germida, J.J.; Loeppert, R.H.; Cook, M.G.; et al. Solute Sorption-Desorption Kinetics. In Encyclopedia of Soil Science; Chesworth, W., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 739–744. [Google Scholar]
- Yu, H.; Liu, Y.; Shu, X.; Fang, H.; Sun, X.; Pan, Y.; Ma, L. Equilibrium, kinetic and thermodynamic studies on the adsorption of atrazine in soils of the water fluctuation zone in the Three-Gorges Reservoir. Environ. Sci. Eur. 2020, 32, 27. [Google Scholar] [CrossRef]
- Farcasanu, R.I.; Yamaguchi, T.; Moldrup, P.; Jonge, L.W.D.; Fukushima, T. Kinetics of Simazine Sorption on Soils and Soil Particle Size Fractions. Soils Found. 1999, 39, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Muendo, B.M.; Shikuku, V.O.; Getenga, Z.M.; Lalah, J.O.; Wandiga, S.O.; Rothballer, M. Adsorption-desorption and leaching behavior of diuron on selected Kenyan agricultural soils. Heliyon 2021, 7, e06073. [Google Scholar] [CrossRef]
- Morillo, E.; Undabeytia, T.; Cabrera, A.; Villaverde, J.; Maqueda, C. Effect of Soil Type on Adsorption−Desorption, Mobility, and Activity of the Herbicide Norflurazon. J. Agric. Food Chem. 2004, 52, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Shariff, R.M. Adsorption—Desorption of Metolachlorand 2,4-D on Agricultural Soils. Int. J. Sci. Eng. Res. 2011, 2, 1–11. [Google Scholar]
- Caceres-Jensen, L.; Rodriguez-Becerra, J.; Escudey, M.; Joo-Nagata, J.; Villagra, C.A.; Dominguez-Vera, V.; Neira-Albornoz, A.; Cornejo-Huentemilla, M. Nicosulfuron sorption kinetics and sorption/desorption on volcanic ash-derived soils: Proposal of sorption and transport mechanisms. J. Hazard. Mater. 2020, 385, 121576. [Google Scholar] [CrossRef]
- Boivin, A.; Cherrier, R.; Schiavon, M. Bentazone adsorption and desorption on agricultural soils. Agron. Sustain. Dev. 2005, 25, 309–315. [Google Scholar] [CrossRef]
- Kumar, M.; Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 2006, 62, 1064–1077. [Google Scholar] [CrossRef] [PubMed]
- Shariff, R.M.; Hassan, M.A. Kinetic Study of Adsorption-Desorption of Simazine on Agricultural Soils. Int. J. Eng. Res. Dev. 2012, 4, 1–9. [Google Scholar]
- Li, X.; Grey, T.; Price, K.; Vencill, W.; Webster, T. Adsorption, desorption and persistence of fomesafen in soil. Pest Manag. Sci. 2019, 75, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.S. Sorption-Desorption Characteristics of Benzimidazole Based Fungicide Benomyl on Physicochemical Properties of Selected Pakistani Soils and their Minerals: Fungicide Characteristics on Soil. Biol. Sci. PJSIR 2018, 61, 59–67. [Google Scholar] [CrossRef]
- Masini, J.C.; Abate, G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals 2021, 11, 1282. [Google Scholar] [CrossRef]
- Liu, C.; Zachara, J.M.; Smith, S.C.; McKinley, J.P.; Ainsworth, C.C. Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta 2003, 67, 2893–2912. [Google Scholar] [CrossRef] [Green Version]
- Kudlejova, L.; Risticevic, S.; Vuckovic, D. 7—Solid-Phase Microextraction Method Development. In Handbook of Solid Phase Microextraction; Pawliszyn, J., Ed.; Elsevier: Oxford, UK, 2012; pp. 201–249. [Google Scholar]
- Zhang, Y.; Meng, Y.; Liu, H.; Yang, M. First-principles study of water desorption from montmorillonite surface. J. Mol. Model 2016, 22, 105. [Google Scholar] [CrossRef]
- Srinivasan, R. Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water. Adv. Mater. Sci. Eng. 2011, 2011, e872531. [Google Scholar] [CrossRef] [Green Version]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Soliman, E.S.; Hassan, R.A.; Farid, D.S. The efficiency of natural-ecofriendly clay filters on water purification for improving performance and immunity in broiler chickens. Open Vet. J. 2021, 11, 483–499. [Google Scholar] [CrossRef]
- Undabeytia, T.; Shuali, U.; Nir, S.; Rubin, B. Applications of Chemically Modified Clay Minerals and Clays to Water Purification and Slow Release Formulations of Herbicides. Minerals 2021, 11, 9. [Google Scholar] [CrossRef]
- ElBastamy, E.; Ibrahim, L.A.; Ghandour, A.; Zelenakova, M.; Vranayova, Z.; Abu-Hashim, M. Efficiency of Natural Clay Mineral Adsorbent Filtration Systems in Wastewater Treatment for Potential Irrigation Purposes. Sustainability 2021, 13, 5738. [Google Scholar] [CrossRef]
- Awasthi, A.; Jadhao, P.; Kumari, K. Clay nano-adsorbent: Structures, applications and mechanism for water treatment. SN Appl. Sci. 2019, 1, 1076. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J.; O’Kelly, B.C. Review and critical examination of fine-grained soil classification systems based on plasticity. Appl. Clay Sci. 2021, 200, 105955. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 1–18. [Google Scholar]
- Fortnum, K. Where Does Clay Come From? Available online: https://www.katherinefortnumceramics.com/post/where-does-clay-come-from (accessed on 1 April 2023).
- Behrami, E.; Xhaxhiu, K.; Dragusha, B.; Reka, A.; Hajrulai-Musliu, Z.; Berisha, A.; Andoni, A.; Hamiti, X.; Drushku, S. Study of absorption and desorption of benalaxyl from natural and activated brari and dardha clay. Int. J. Ecosyst. Ecol. Sci. 2021, 11, 545–556. [Google Scholar] [CrossRef]
- Xhaxhiu, K.; Prifti, E.; Zitka, O. A case study of methomyl removal from aqueous solutions by four natural Albanian clays. Remediat. J. 2020, 30, 89–100. [Google Scholar] [CrossRef]
- Behrami, E.; Xhaxhiu, K.; Dragusha, B.; Reka, A.; Andoni, A.; Hamiti, X.; Drushku, S. The Removal of Atrazine and Benalaxyl by the Fly Ash Released from Kosovo A Power Plant. Int. J. Anal. Chem. 2022, 2022, 9945199. [Google Scholar] [CrossRef]
Region | pH | Density (g/cm3) | Surface (m2/g) | Porosity (%) |
---|---|---|---|---|
Brari | 7.5 | 2.77 | 42 | 0.490 |
Dardha | 7.6 | 2.78 | 89 | 0.564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behrami, E.; Avdiu, V. The Process and Kinetics of Pesticide Desorption from Clay as a Function of Cleaning Polluted Waters. Processes 2023, 11, 1180. https://doi.org/10.3390/pr11041180
Behrami E, Avdiu V. The Process and Kinetics of Pesticide Desorption from Clay as a Function of Cleaning Polluted Waters. Processes. 2023; 11(4):1180. https://doi.org/10.3390/pr11041180
Chicago/Turabian StyleBehrami, Esad, and Vahid Avdiu. 2023. "The Process and Kinetics of Pesticide Desorption from Clay as a Function of Cleaning Polluted Waters" Processes 11, no. 4: 1180. https://doi.org/10.3390/pr11041180
APA StyleBehrami, E., & Avdiu, V. (2023). The Process and Kinetics of Pesticide Desorption from Clay as a Function of Cleaning Polluted Waters. Processes, 11(4), 1180. https://doi.org/10.3390/pr11041180