SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SAR-AD Model Compound Study
3.2. SAR-AD Hydrocracker Relationships
Nr | ELSD Data (wt.%) | Sat | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | CH2Cl2 | Total Asph. | VR Sulfur | Conversion, wt.% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Arab Medium | 9.25 | 8.04 | 25.37 | 37.51 | 11.01 | 2.43 | 6.11 | 0.28 | 8.82 | 5.4 | 73.3 |
2 | Arab Heavy | 6.16 | 6.84 | 23.51 | 36.68 | 13.59 | 3.34 | 9.55 | 0.33 | 13.21 | 5.8 | 71.7 |
3 | Arab Light | 11.32 | 11.07 | 28.06 | 34.76 | 8.98 | 1.58 | 4.01 | 0.22 | 5.81 | 4.9 | 73.6 |
4 | Basra Light | 7.92 | 6.44 | 22.66 | 38.30 | 14.41 | 2.81 | 7.18 | 0.28 | 10.27 | 5.9 | 74.3 |
5 | Basra Heavy | 7.40 | 6.53 | 23.90 | 38.88 | 13.42 | 2.98 | 6.60 | 0.28 | 9.86 | 7.1 | 78.7 |
6 | Kirkuk | 9.52 | 6.61 | 23.34 | 39.16 | 10.20 | 2.28 | 8.39 | 0.49 | 11.15 | 5.9 | 74.1 |
7 | El-Bouri | 14.69 | 8.32 | 21.38 | 33.81 | 10.15 | 2.33 | 8.83 | 0.49 | 11.64 | 3.3 | 67.1 |
8 | Rhemoura | 15.69 | 7.57 | 18.52 | 36.03 | 11.40 | 1.90 | 8.45 | 0.43 | 10.78 | 1.8 | 63.3 |
9 | CPC | 39.63 | 10.55 | 18.08 | 22.38 | 7.02 | 0.44 | 1.64 | 0.24 | 2.33 | 2.1 | 70.1 |
10 | Azeri Light | 34.94 | 6.90 | 15.67 | 30.68 | 10.67 | 0.25 | 0.74 | 0.13 | 1.12 | 0.5 | 66.5 |
11 | Varandey | 31.06 | 7.14 | 15.83 | 27.86 | 13.08 | 1.60 | 3.21 | 0.20 | 5.01 | 1.7 | 65.5 |
12 | Sib Light | 21.15 | 9.45 | 19.42 | 32.17 | 13.38 | 1.30 | 2.94 | 0.14 | 4.38 | 1.6 | 65.6 |
13 | Urals-2 | 19.77 | 7.55 | 22.73 | 32.60 | 11.67 | 2.04 | 3.56 | 0.08 | 5.68 | 2.8 | 68.4 |
14 | Urals-1 | 18.24 | 7.04 | 20.75 | 33.04 | 13.98 | 2.43 | 4.43 | 0.09 | 6.95 | 3.0 | 68.0 |
15 | Imported AR | 7.96 | 7.34 | 26.36 | 39.33 | 12.06 | 2.09 | 4.71 | 0.15 | 6.95 | 3.3 | 68.8 |
16 | Prinos | 4.61 | 4.64 | 17.40 | 44.84 | 11.14 | 1.77 | 14.94 | 0.61 | 17.32 | 9.1 | 79.8 |
17 | H-Oil Feed blend 1 | 14.48 | 7.55 | 25.52 | 36.68 | 9.75 | 1.54 | 4.32 | 0.16 | 6.02 | 2.7 | 66.6 |
18 | H-Oil Feed blend 2 | 14.12 | 6.88 | 25.80 | 36.61 | 9.90 | 2.03 | 4.39 | 0.26 | 6.68 | 3.8 | 70.5 |
19 | H-Oil Feed blend 3 | 16.13 | 4.96 | 24.06 | 41.60 | 5.81 | 0.81 | 6.27 | 0.34 | 7.42 | 3.0 | 67.7 |
20 | H-Oil Feed blend 4 | 17.8 | 7.4 | 24.0 | 33.1 | 11.0 | 2.0 | 4.5 | 0.1 | 6.7 | 3.6 | 69.6 |
21 | H-Oil Feed blend 5 | 15.90 | 7.60 | 24.58 | 34.39 | 10.95 | 2.14 | 4.33 | 0.11 | 6.58 | 3.9 | 70.6 |
22 | H-Oil Feed blend 6 | 13.95 | 7.07 | 25.17 | 37.60 | 9.35 | 2.12 | 4.63 | 0.10 | 6.85 | 3.9 | 70.8 |
23 | Boscan | 1.55 | 1.89 | 12.35 | 26.60 | 23.39 | 8.14 | 25.57 | 0.50 | 34.20 | 6.0 | |
24 | Albanian | 1.20 | 2.01 | 17.46 | 41.53 | 12.88 | 5.54 | 18.65 | 0.64 | 24.83 | 8.7 | |
25 | Tempa Rossa | 0.75 | 2.12 | 18.35 | 44.24 | 10.87 | 4.48 | 18.40 | 0.67 | 23.55 | 9.3 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature:
SAR-ADTM | Saturates, aromatics, and resins—Asphaltene Determinator; |
SARA | Saturates, aromatics, resins, and asphaltenes; |
TLC/FID | Thin layer chromatography/flame ionization detection; |
HPLC | High performance liquid chromatography; |
ARO | Aromatics; |
ELSD | Evaporative light scattering detector; |
AD | Asphaltene Determinator; |
CH2Cl2 | Dichloromethane; |
CyC6 | Cyclohexane; |
ASTM | American Society for Testing and Materials; |
LNB | Lukoil Neftochim Bourgas; |
TBP | True boiling point; |
HTSD | High temperature simulated distillation; |
VR | Vacuum residue; |
FCC HCO | Fluid Catalityc Cracking Heavy Cycle Oil; |
H-Oil | Ebullated bed hydrocracking; |
CII | Colloidal instability index; |
MCII | Modified colloidal instability index; |
MI | Maltenes Index; |
SAT | Saturated; |
PAH | Polycyclic aromatic hydrocarbons; |
STM-AFM | Scanning tunneling microscopy coupled with atomic force microscopy; |
FCC | Fluid Catalityc Cracking; |
TSE | Total sediment existent |
ATB | Atmospheric tower bottom; |
LHSV | Liquid hourly space velocity, h−1; |
VTB | Vacuum tower bottom; |
IcrA | Intercriteria analysis; |
D15 | Density at 15 °C, g/m3; |
CCR | Conradson carbon content, wt.%; |
C7 asp. | n-heptane asphaltenes, wt.%; |
C5 asp. | n-pentane asphaltenes, wt.%; |
VIS | kin. viscosity at 80 °C of the blend: 70% VR/30% fluid catalytic cracking heavy cycle oil; |
Crude T50% | Boiling point of 50% of the evaporate from the crude oil, °C; |
VR T50% | Boiling point of 50% of the evaporate from the vacuum residue fraction, °C; |
TRX | Weight average bed temperature, °C. |
References
- Stratiev, D.; Shishkova, I.; Marinov, I.; Nikolaychuk, E.; Nedelchev, A.; Ivanova, N.; Yordanov, D.; Tankov, I.; Mitkova, M.; Stanulov, K.; et al. Effect of feedstock origin on conversion and yields of products from the ebullated bed vacuum residue hydrocracker. Neftepererab. I Neft. 2017, 10, 3–13. [Google Scholar]
- Prajapati, R.; Kohli, K.; Maity, S.K. Residue upgradation with slurry phase catalyst: Effect of feedstock properties. Fuel 2019, 239, 452–460. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Chen, S.-Z.; Li, C.A. A predictive kinetic model for delayed coking. Pet. Sci. Technol. 2007, 25, 1539–1548. [Google Scholar] [CrossRef]
- Ghashghaee, M. Thorough assessment of delayed coking correlations against literature data: Development of improved alternative models. React. Kinet. Mech. Catal. 2019, 126, 83–102. [Google Scholar] [CrossRef]
- Muñoz, J.A.D.; Aguilar, R.; Castañeda, L.C.; Ancheyta, J. Comparison of correlations for estimating product yields from delayed coking. Energy Fuels 2013, 27, 7179–7190. [Google Scholar] [CrossRef]
- Redelius, P.; Soenen, H. Relation between bitumen chemistry and performance. Fuel 2015, 27, 7179–7190. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Shishkova, I.K.; Dinkov, R.K.; Petrov, I.P.; Kolev, I.V.; Yordanov, D.; Sotirov, S.; Sotirova, E.; Atanassova, V.; Ribagin, S.; et al. Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents. Resources 2021, 10, 71. [Google Scholar] [CrossRef]
- Corbett, L.W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal. Chem. 1969, 41, 576–579. [Google Scholar] [CrossRef]
- Guo, A.; Zhang, X.; Wang, Z. Simulated delayed coking characteristics of petroleum residues and fractions by thermogravimetry. Fuel Process. Technol. 2008, 89, 643–650. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, C.; Jin, L.; Shen, R.; Liang, W. Step by step modeling for thermal reactivities and chemical compositions of vacuum residues and their SFEF asphalts. Fuel Process. Technol. 1999, 59, 51–67. [Google Scholar] [CrossRef]
- Schucker, R.C. Thermogravimetric determination of the coking kinetics of Arab Heavy vacuum residuum. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 615–619. [Google Scholar] [CrossRef]
- Russell, C.A.; Crozier, S.; Sharpe, R. Observations from heavy residue pyrolysis: A novel method to characterize fouling potential and assess antifoulant additive performance. Energy Fuels 2010, 24, 5483–5492. [Google Scholar] [CrossRef]
- Yang, C.; Du, F.; Zheng, H.; Keng, H.C. Hydroconversion characteristics and kinetics of residue narrow fractions. Fuel 2005, 84, 675–684. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Nikolova, R.; Mitkova, M.; Stanulov, K.; Sharpe, R.; Russell, C.A.; Obryvalina, A.; Telyashev, R. Reactivity and stability of vacuum residual oils in their thermal conversion. Fuel 2014, 123, 133–142. [Google Scholar] [CrossRef]
- Félix, G.; Ancheyta, J. Comparison of hydrocracking kinetic models based on SARA fractions obtained in slurry-phase reactor. Fuel 2019, 241, 495–505. [Google Scholar] [CrossRef]
- Xu, C.; Gao, J.; Zhao, S.; Lin, S. Correlation between feedstock SARA components and FCC product yields. Fuel 2005, 84, 669–674. [Google Scholar] [CrossRef]
- Alvarez, E.; Marroquin, G.; Trejo, F.; Centeno, G.; Ancheyta, J.; Diaz, J. Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel 2011, 90, 3602–3607. [Google Scholar] [CrossRef]
- Hauser, A.; Alhumaidan, F.; Al-Rabiah, H.; Halabi, M.A. Study on thermal cracking of Kuwaiti heavy oil (vacuum residue) and its SARA fractions by NMR spectroscopy. Energy Fuels 2014, 28, 4321–4332. [Google Scholar] [CrossRef]
- Xia, W.; Xu, T. Thermal characteristics, kinetic models, and volatile constituents during the energy conversion of bituminous SARA Fractions in air. ACS Omega 2020, 5, 20831–20841. [Google Scholar] [CrossRef]
- Alonso-Ramirez, G.; Cuevas-Garcia, R.; Sanchez-Minero, F.; Ramirez, J.; Moreno-Montiel, M.; Ancheyta, J.; Carbajal-Vielman, R. Catalytic hydrocracking of a Mexican heavy oil on a MoS2/Al2O3 catalyst: I. Study of the transformation of isolated saturates fraction obtained from SARA analysis. Catal. Tod. 2020, 353, 153–162. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Kolev, I.; Yordanov, D.; Toteva, V. Petroleum crude slate effect on H-Oil performance. Int. J. Oil Gas Coal Technol. 2021, 28, 259–286. [Google Scholar] [CrossRef]
- Santos, J.M.; Vetere, A.; Wisniewski, A.; Eberlin, M.N.; Schrader, W. Modified SARA method to unravel the complexity of resin fraction(s) in crude oil. Energy Fuels 2020, 34, 16006–16013. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Qiao, Y.; Yang, C.S.H. Structure and reactivity of Iranian vacuum residue and its eight group-fractions. Energy Fuels 2017, 31, 8072–8086. [Google Scholar] [CrossRef]
- Che, Y.; Yang, Z.; Qiao, Y.; Zhang, J.; Tian, Y. Study on pyrolysis characteristics and kinetics of vacuum residue and its eight group-fractions by TG-FTIR. Thermochim. Acta 2018, 669, 149–155. [Google Scholar] [CrossRef]
- Zhang, J.; Niwamanya, N.; Gao, C.; Sekyere, D.T.; Barigye, A.; Tian, Y. Structure and millisecond pyrolysis behavior of heavy oil and its eight group-fractions on solid base catalyst. Fuel 2022, 318, 123483. [Google Scholar] [CrossRef]
- Jiang, C.; Larter, S.R.; Noke, K.J.; Snowdon, L.R. TLC–FID (Iatroscan) analysis of heavy oil and tar sand samples. Org. Geochem. 2008, 39, 1210–1214. [Google Scholar] [CrossRef]
- Liang, W.; Que, G.H.; Chen, Y. Chemical composition and structure of vacuum residues of Chinese crudes I. Chemical composition of vacuum residues. Acta Pet. Sin. (Pet. Process. Sect.) 1991, 7, 1–7. [Google Scholar]
- Masson, J.-F.; Price, T.; Collins, P. Dynamics of bitumen fractions by thin-layer chromatography/flame ionization detection. Energy Fuels 2001, 15, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Schabron, J.F.; Gardner, G.W.; Hart, J.K.; Niss, N.D. The Characterization of Petroleum Residua. West. Res. Inst. Rep. 1993. Report to Mobil Research and Development Corp. and DOE. DOE Report DOE/MC/11076-3539. [Google Scholar]
- Woods, J.; Kung, J.; Kingston, D.; Kotlyar, L.; Sparks, B.; McCracken, T. Canadian crudes: A comparative study of SARA fractions from a modified HPLC separation technique. Oil Gas Sci. Technol. 2008, 63, 151–163. [Google Scholar] [CrossRef] [Green Version]
- ASTM D2007; Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. ASTM: West Conshohocken, PA, USA, 2016.
- ASTM D4124-09; Standard Test Method for Separation of Asphalt into Four Fractions. ASTM: West Conshohocken, PA, USA, 2009.
- Thenoux, G.; Bell, C.A.; Wilson, J.E.; Eakin, D.; Schroeder, M. Experiences with the Corbett-Swarbrick procedure for separation of asphalt into four generic fractions. Transp. Res. Rec. 1988, 1171, 66–70. [Google Scholar]
- Bissada, K.K.; Tan, J.; Szymczyk, E.; Darnell, M.; Mei, M.; Zhou, J. Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Org. Geochem. 2016, 95, 21–28. [Google Scholar] [CrossRef]
- Huang, Y.S.; You, H.Q.; Zhou, X.P.; Guitarte, J.; Xian, C.; Liu, W.; Chen, X.; Guo, H. Cased hole formation testing in very challenging operational conditions reveals mystery of reservoir—A case study in South China Sea. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 7–9 February 2011. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Nikolova, R.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation on precision of determination of SARA analysis of vacuum residual oils from different origin. Pet. Coal. 2016, 58, 109–119. [Google Scholar]
- Fuhr, B.J.; Hawrelechko, C.; Holloway, L.R.; Huang, H. Comparison of bitumen fractionation methods. Energy Fuels 2005, 19, 1327–1329. [Google Scholar] [CrossRef]
- Adams, J.; Elwardany, M.; Planche, J.-P.; Boysen, R.; Rovani, J. Diagnostic techniques for various asphalt refining and modification methods. Energy Fuels 2019, 33, 2680–2698. [Google Scholar] [CrossRef]
- Adams, J.J.; Schabron, J.F.; Boysen, R. Quantitative vacuum distillation of crude oils to give residues amenable to the asphaltene determinator coupled with saturates, aromatics, and resins separation characterization. Energy Fuels 2015, 29, 2774–2784. [Google Scholar] [CrossRef]
- Boysen, R.; Schabron, J.F. The automated asphaltene determinator coupled with saturates, aromatics, and resins separation for petroleum residua characterization. Energy Fuels 2013, 27, 4654–4661. [Google Scholar] [CrossRef]
- Kharrat, A.M.; Zacharia, J.; Cherian, V.J.; Anyatonwu, A. Issues with comparing SARA methodologies. Energy Fuels 2007, 21, 3618–3621. [Google Scholar] [CrossRef]
- Todorova-Yankova, L.; Yordanov, D.; Stratiev, D.; Shishkova, I. Investigation of the group hydrocarbon composition of vacuum residues from different types of crude oil, crude oil sands and bitumens. Ind. Technol. 2021, 8, 51–64. [Google Scholar]
- Efimov, I.; Povarov, V.G.; Rudko, V.A. Comparison of UNIFAC and LSER models for calculating partition coefficients in the hexane–acetonitrile system using middle distillate petroleum products as an example. Ind. Eng. Chem. Res. 2022, 61, 9575–9585. [Google Scholar] [CrossRef]
- Efimov, I.; Povarov, V.G.; Rudko, V.A. Use of partition coefficients in a hexane—Acetonitrile system in the GC–MS analysis of polyaromatic hydrocarbons in the example of delayed coking gas oils. ACS Omega 2021, 6, 9910–9919. [Google Scholar] [CrossRef] [PubMed]
- Smyshlyaeva, K.I.; Rudko, V.A.; Kuzmin, K.A.; Vladimir, G.; Povarov, V.G. Asphaltene genesis influence on the low-sulfur residual marine fuel sedimentation stability. Fuel 2022, 328, 125291. [Google Scholar] [CrossRef]
- Ershov, M.A.; Savelenko, V.D.; Makhmudova, A.E.; Rekhletskaya, E.S.; Makhova, U.A.; Kapustin, V.M.; Mukhina, D.Y.; Abdellatief, T.M.M. Technological Potential Analysis and Vacant Technology Forecasting in Properties and Composition of Low-Sulfur Marine Fuel Oil (VLSFO and ULSFO) Bunkered in Key World Ports. J. Mar. Sci. Eng. 2022, 10, 1828. [Google Scholar] [CrossRef]
- Félix, G.; Tirado, A.; Al-Muntaser, A.; Kwofie, M.; Varfolomeev, M.A.; Yuan, C.; Ancheyta, J. SARA-based kinetic model for non-catalytic aquathermolysis of heavy crude oil. J. Pet. Sci. Eng. 2022, 216, 110845. [Google Scholar] [CrossRef]
- Rakhmatullin, I.; Efimov, S.; Tyurin, V.; Gafurov, M.; Al-Muntaser, A.; Varfolomeev, M.; Klochkov, V. Qualitative and quantitative analysis of heavy crude oil samples and their SARA fractions with 13C nuclear magnetic resonance. Processes 2020, 8, 995. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Tankov, I.; Pavlova, A. Challenges in characterization of residual oils. A review. J. Petrol. Sci. Eng. 2019, 178, 227–250. [Google Scholar] [CrossRef]
- Schabron, J.F.; Rovani, J.F. On-column precipitation and re-dissolution of asphaltenes in petroleum residua. Fuel 2008, 87, 165–176. [Google Scholar] [CrossRef]
- Schabron, J.F.; Rovani, J.F.; Sanderson, M. Asphaltene determinator method for automated on-column precipitation and redissolution of pericondensed aromatic asphaltene components. Energy Fuels 2010, 24, 5984–5996. [Google Scholar] [CrossRef]
- Schabron, J.F.; Pauli, A.T.; Rovani, J.F.J.; Miknis, F.P. Predicting Coke Formation Tendencies. Fuel 2001, 80, 1435–1446. [Google Scholar] [CrossRef]
- Stratiev, D.; Nenov, S.; Shishkova, I.; Georgiev, B.; Argirov, G.; Dinkov, R.; Yordanov, D.; Atanassova, V.; Vassilev, P.; Atanassov, K. Commercial investigation of the ebullated-bed vacuum residue hydrocracking in the conversion range of 55–93%. ACS Omega 2020, 51, 33290–33304. [Google Scholar] [CrossRef]
- Stratiev, D.; Nenov, S.; Nedanovski, D.; Shishkova, I.; Dinkov, R.; Stratiev, D.D.; Sotirov, S.; Sotirova, E.; Atanassova, V.; Ribagin, S.; et al. Empirical modeling of viscosities and softening points of straight-run vacuum residues from different origins and of hydrocracked unconverted vacuum residues obtained in different conversions. Energies 2022, 15, 1755. [Google Scholar] [CrossRef]
- Stratiev, D.; Dinkov, R.; Shishkova, I.; Sharafutdinov, I.; Ivanova, N.; Mitkov, M.; Yordanov, D.; Rudnev, N.; Stanulov, K.; Artemiev, A.; et al. What is behind the high values of hot filtration test of the ebullated bed residue H-Oil hydrocracker residual oils. Energy Fuels 2016, 30, 7037–7054. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Shishkova, I.K.; Dinkov, R.K.; Petrov, I.P.; Kolev, I.V.; Yordanov, D.; Sotirov, S.; Sotirova, E.N.; Atanassova, V.K.; Ribagin, S.; et al. Crude slate, FCC slurry oil, recycle, and operating conditions effects on H-Oil product quality. Processes 2021, 9, 952. [Google Scholar] [CrossRef]
- Zhang, Y.; Schulz, F.B.; Rytting, F.M.; Walters, C.C.; Kaiser, K.; Metz, J.N.; Harper, M.R.; Merchant, S.S.; Mennito, A.S.; Qian, K.J.; et al. Elucidating the geometric substitution of petroporphyrins by spectroscopic analysis and atomic force microscopy molecular imaging. Energy Fuels 2019, 33, 6088–6097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schabron, J.F.; Pauli, A.T., Jr.; Rovani, J.F. Residua Coke Formation Predictability Maps. Fuel 2002, 81, 2227–2240. [Google Scholar] [CrossRef]
- Jover, J.; Cirera, J. Computational assessment on the Tolman cone angles for P-ligands. Dalton Trans. 2019, 48, 15036. [Google Scholar] [CrossRef]
- Schuler, B.; Meyer, G.; Peña, D.; Mullins, O.C.; Gross, L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 2015, 137, 9870–9876. [Google Scholar] [CrossRef]
- Zhang, Y.; Schuler, B.; Fatayer, S.; Gross, L.; Harper, M.R.; Kushnerick, J.D. Understanding the effects of sample preparation on the chemical structures of petroleum imaged with non-contact atomic force microscopy. Ind. Eng. Chem. Res. 2018, 57, 15935–15941. [Google Scholar] [CrossRef]
- Chen, P.; Metz, J.N.; Mennito, A.S.; Merchant, S.; Smith, S.E.; Siskin, M.; Ricker, S.P.; Dankworth, D.C.; Kushnerick, J.D.; Yao, N.; et al. Petroleum Pitch: Exploring a 50-year structure puzzle with real-space molecular imaging. Carbon 2020, 161, 456–465. [Google Scholar] [CrossRef]
- Zhang, Y. Applications of Noncontact Atomic Force Microscopy in Petroleum Characterization: Opportunities and Challenges. Energy Fuels 2021, 35, 14422–14444. [Google Scholar] [CrossRef]
- Stanislaus, A.; Hauser, A.; Marafi, M. Investigation of the mechanism of sediment formation in residual oil hydrocracking process through characterization of sediment deposits. Catal. Today 2005, 109, 167–177. [Google Scholar] [CrossRef]
- Pang, W.W.; Kuramae, M.; Kinoshita, Y.; Lee, J.K.; Zhang, Y.Z.; Yoon, S.H.; Mochida, I. Plugging problems observed in severe hydrocracking of vacuum residue. Fuel 2009, 88, 663–669. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Nikolaychuk, E.; Ilchev, I.; Yordanov, D. Investigation of the effect of severity mode of operation in the H-Oil vacuum residue hydrocracking on sediment formation during processing different feeds. Pet. Coal 2020, 62, 50–62. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Kolev, I.; Argirov, G.; Ivanov, V.; Ribagin, S.; Atanassova, V.; Atanassov, K.; Stratiev, D.D.; et al. Intercriteria analysis to diagnose the reasons for increased fouling in a commercial ebullated bed vacuum residue hydrocracker. ACS Omega 2022, 7, 30462–30476. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Nedelchev, A.; Kirilov, K.; Nikolaychuk, E.; Ivanov, A.; Sharafutdinov, I.; Veli, A.; Mitkova, M.; Tsaneva, T.; et al. Investigation of relationships between petroleum properties and their impact on crude oil compatibility. Energy Fuels 2015, 29, 7836–7854. [Google Scholar] [CrossRef]
- Mavrov, D. Software for intercriteria analysis: Implementation of the main algorithm. Notes Intuit. Fuzzy Sets 2015, 21, 77–86. [Google Scholar]
- Mavrov, D. Software for intercriteria analysis: Working with the results. Annu. Inform. Sect. Union Sci. Bulg. 2015, 8, 37–44. [Google Scholar]
- Mavrov, D.; Radeva, I.; Atanassov, K.; Doukovska, L.; Kalaykov, I. InterCriteria software design: Graphic interpretation within the intuitionistic fuzzy triangle. In Proceedings of the Fifth International Symposium on Business Modeling and Software Design, Fribourg, Switzerland, 5–7 July 2015; pp. 279–283. [Google Scholar]
- Ikonomov, N.; Vassilev, P.; Roeva, O. Software for intercriteria analysis. Int. J. Bioautomation 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Bannayan, M.A.; Lemke, H.K.; Stephenson, W.K. Fouling mechanisms and effect of process conditions on deposit formation in H-Oil. Stud. Surf. Sci. Catal. 1996, 100, 273–281. [Google Scholar]
- Rogel, E.; Ovalles, C.; Moir, M. Asphaltene chemical characterization as a function of solubility: Effects on stability and aggregation. Energy Fuels 2012, 26, 2655–2662. [Google Scholar] [CrossRef]
- Mochida, I.; Zhao, Z.; Sakanishi, K.; Yamamoro, S.; Takashima, H.; Uemura, S.V. Structure and properties of sludges produced in the catalytic hydrocracking of vacuum residue. Ind. Eng. Chem. Res. 1989, 28, 418–421. [Google Scholar]
- Ovalles, C.; Rogel, E.; Moir, M.E.; Brait, A. Hydroprocessing of vacuum residues: Asphaltene characterization and solvent extraction of spent slurry catalysts and the relationships with catalyst deactivation. Appl. Catal. A Gen. 2016, 532, 57–64. [Google Scholar] [CrossRef]
- Manek, E.; Haydary, J. Hydrocracking of vacuum residue with solid and dispersed phase catalyst: Modeling of sediment formation and hydrodesulfurization. Fuel Process. Technol. 2017, 159, 320–327. [Google Scholar]
- Rogel, E.; Ovalles, C.; Pradhan, A.; Leung, P.; Chen, N. Sediment formation in residue hydroconversion processes and its correlation to asphaltene behavior. Energy Fuels 2013, 27, 6587–6593. [Google Scholar] [CrossRef]
- Felix, G.; Ancheyta, J. Using separate kinetic models to predict liquid, gas, and coke yields in heavy oil hydrocracking. Ind. Eng. Chem. Res. 2019, 58, 7973–7979. [Google Scholar] [CrossRef]
- Gaulier, F.; Barbier, J.; Guichard, B.; Levitz, P.; Espinat, D. Asphaltenes transport into catalysts under hydroprocessing conditions. Energy Fuels 2015, 29, 6250–6258. [Google Scholar] [CrossRef]
- Kim, C.H.; Hur, Y.G.; Lee, K.Y. Relationship between surface characteristics and catalytic properties of unsupported nickel-tungsten carbide catalysts for the hydrocracking of vacuum residue. Fuel 2022, 309, 122103. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Kang, K.H.; Pham, H.H.; Go, K.S.; Pham, D.V.; Seo, P.W.; Nho, N.S.; Chul, W.; Sunyoung, P. Catalytic hydrocracking of vacuum residue in a semi-batch reactior: Effect of catalyst concentration on asphaltene conversion and product distribution. J. Ind. Eng. Chem. 2021, 102, 112–121. [Google Scholar] [CrossRef]
- Lim, S.H.; Go, K.S.; Nho, N.S.; Kim, Y.K.; Kwon, E.H.; Kwang, K.; Lee, J. Reaction characteristics and sediment formation of slurry phase hydrocracking with vacuum residue in a bench-scale bubble column reactor. J. Petrol. Sci. Eng. 2021, 196, 107713. [Google Scholar] [CrossRef]
- Lim, S.H.; Go, K.S.; Kwon, E.H.; Nho, N.S.; Lee, J.G. Investigation of asphaltene dispersion stability in slurry-phase hydrocracking reaction. Fuel 2020, 271, 117509. [Google Scholar] [CrossRef]
- Lim, S.H.; Go, K.S.; Nho, N.S.; Lee, J.G. Effect of reaction temperature and time on the products and asphaltene dispersion stability in slurry-phase hydrocracking of vacuum residue. Fuel 2018, 234, 305–311. [Google Scholar] [CrossRef]
- Lim, S.H.; Go, K.S.; Nho, N.S.; Lee, J.G. Effect of aromatic additives on the coke reduction and the asphaltene conversion in a slurry-phase hydrocracking. Korean Chem. Eng. Res. 2019, 57, 244–252. [Google Scholar]
- Du, H.; Liu, D.; Liu, H.; Gao, P.; Lv, R.; Li, M.; Lou, B.; Yang, Y. Role of hydrogen pressure in slurry-phase hydrocracking of Venezuela heavy oil. Energy Fuels 2015, 29, 2104–2110. [Google Scholar] [CrossRef]
- Chabot, J.; Shiflett, W. Residuum hydrocracking: Chemistry and catalysis. PTQ 2019, Q3, 1–9. [Google Scholar]
- Mochida, I.; Korai, Y.; Hieida, T.; Azuma, A.; Kitajima, E. Detailed analyses of FCC decant oil as a starting feedstock for mesophase pitch. Fuel Sci. Technol. Int. 1991, 9, 485–504. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Gray, M.R.; Rüger, C.; Smith, D.F.; Glattke, T.J.; Niles, S.F.; Neumann, A.; Weisbrod, C.R.; Yen, A.; McKenna, A.M.; et al. Lessons learned from a decade-long assessment of asphaltenes by ultrahigh-resolution mass spectrometry and implications for complex mixture analysis. Energy Fuels 2021, 35, 16335–16376. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P. Advances in asphaltene petroleomics. Part 1: Asphaltenes are composed of abundant island and archipelago structural motifs. Energy Fuels 2017, 31, 13509–13518. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P. Advances in asphaltene petroleomics. Part 2: Selective separation method that reveals fractions enriched in island and archipelago structural motifs by mass spectrometry. Energy Fuels 2018, 32, 314–328. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Rowland, S.M.; Rodgers, R.P. Advances in asphaltene petroleomics. Part 3. Dominance of island or archipelago structural motif is sample dependent. Energy Fuels 2018, 32, 9106–9120. [Google Scholar] [CrossRef]
- Chacón-Patiño, M.L.; Smith, D.F.; Hendrickson, C.L.; Marshall, A.G.; Rodgers, R.P. Advances in asphaltene petroleomics. Part 4. Compositional trends of solubility subfractions reveal that polyfunctional oxygen-containing compounds drive asphaltene chemistry. Energy Fuels 2020, 34, 3013–3030. [Google Scholar] [CrossRef]
- Adams, J.; Rovani, J.; Boysen, R.; Elwardany, M.; Planche, J.-P. Innovations and developments in bitumen composition analysis. In Proceedings of the 7th Eurasphalt and Eurobitumen Congress, Virtual, Madrid, Spain, 15–17 June 2021. [Google Scholar]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property and Durability Relationships; Transportation Research Board: Washington, DC, USA, 2009. [Google Scholar]
- Petersen, J.C.; Glaser, R. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater. Pavement Des. 2011, 12, 795–819. [Google Scholar] [CrossRef]
- Mitkova, M.; Stratiev, D.; Shishkova, I.; Dobrev, D. Thermal and Thermo Catalytic Processes for Heavy Oil Conversion; Professor Marin Drinov Publishing House of Bulgarian Academy of Sciences: Sofia, Bulgaria, 2017. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Dinkov, R.; Dobrev, D.; Argirov, G.; Yordanov, D. The Synergy between ebullated bed vacuum residue hydrocracking and fluid catalytic cracking processes in modern refining—Commercial experience. Profr. Mar. Drinov Publ. House Bulg. Acad. Sci. 2022, 1–750. [Google Scholar]
- Harding, R.H.; Zhao, X.; Qian, K.; Rajagopalan, K.; Cheng, W.C. The fluid catalytic cracking selectivities of gas oil boiling point and hydrocarbon fractions. Prep. Am. Chem. Soc. Div. Pet. Chem. 1995, 40, 762–767. [Google Scholar] [CrossRef]
- Harding, R.H.; Zhao, X.; Qian, K.; Rajagopalan, K.; Cheng, W.C. The fluid catalytic cracking selectivities of gas oil boiling point and hydrocarbon fractions. Ind Eng Chem Res. 1996, 35, 2561–2569. [Google Scholar] [CrossRef]
- Saxena, A.; Diaz-Goano, C.; Dettman, H. Coking behavior during visbreaking. J. Can. Petrol. Technol. 2012, 51, 457–463. [Google Scholar] [CrossRef]
- Gray, M.; Chacón-Patiño, M.; Rodgers, R. Structure–Reactivity Relationships for petroleum asphaltenes. Energy Fuels 2022, 36, 4370–4380. [Google Scholar] [CrossRef]
- Guitian, J.; Souto, A.; Ramirez, R.; Marzin, R.; Solari, B. Commercial design of a new upgrading process, HDH. In proceedings international symposium on Heavy Oil and Residue Upgrading and Utilization; Han, C., Hsi, C., Eds.; International Academic: Beijing, China, 1992; pp. 237–247. [Google Scholar]
- Reynolds, J.G. Characterization of heavy residua by application of a modified D 2007 separation and electron paramagnetic resonance. Liq. Fuels Technol. 1985, 3, 73–105. [Google Scholar] [CrossRef]
- Speight, J.G. Petroleum asphaltenes Part 2 The effect of asphaltenes and resin constituents on recovery and refining processes. Oil Gas Sci. Technol. 2004, 59, 479–488. [Google Scholar] [CrossRef]
- Speight, J.G. Petroleum asphaltenes Part 1. Asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 2004, 59, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Kohli, K.; Prajapati, R.; Maity, S.K.; Sau, M.; Sharma, B.K. Deactivation of a hydrotreating catalyst during hydroprocessing of synthetic crude by metal bearing compounds. Fuel 2019, 243, 579–589. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, J.; Zhang, J.; Zhang, T.; Ye, M.; Liu, Z. Regeneration of catalysts deactivated by coke deposition: A review. Chin. J. Catal. 2020, 41, 1048–1061. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of hydroprocessing catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Gualda, G.; Kasztelan, S. Coke versus metal deactivation of residue hydrodemetallization catalysts. Stud. Surf. Sci. Catal. 1994, 88, 145–154. [Google Scholar]
- Vogelaar, B.M.; Eijsbouts, S.; Bergwerff, J.A.; Heiszwolf, J. Hydroprocessing catalyst deactivation in commercial practice. Catal. Today 2010, 154, 256–263. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Nguyen, D.L.T.; Changlei, X.; Nguyen, T.B.; Shokouhimehr, M.; Sana, S.S.; NirmalaGrace, A.; Aghbashlo, M.; Tabatabaei, M.; Sonne, C.; et al. Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives. Fuel Proc. Technol. 2021, 213, 106681. [Google Scholar] [CrossRef]
- Gawel, I.; Bociarska, D.; Biskupski, P. Effect of asphaltenes on hydroprocessing of heavy oils and residua. Appl. Catal. A Gen. 2005, 295, 89–94. [Google Scholar] [CrossRef]
- Rana, M.S.; Ancheyta, J.; Sahoo, S.K.; Rayo, P. Carbon and metal deposition during the hydroprocessing of Maya crude oil. Catal. Today 2014, 220, 97–105. [Google Scholar] [CrossRef]
- Jones, D.R. SHRP Materials Reference Library: Asphalt Cements: A Concise Data Compilation; Report: SHRP-A-645; National Research Council: Washington, DC, USA, 1993.
Nr | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude type | Urals1 | Urals2 | Arab Med. | Arab Heavy | Basrah L | Basrah H | Kirkuk | El Bouri | CPC | LSCO | Prinos | Boscan | Varandey | Albania | Tempa Rossa | Rhemoura | Arab Light | Azeri Light | Imported AR |
Crude D15. g/cm3 | 0.877 | 0.875 | 0.872 | 0.889 | 0.878 | 0.905 | 0.873 | 0.891 | 0.805 | 0.854 | 0.875 | 1.002 | 0.85 | 1.001 | 0.94 | 0.865 | 0.858 | 0.848 | |
Crude Sulfur. wt.% | 1.53 | 1.39 | 2.48 | 2.91 | 2.85 | 3.86 | 2.65 | 1.76 | 0.63 | 0.57 | 3.71 | 5.5 | 0.63 | 5.64 | 5.35 | 0.75 | 1.89 | 0.2 | |
Crude VR. wt.% | 25.2 | 29 | 25.2 | 32 | 28.3 | 33.8 | 24.6 | 26.2 | 9.3 | 18.7 | 20.3 | 63.1 | 14.9 | 48.2 | 37.6 | 20.2 | 22.9 | 14.8 | |
Crude T50%. °C | 378 | 380 | 376 | 429 | 392 | 418 | 345 | 401 | 238 | 352 | 349 | 571 | 362 | 531 | 428 | 350 | 352 | 321 | |
VR D15. g/cm3 | 0.997 | 0.995 | 1.031 | 1.04 | 1.052 | 1.071 | 1.054 | 1.05 | 0.956 | 0.993 | 1.108 | 1.078 | 0.99 | 1.094 | 1.12 | 1.041 | 1.029 | 0.967 | 1.029 |
VR CCR. wt.% | 17.5 | 17.0 | 20.7 | 23.6 | 23.8 | 28.9 | 25.2 | 25.5 | 16 | 14 | 32.8 | 27.8 | 15.1 | 31.4 | 34.3 | 23.7 | 18.7 | 9.5 | 19.2 |
VR Sulfur. wt.% | 3.0 | 2.9 | 5.4 | 5.8 | 5.9 | 7.1 | 5.9 | 3.3 | 2.1 | 1.58 | 9.14 | 6 | 1.7 | 8.7 | 9.3 | 1.8 | 4.9 | 0.5 | 3.28 |
VR Sat. wt.% | 25.6 | 22.9 | 11.8 | 12.4 | 12.3 | 12.3 | 15.2 | 12 | 44.6 | 25 | 12.6 | 15.1 | 33.5 | 10 | 2.2 | 19.7 | 15.9 | 40.2 | 17.5 |
VR Aro. wt.% | 52.5 | 66.5 | 68.3 | 61.9 | 64.8 | 54.1 | 55.4 | 57.9 | 40.8 | 61.1 | 50.6 | 44.5 | 47.6 | 52.9 | 48.4 | 49.8 | 64.7 | 50.1 | 60.7 |
VR Res. wt.% | 7.8 | 4.9 | 5.3 | 4.4 | 4.9 | 5.8 | 5 | 12.6 | 10.3 | 6.1 | 6.8 | 5.3 | 11.3 | 6.3 | 12.6 | 7.3 | 7.3 | 8.4 | 8.0 |
VR C7 asp. wt.% | 14.1 | 6.3 | 14.6 | 21.3 | 18 | 27.7 | 24.3 | 17.5 | 3.4 | 7.8 | 30 | 35.2 | 7.6 | 37.7 | 36.8 | 23.2 | 12.1 | 1.4 | 13.7 |
VR C5 asp. wt.% | 17.6 | 13.9 | 25.5 | 32.9 | 27.7 | 37 | 33.1 | 27.3 | 11 | 15.5 | 38.8 | 41 | 13.5 | 49.7 | 46.8 | 31.3 | 18.8 | 5.4 | 21.8 |
VR VIS. mm2/s * | 220.9 | 338.3 | 374.6 | 368.9 | 731.9 | 514.1 | 303 | 65 | 149.1 | 550 | 1003 | 103 | 680 | 759.5 | 255 | 192 | 77 | ||
VR Softening point. °C | 40.1 | 42.4 | 44.7 | 51.2 | 50.3 | 68.6 | 58.1 | 45 | 25.2 | 28.9 | 69.2 | 115 | 43.8 | 92.2 | 100 | 51.1 | 32.3 | 30.2 | |
VR T50%. °C | 657 | 670 | 709 | 684 | 715 | 676 | 666 | 637 | 631 | 645 | 812 | 621 | 732 | 708 | 642 | 647 | 627 | ||
MW. g/mol | 808 | 840 | 953 | 877 | 968 | 853 | 827 | 757 | 741 | 760 | 1330 | 717 | 1017 | 931 | 766 | 778 | 731 |
Cases | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 | Case 9 |
---|---|---|---|---|---|---|---|---|---|
Date | 22 December 2015 | 6 November 2015 | 10 July 2017 | 21 January 2019 | 9 May 2017 | 16 April 2019 | 12 August 2020 | 21 February 2022 | 11 April 2022 |
Crude slate | 100% Urals | 100% Urals | 85% Ur/ 15% ME | 80% Ur./ 20% ME | 70% Ur./ 30% ME | 14% Ur. 36% LSCO /50% ME | 61.5% Ur/ 3% BL/ 2% AM/ 19.5% Kirkuk /7.5% LSCO /6.5% Prinos | 64% Ur /25% Kirkuk /11% BL | 88.6% Ur/ 5% LSCO/6.5% Kirkuk |
FCC slurry, % in H-Oil feed | 0.0 | 0.0 | 7.6 | 6.1 | 8.2 | 7.5 | 13.1 | 0.0 | 11.5 |
H-Oil VTB recycle, % of feed | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.4 | 0.0 | 0.0 |
Weight average bed temperature. °C | 409 | 418 | 426 | 425 | 428 | 426 | 430.5 | 429.5 | 414.5 |
LHSV. h-1 | 0.23 | 0.25 | 0.21 | 0.20 | 0.20 | 0.17 | 0.10 | 0.16 | 0.14 |
Atmospheric tower bottom product (ATB) SHFT. wt.% | 0.3 | 2.2 | 0.4 | 0.4 | 0.25 | 0.04 | 0.11 | 0.55 | 0.46 |
H-Oil 540 °C + conversion. wt.% | 55 | 65 | 71.6 | 73 | 74.5 | 76.3 | 90.8 | 78 | 62 |
Density at 15 °C. g/cm3 | 0.985 | 1.005 | 1.029 | 1.033 | 1.041 | 1.034 | 1.093 | 1.066 | 1.018 |
Conradson carbon. wt.% | 17.9 | 20.4 | 24.4 | 26 | 25.5 | 25.8 | 35.0 | 30.5 | 14.9 |
Sulfur. wt.% | 1.1 | 1.3 | 1.38 | 1.24 | 1.4 | 1.3 | 1.3 | 1.9 | 1.3 |
SAR-AD characteristics | |||||||||
Saturates, wt.% | 27.44 | 26.98 | 21.01 | 21.96 | 19.76 | 19.72 | 13.85 | 18.66 | 21.48 |
Aro-1, wt.% | 9.34 | 8.22 | 6.85 | 7.15 | 6.77 | 7.48 | 3.04 | 5.92 | 8.41 |
Aro-2, wt.% | 18.76 | 17.43 | 16.89 | 17.82 | 17.35 | 18.80 | 14.75 | 18.07 | 20.30 |
Aro-3, wt.% | 33.41 | 34.59 | 43.04 | 40.77 | 44.09 | 44.86 | 60.20 | 44.74 | 39.67 |
Resins, wt.% | 6.03 | 5.93 | 5.97 | 6.19 | 6.01 | 4.37 | 2.46 | 4.42 | 4.17 |
CyC6 asphaltenes, wt.% | 0.38 | 0.34 | 0.23 | 0.25 | 0.23 | 0.17 | 0.07 | 0.22 | 0.14 |
Toluene asphaltenes, wt.% | 4.47 | 6.12 | 5.56 | 5.47 | 5.47 | 4.28 | 4.90 | 7.00 | 5.28 |
CH2Cl2 asphaltenes, wt.% | 0.18 | 0.39 | 0.46 | 0.39 | 0.33 | 0.32 | 0.71 | 0.95 | 0.53 |
Total asphaltenes, wt.% | 5.03 | 6.85 | 6.24 | 6.11 | 6.03 | 4.77 | 5.68 | 8.17 | 5.95 |
CyC6/CH2Cl2 | 2.10 | 0.89 | 0.49 | 0.66 | 0.71 | 0.55 | 0.10 | 0.23 | 0.27 |
TPA | 16.96 | 17.96 | 18.96 | 19.96 | 19.96 | 20.96 | 11.22 | 14.24 | 10.71 |
Colloidal instability index (CII) | 0.718 | 0.726 | 0.517 | 0.544 | 0.483 | 0.470 | 0.292 | 0.487 | 0.559 |
Maltenes Index (MI) | 0.632 | 0.607 | 0.423 | 0.449 | 0.393 | 0.400 | 0.218 | 0.365 | 0.466 |
Modified colloidal instability index (MCII) | 0.707 | 0.715 | 0.512 | 0.538 | 0.478 | 0.466 | 0.290 | 0.482 | 0.555 |
MU | SLO | Rec | TRX | LHSV | ATB TSE | Conv. | D15 | CCR | Sul | Sat | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | CH2Cl2 | Total | CyC6/ CH2Cl2 | TPA | CII | MI | MCII |
SLO | 1.00 | 0.31 | 0.61 | 0.19 | 0.28 | 0.56 | 0.61 | 0.47 | 0.44 | 0.28 | 0.31 | 0.36 | 0.64 | 0.28 | 0.14 | 0.28 | 0.58 | 0.28 | 0.22 | 0.42 | 0.25 | 0.28 | 0.25 |
Rec | 0.31 | 1.00 | 0.25 | 0.03 | 0.06 | 0.22 | 0.22 | 0.22 | 0.14 | 0.00 | 0.00 | 0.00 | 0.22 | 0.00 | 0.03 | 0.08 | 0.22 | 0.06 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 |
TRX | 0.61 | 0.25 | 1.00 | 0.25 | 0.36 | 0.92 | 0.92 | 0.83 | 0.67 | 0.08 | 0.03 | 0.28 | 0.89 | 0.36 | 0.22 | 0.56 | 0.64 | 0.56 | 0.22 | 0.50 | 0.14 | 0.03 | 0.14 |
LHSV | 0.19 | 0.03 | 0.25 | 1.00 | 0.58 | 0.19 | 0.19 | 0.25 | 0.31 | 0.81 | 0.67 | 0.42 | 0.22 | 0.75 | 0.86 | 0.64 | 0.28 | 0.61 | 0.83 | 0.61 | 0.75 | 0.75 | 0.75 |
ATB TSE | 0.28 | 0.06 | 0.36 | 0.58 | 1.00 | 0.33 | 0.33 | 0.36 | 0.47 | 0.64 | 0.56 | 0.53 | 0.28 | 0.53 | 0.58 | 0.78 | 0.64 | 0.81 | 0.47 | 0.33 | 0.75 | 0.64 | 0.75 |
Conv. | 0.56 | 0.22 | 0.92 | 0.19 | 0.33 | 1.00 | 0.94 | 0.92 | 0.61 | 0.08 | 0.11 | 0.36 | 0.92 | 0.36 | 0.22 | 0.50 | 0.58 | 0.50 | 0.25 | 0.58 | 0.14 | 0.08 | 0.14 |
D15 | 0.61 | 0.22 | 0.92 | 0.19 | 0.33 | 0.94 | 1.00 | 0.86 | 0.64 | 0.08 | 0.11 | 0.36 | 0.92 | 0.36 | 0.22 | 0.50 | 0.64 | 0.50 | 0.25 | 0.53 | 0.14 | 0.03 | 0.14 |
CCR | 0.47 | 0.22 | 0.83 | 0.25 | 0.36 | 0.92 | 0.86 | 1.00 | 0.53 | 0.17 | 0.14 | 0.33 | 0.83 | 0.44 | 0.31 | 0.50 | 0.61 | 0.53 | 0.28 | 0.58 | 0.22 | 0.17 | 0.22 |
Sul | 0.44 | 0.14 | 0.67 | 0.31 | 0.47 | 0.61 | 0.64 | 0.53 | 1.00 | 0.17 | 0.17 | 0.33 | 0.61 | 0.36 | 0.28 | 0.61 | 0.58 | 0.61 | 0.25 | 0.42 | 0.28 | 0.17 | 0.28 |
Sat | 0.28 | 0.00 | 0.08 | 0.81 | 0.64 | 0.08 | 0.08 | 0.17 | 0.17 | 1.00 | 0.86 | 0.61 | 0.06 | 0.72 | 0.83 | 0.50 | 0.31 | 0.53 | 0.83 | 0.47 | 0.89 | 0.94 | 0.89 |
Aro-1 | 0.31 | 0.00 | 0.03 | 0.67 | 0.56 | 0.11 | 0.11 | 0.14 | 0.17 | 0.86 | 1.00 | 0.75 | 0.14 | 0.58 | 0.69 | 0.36 | 0.28 | 0.39 | 0.75 | 0.50 | 0.81 | 0.92 | 0.81 |
Aro-2 | 0.36 | 0.00 | 0.28 | 0.42 | 0.53 | 0.36 | 0.36 | 0.33 | 0.33 | 0.61 | 0.75 | 1.00 | 0.39 | 0.44 | 0.47 | 0.39 | 0.39 | 0.42 | 0.56 | 0.47 | 0.61 | 0.67 | 0.61 |
Aro-3 | 0.64 | 0.22 | 0.89 | 0.22 | 0.28 | 0.92 | 0.92 | 0.83 | 0.61 | 0.06 | 0.14 | 0.39 | 1.00 | 0.28 | 0.14 | 0.47 | 0.61 | 0.47 | 0.22 | 0.56 | 0.06 | 0.06 | 0.06 |
Resins | 0.28 | 0.00 | 0.36 | 0.75 | 0.53 | 0.36 | 0.36 | 0.44 | 0.36 | 0.72 | 0.58 | 0.44 | 0.28 | 1.00 | 0.86 | 0.50 | 0.28 | 0.53 | 0.78 | 0.69 | 0.67 | 0.67 | 0.67 |
CyC6 | 0.14 | 0.03 | 0.22 | 0.86 | 0.58 | 0.22 | 0.22 | 0.31 | 0.28 | 0.83 | 0.69 | 0.47 | 0.14 | 0.86 | 1.00 | 0.56 | 0.25 | 0.58 | 0.86 | 0.56 | 0.78 | 0.78 | 0.78 |
Toluene | 0.28 | 0.08 | 0.56 | 0.64 | 0.78 | 0.50 | 0.50 | 0.50 | 0.61 | 0.50 | 0.36 | 0.39 | 0.47 | 0.50 | 0.56 | 1.00 | 0.64 | 0.97 | 0.47 | 0.42 | 0.56 | 0.44 | 0.56 |
CH2Cl2 | 0.58 | 0.22 | 0.64 | 0.28 | 0.64 | 0.58 | 0.64 | 0.61 | 0.58 | 0.31 | 0.28 | 0.39 | 0.61 | 0.28 | 0.25 | 0.64 | 1.00 | 0.67 | 0.14 | 0.25 | 0.42 | 0.31 | 0.42 |
Total | 0.28 | 0.06 | 0.56 | 0.61 | 0.81 | 0.50 | 0.50 | 0.53 | 0.61 | 0.53 | 0.39 | 0.42 | 0.47 | 0.53 | 0.58 | 0.97 | 0.67 | 1.00 | 0.47 | 0.39 | 0.58 | 0.47 | 0.58 |
CyC6/CH2Cl2 | 0.22 | 0.00 | 0.22 | 0.83 | 0.47 | 0.25 | 0.25 | 0.28 | 0.25 | 0.83 | 0.75 | 0.56 | 0.22 | 0.78 | 0.86 | 0.47 | 0.14 | 0.47 | 1.00 | 0.61 | 0.72 | 0.78 | 0.72 |
TPA | 0.42 | 0.06 | 0.50 | 0.61 | 0.33 | 0.58 | 0.53 | 0.58 | 0.42 | 0.47 | 0.50 | 0.47 | 0.56 | 0.69 | 0.56 | 0.42 | 0.25 | 0.39 | 0.61 | 1.00 | 0.42 | 0.47 | 0.42 |
CII | 0.25 | 0.00 | 0.14 | 0.75 | 0.75 | 0.14 | 0.14 | 0.22 | 0.28 | 0.89 | 0.81 | 0.61 | 0.06 | 0.67 | 0.78 | 0.56 | 0.42 | 0.58 | 0.72 | 0.42 | 1.00 | 0.89 | 1.00 |
MI | 0.28 | 0.00 | 0.03 | 0.75 | 0.64 | 0.08 | 0.03 | 0.17 | 0.17 | 0.94 | 0.92 | 0.67 | 0.06 | 0.67 | 0.78 | 0.44 | 0.31 | 0.47 | 0.78 | 0.47 | 0.89 | 1.00 | 0.89 |
MCII | 0.25 | 0.00 | 0.14 | 0.75 | 0.75 | 0.14 | 0.14 | 0.22 | 0.28 | 0.89 | 0.81 | 0.61 | 0.06 | 0.67 | 0.78 | 0.56 | 0.42 | 0.58 | 0.72 | 0.42 | 1.00 | 0.89 | 1.00 |
Nu | SLO | Rec | TRX | LHSV | ATB TSE | Conv. | D15 | CCR | Sul | Sat | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | CH2Cl2 | Total | CyC6/ CH2Cl2 | TPA | CII | MI | MCII |
SLO | 0.00 | 0.00 | 0.28 | 0.69 | 0.61 | 0.36 | 0.31 | 0.44 | 0.31 | 0.64 | 0.61 | 0.56 | 0.28 | 0.64 | 0.75 | 0.61 | 0.31 | 0.64 | 0.69 | 0.47 | 0.67 | 0.64 | 0.67 |
Rec | 0.00 | 0.00 | 0.00 | 0.22 | 0.19 | 0.00 | 0.00 | 0.00 | 0.08 | 0.22 | 0.22 | 0.22 | 0.00 | 0.22 | 0.22 | 0.17 | 0.03 | 0.17 | 0.22 | 0.19 | 0.22 | 0.22 | 0.22 |
TRX | 0.28 | 0.00 | 0.00 | 0.69 | 0.58 | 0.06 | 0.06 | 0.14 | 0.14 | 0.89 | 0.94 | 0.69 | 0.08 | 0.61 | 0.72 | 0.39 | 0.31 | 0.42 | 0.75 | 0.44 | 0.83 | 0.94 | 0.83 |
LHSV | 0.69 | 0.22 | 0.69 | 0.00 | 0.36 | 0.78 | 0.78 | 0.72 | 0.50 | 0.17 | 0.31 | 0.56 | 0.75 | 0.22 | 0.08 | 0.36 | 0.67 | 0.36 | 0.14 | 0.39 | 0.22 | 0.22 | 0.22 |
ATB TSE | 0.61 | 0.19 | 0.58 | 0.36 | 0.00 | 0.64 | 0.64 | 0.61 | 0.33 | 0.33 | 0.42 | 0.44 | 0.69 | 0.44 | 0.36 | 0.17 | 0.31 | 0.17 | 0.50 | 0.61 | 0.22 | 0.33 | 0.22 |
Conv. | 0.36 | 0.00 | 0.06 | 0.78 | 0.64 | 0.00 | 0.06 | 0.08 | 0.22 | 0.92 | 0.89 | 0.64 | 0.08 | 0.64 | 0.75 | 0.47 | 0.39 | 0.50 | 0.75 | 0.39 | 0.86 | 0.92 | 0.86 |
D15 | 0.31 | 0.00 | 0.06 | 0.78 | 0.64 | 0.06 | 0.00 | 0.14 | 0.19 | 0.92 | 0.89 | 0.64 | 0.08 | 0.64 | 0.75 | 0.47 | 0.33 | 0.50 | 0.75 | 0.44 | 0.86 | 0.97 | 0.86 |
CCR | 0.44 | 0.00 | 0.14 | 0.72 | 0.61 | 0.08 | 0.14 | 0.00 | 0.31 | 0.83 | 0.86 | 0.67 | 0.17 | 0.56 | 0.67 | 0.47 | 0.36 | 0.47 | 0.72 | 0.39 | 0.78 | 0.83 | 0.78 |
Sul | 0.31 | 0.08 | 0.14 | 0.50 | 0.33 | 0.22 | 0.19 | 0.31 | 0.00 | 0.67 | 0.67 | 0.50 | 0.22 | 0.47 | 0.53 | 0.19 | 0.22 | 0.22 | 0.58 | 0.39 | 0.56 | 0.67 | 0.56 |
Sat | 0.64 | 0.22 | 0.89 | 0.17 | 0.33 | 0.92 | 0.92 | 0.83 | 0.67 | 0.00 | 0.14 | 0.39 | 0.94 | 0.28 | 0.14 | 0.47 | 0.67 | 0.47 | 0.17 | 0.50 | 0.11 | 0.06 | 0.11 |
Aro-1 | 0.61 | 0.22 | 0.94 | 0.31 | 0.42 | 0.89 | 0.89 | 0.86 | 0.67 | 0.14 | 0.00 | 0.25 | 0.86 | 0.42 | 0.28 | 0.61 | 0.69 | 0.61 | 0.25 | 0.47 | 0.19 | 0.08 | 0.19 |
Aro-2 | 0.56 | 0.22 | 0.69 | 0.56 | 0.44 | 0.64 | 0.64 | 0.67 | 0.50 | 0.39 | 0.25 | 0.00 | 0.61 | 0.56 | 0.50 | 0.58 | 0.58 | 0.58 | 0.44 | 0.50 | 0.39 | 0.33 | 0.39 |
Aro-3 | 0.28 | 0.00 | 0.08 | 0.75 | 0.69 | 0.08 | 0.08 | 0.17 | 0.22 | 0.94 | 0.86 | 0.61 | 0.00 | 0.72 | 0.83 | 0.50 | 0.36 | 0.53 | 0.78 | 0.42 | 0.94 | 0.94 | 0.94 |
Resins | 0.64 | 0.22 | 0.61 | 0.22 | 0.44 | 0.64 | 0.64 | 0.56 | 0.47 | 0.28 | 0.42 | 0.56 | 0.72 | 0.00 | 0.11 | 0.47 | 0.69 | 0.47 | 0.22 | 0.28 | 0.33 | 0.33 | 0.33 |
CyC6 | 0.75 | 0.22 | 0.72 | 0.08 | 0.36 | 0.75 | 0.75 | 0.67 | 0.53 | 0.14 | 0.28 | 0.50 | 0.83 | 0.11 | 0.00 | 0.39 | 0.69 | 0.39 | 0.11 | 0.39 | 0.19 | 0.19 | 0.19 |
Toluene | 0.61 | 0.17 | 0.39 | 0.36 | 0.17 | 0.47 | 0.47 | 0.47 | 0.19 | 0.47 | 0.61 | 0.58 | 0.50 | 0.47 | 0.39 | 0.00 | 0.31 | 0.00 | 0.50 | 0.58 | 0.42 | 0.53 | 0.42 |
CH2Cl2 | 0.31 | 0.03 | 0.31 | 0.67 | 0.31 | 0.39 | 0.33 | 0.36 | 0.22 | 0.67 | 0.69 | 0.58 | 0.36 | 0.69 | 0.69 | 0.31 | 0.00 | 0.31 | 0.83 | 0.69 | 0.56 | 0.67 | 0.56 |
Total | 0.64 | 0.17 | 0.42 | 0.36 | 0.17 | 0.50 | 0.50 | 0.47 | 0.22 | 0.47 | 0.61 | 0.58 | 0.53 | 0.47 | 0.39 | 0.00 | 0.31 | 0.00 | 0.53 | 0.58 | 0.42 | 0.53 | 0.42 |
CyC6/CH2Cl2 | 0.69 | 0.22 | 0.75 | 0.14 | 0.50 | 0.75 | 0.75 | 0.72 | 0.58 | 0.17 | 0.25 | 0.44 | 0.78 | 0.22 | 0.11 | 0.50 | 0.83 | 0.53 | 0.00 | 0.36 | 0.28 | 0.22 | 0.28 |
TPA | 0.47 | 0.19 | 0.44 | 0.39 | 0.61 | 0.39 | 0.44 | 0.39 | 0.39 | 0.50 | 0.47 | 0.50 | 0.42 | 0.28 | 0.39 | 0.58 | 0.69 | 0.58 | 0.36 | 0.00 | 0.56 | 0.50 | 0.56 |
CII | 0.67 | 0.22 | 0.83 | 0.22 | 0.22 | 0.86 | 0.86 | 0.78 | 0.56 | 0.11 | 0.19 | 0.39 | 0.94 | 0.33 | 0.19 | 0.42 | 0.56 | 0.42 | 0.28 | 0.56 | 0.00 | 0.11 | 0.00 |
MI | 0.64 | 0.22 | 0.94 | 0.22 | 0.33 | 0.92 | 0.97 | 0.83 | 0.67 | 0.06 | 0.08 | 0.33 | 0.94 | 0.33 | 0.19 | 0.53 | 0.67 | 0.53 | 0.22 | 0.50 | 0.11 | 0.00 | 0.11 |
MCII | 0.67 | 0.22 | 0.83 | 0.22 | 0.22 | 0.86 | 0.86 | 0.78 | 0.56 | 0.11 | 0.19 | 0.39 | 0.94 | 0.33 | 0.19 | 0.42 | 0.56 | 0.42 | 0.28 | 0.56 | 0.00 | 0.11 | 0.00 |
Hours | Saturates | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | CH2Cl2 | Total Asp. |
---|---|---|---|---|---|---|---|---|---|
0 | 17.47 | 0.00 | 46.19 | 34.94 | 0.73 | 0.00 | 0.65 | 0.02 | 0.67 |
2 | 6.63 | 0.00 | 40.25 | 46.68 | 1.12 | 0.00 | 4.56 | 0.76 | 5.32 |
2.5 | 0.52 | 0.00 | 29.10 | 57.22 | 0.86 | 0.00 | 9.91 | 2.39 | 12.30 |
min @ 400 °C | Sat | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | Cl2Cl2 | Total Asph. |
---|---|---|---|---|---|---|---|---|---|
0 | 14.0 | 7.5 | 8.5 | 36.7 | 18.8 | 4.0 | 10.3 | 0.1 | 14.4 |
10 | 15.5 | 8.2 | 10.1 | 35.6 | 16.8 | 3.6 | 10.2 | 0.1 | 13.8 |
20 | 16.3 | 8.8 | 10.2 | 35.4 | 15.1 | 2.2 | 11.9 | 0.1 | 14.2 |
30 | 17.4 | 9.3 | 10.4 | 35.1 | 12.6 | 1.1 | 13.9 | 0.2 | 15.2 |
40 | 17.7 | 9.9 | 10.7 | 35.6 | 9.2 | 0.8 | 15.4 | 0.8 | 16.9 |
50 | 17.6 | 9.7 | 10.3 | 35.1 | 9.3 | 0.6 | 16.3 | 1.0 | 17.9 |
60 | 17.3 | 9.4 | 10.4 | 35.9 | 7.9 | 0.5 | 16.1 | 2.4 | 19.0 |
Sample ID | Saturates | Aro-1 | Aro-2 | Aro-3 | Resins | CyC6 | Toluene | CH2Cl2 | Total Asp. |
---|---|---|---|---|---|---|---|---|---|
Coked Lloydminster Asphaltenes | 15.62 | 9.02 | 47.13 | 24.55 | 1.28 | 0.11 | 2.09 | 0.20 | 2.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.J.; Rovani, J.F.; Planche, J.-P.; Loveridge, J.; Literati, A.; Shishkova, I.; Palichev, G.; Kolev, I.; Atanassov, K.; Nenov, S.; et al. SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis. Processes 2023, 11, 1220. https://doi.org/10.3390/pr11041220
Adams JJ, Rovani JF, Planche J-P, Loveridge J, Literati A, Shishkova I, Palichev G, Kolev I, Atanassov K, Nenov S, et al. SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis. Processes. 2023; 11(4):1220. https://doi.org/10.3390/pr11041220
Chicago/Turabian StyleAdams, Jeramie J., Joseph F. Rovani, Jean-Pascal Planche, Jenny Loveridge, Alex Literati, Ivelina Shishkova, Georgi Palichev, Iliyan Kolev, Krassimir Atanassov, Svetoslav Nenov, and et al. 2023. "SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis" Processes 11, no. 4: 1220. https://doi.org/10.3390/pr11041220
APA StyleAdams, J. J., Rovani, J. F., Planche, J.-P., Loveridge, J., Literati, A., Shishkova, I., Palichev, G., Kolev, I., Atanassov, K., Nenov, S., Ribagin, S., Stratiev, D., Yordanov, D., & Huo, J. (2023). SAR-AD Method to Characterize Eight SARA Fractions in Various Vacuum Residues and Follow Their Transformations Occurring during Hydrocracking and Pyrolysis. Processes, 11(4), 1220. https://doi.org/10.3390/pr11041220