Bibliometric Analysis of the Use of Biodiesel Production from Essential Oils as Biofuels
Abstract
:1. Introduction
- To perform a thorough analysis of the literature regarding the use of biodiesel production from essential oils to power compression ignition engines.
- To analyze the research trends and publishing patterns in the field, including the number of publications, authors, countries, and journals.
- To identify the key topics and research gaps in the field and make suggestions for future investigations.
2. Materials and Methods
2.1. Data Collection
2.2. Bibliometric Analysis and Clustering
3. Results and Discussion
3.1. Time Trend Analysis, Publication Type, and Language
3.2. Categories and Research Areas of Web of Science
3.3. Core Journals
3.4. Author Co-Authorship Analysis
3.5. Country/Region Co-Authorship Analysis
3.6. Organization Co-Authorship Analysis
3.7. Co-Occurrence Analysis for All Keywords
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.; Su, X.; Lin, Y.; Long, C.; Zhang, Y.; Zhao, T. Chemical Composition, and Antioxidant and Cholinesterase Inhibitory Activities of Linderaglauca Fruit Essential Oil and Molecular Docking Studies of Six Selected Compounds. Horticulturae 2023, 9, 289. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Boukhatem, M.N.; Setzer, W.N. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants 2020, 9, 800. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Kong, S.; Jayaraman, V.; Selvaraj, D.; Soundararajan, P.; Manivannan, A. Menthaarvensis and Mentha × piperita-Vital Herbs with Myriads of Pharmaceutical Benefits. Horticulturae 2023, 9, 224. [Google Scholar] [CrossRef]
- Ahmed, H.F.A.; Seleiman, M.F.; Mohamed, I.A.A.; Taha, R.S.; Wasonga, D.O.; Battaglia, M.L. Activity of Essential Oils and Plant Extracts as Biofungicides for Suppression of Soil-Borne Fungi Associated with Root Rot and Wilt of Marigold (Calendula officinalis L.). Horticulturae 2023, 9, 222. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, M.; Mousa, A.A.; Mahmood, A.; Alkhathlan, H.Z. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Wu, J.; Zhang, Z. Identification and Characterization of CCD Gene Family in Rose (Rosa chinensis Jacq. ‘Old Blush’) and Gene Co-Expression Network in Biosynthesis of Flower Scent. Horticulturae 2023, 9, 115. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Bizaj, K.; Škerget, M.; Košir, I.J.; Knez, Ž. Hop (Humulus lupulus L.) Essential Oils and Xanthohumol Derived from Extraction Process Using Solvents of Different Polarity. Horticulturae 2022, 8, 368. [Google Scholar] [CrossRef]
- Dao, T.P.; Nguyen, T.V.; Tran, T.Y.N.; Le, X.T.; An, T.N.T.; Anh, N.H.T.; Bach, L.G. Central Composite Design, Kinetic Model, Thermodynamics, and Chemical Composition of Pomelo (Citrus Maxima (Burm.) Merr.) Essential Oil Extraction by Steam Distillation. Processes 2021, 9, 2075. [Google Scholar] [CrossRef]
- Javanmard, A.; Ashrafi, M.; Morshedloo, M.R.; Machiani, M.A.; Rasouli, F.; Maggi, F. Optimizing Phytochemical and Physiological Characteristics of Balangu (Lallemantia iberica) by Foliar Application of Chitosan Nanoparticles and Myco-Root Inoculation under Water Supply Restrictions. Horticulturae 2022, 8, 695. [Google Scholar] [CrossRef]
- Ilić, Z.; Stanojević, L.; Milenković, L.; Šunić, L.; Milenković, A.; Stanojević, J.; Cvetković, D. The Yield, Chemical Composition, and Antioxidant Activities of Essential Oils from Different Plant Parts of the Wild and Cultivated Oregano (Origanum vulgare L.). Horticulturae 2022, 8, 1042. [Google Scholar] [CrossRef]
- Sharma, A.; Gumber, K.; Gohain, A.; Bhatia, T.; Sohal, H.S.; Mutreja, V.; Bhardwaj, G. Importance of essential oils and current trends in use of essential oils (aroma therapy, agrofood, and medicinal usage). In Essential Oils-Extraction, Characterization and Applications, 1st ed.; Nayik, G.A., Ansari, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 53–83. [Google Scholar] [CrossRef]
- Tanjga, B.B.; Lončar, B.; Aćimović, M.; Kiprovski, B.; Šovljanski, O.; Tomić, A.; Travičić, V.; Cvetković, M.; Raičević, V.; Zeremski, T. Volatile Profile of Garden Rose (Rosa hybrida) Hydrosol and Evaluation of Its Biological Activity In Vitro. Horticulturae 2022, 8, 895. [Google Scholar] [CrossRef]
- Islam, M.S.; Subbiah, V.K.; Siddiquee, S. Field Efficacy of Proteolytic Entomopathogenic Fungi against CeratovacunalanigeraZehntner. Horticulturae 2022, 8, 808. [Google Scholar] [CrossRef]
- Beniaich, G.; Hafsa, O.; Maliki, I.; Bin Jardan, Y.A.; El Moussaoui, A.; Chebaibi, M.; Agour, A.; Zouirech, O.; Nafidi, H.A.; Khallouki, F.; et al. GC-MS Characterization, In Vitro Antioxidant, Antimicrobial, and In Silico NADPH Oxidase Inhibition Studies of Anvillearadiata Essential Oils. Horticulturae 2022, 8, 886. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Uğuz, G. Antioxidant effect of clove oil on biodiesel produced from waste cooking oil. Biomass Convers. Biorefinery 2023, 13, 367–373. [Google Scholar] [CrossRef]
- Rahman, S.A.; Van, T.C.; Hossain, F.M.; Jafari, M.; Dowell, A.; Islam, M.A.; Brown, R.J. Fuel properties and emission characteristics of essential oil blends in a compression ignition engine. Fuel 2019, 238, 440–453. [Google Scholar] [CrossRef]
- Vital-López, L.; Mercader-Trejo, F.; Rodríguez-Reséndiz, J.; Zamora-Antuñano, M.A.; Rodríguez-López, A.; Esquerre-Verastegui, J.E.; Farrera Vázquez, N.; García-García, R. Electrochemical Characterization of Biodiesel from Sunflower Oil Produced by Homogeneous Catalysis and Ultrasound. Processes 2023, 11, 94. [Google Scholar] [CrossRef]
- Orege, J.I.; Oderinde, O.; Kifle, G.A.; Ibikunle, A.A.; Raheem, S.A.; Ejeromedoghene, O.; Daramola, M.O. Recent advances in heterogeneous catalysis for green biodiesel production by transesterification. Energy Convers. Manag. 2022, 258, 115406. [Google Scholar] [CrossRef]
- García Martín, J.F.; Torres García, M.; Álvarez Mateos, P. Special Issue on “Biodiesel Production Processes and Technology”. Processes 2023, 11, 25. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifacio, S.; Clowes, J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of Biofuel as a Potential Renewable Energy Source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Wang, C.; Bhatia, S.K.; Manigandan, S.; Yang, R.; Alharbi, S.A.; Nasif, O.; Brindhadevi, K.; Zhou, B. Comparative assessment of waste cooking, chicken waste and waste tire biodiesel blends on performance and emission characteristics. Fuel 2022, 320, 123859. [Google Scholar] [CrossRef]
- Binod, P.; Gnansounou, E.; Sindhu, R.; Pandey, A. Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 5, 317–325. [Google Scholar] [CrossRef]
- Alam, S. Algae: An emerging feedstock for biofuels production. In Algal Biotechnology, 1st ed.; Ashfaq, A., Fawzi, B., Hanifa, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–185. [Google Scholar] [CrossRef]
- Ortiz-Sanchez, M.; Solarte-Toro, J.C.; Orrego-Alzate, C.E.; Acosta-Medina, C.D.; Cardona-Alzate, C.A. Integral use of orange peel waste through the biorefinery concept: An experimental, technical, energy, and economic assessment. Biomass Convers. Biorefinery 2021, 11, 645–659. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: A review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Naranje, V.; Swarnalatha, R.; Batra, O.; Salunkhe, S. Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario. Processes 2022, 10, 2670. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Evaluation of Combustion Stability and Exhaust Emissions of a Stationary Compression Ignition Engine Powered by Diesel/n-Butanol and RME Biodiesel/n-Butanol Blends. Energies 2023, 16, 1717. [Google Scholar] [CrossRef]
- Renish, R.R.; Selvam, A.J.; Čep, R.; Elangovan, M. Influence of Varying Compression Ratio of a Compression Ignition Engine Fueled with B20 Blends of Sea Mango Biodiesel. Processes 2022, 10, 1423. [Google Scholar] [CrossRef]
- Balachandran, A.; Jonsson, T.; Eriksson, L. DC Charging Capabilities of Battery-Integrated Modular Multilevel Converters Based on Maximum Tractive Power. Electricity 2023, 4, 62–77. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Raihan, S.R.S.; Rahim, N.A.; Akhtar, M.N.; Abu Bakar, E. Recent Developments in DC-DC Converter Topologies for Light Electric Vehicle Charging: A Critical Review. Appl. Sci. 2023, 13, 1676. [Google Scholar] [CrossRef]
- Ljubojević, M.; Narandžić, T.; Ostojić, J.; Božanić Tanjga, B.; Grubač, M.; Kolarov, R.; Greksa, A.; Pušić, M. Rethinking Horticulture to Meet Sustainable Development Goals—The Case Study of Novi Sad, Serbia. Horticulturae 2022, 8, 1222. [Google Scholar] [CrossRef]
- Mateus, M.M.; Neuparth, T.; Cecílio, D.M. Modern Kiln Burner Technology in the Current Energy Climate: Pushing the Limits of Alternative Fuel Substitution. Fire 2023, 6, 74. [Google Scholar] [CrossRef]
- Beles, H.; Tusinean, A.; Mitran, T.; Scurt, F.B. Research Regarding the Development of the Combustion Chamber of Internal Combustion Engines with Opposite Pistons. Machines 2023, 11, 309. [Google Scholar] [CrossRef]
- Sedighi, M.; Pourmoghaddam Qhazvini, P.; Amidpour, M. Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment. Sustainability 2023, 15, 3729. [Google Scholar] [CrossRef]
- Ertunç, E. The Effect of Land Consolidation Projects on Carbon Footprint. Land 2023, 12, 507. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, H.; Bañuelos, G.; Shutes, B.; Wang, X.; Hou, S.; Yan, B. Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3876. [Google Scholar] [CrossRef]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef] [Green Version]
- Manimaran, R.; Venkatesan, M.; Kumar, K.T. Optimization of okra (Abelmoschus esculentus) biodiesel production using RSM technique coupled with GA: Addressing its performance and emission characteristics. J. Clean. Prod. 2022, 380, 134870. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, M. A comprehensive bibliometric analysis of Apache Hadoop from 2008 to 2020. Int. J. Intell. Comput. Cybern. 2022, 16, 99–120. [Google Scholar] [CrossRef]
- Gao, S.; Meng, F.; Gu, Z.; Liu, Z.; Farrukh, M. Mapping and Clustering Analysis on Environmental, Social and Governance Field a Bibliometric Analysis Using Scopus. Sustainability 2021, 13, 7304. [Google Scholar] [CrossRef]
- Guo, Y.; Hao, Z.; Zhao, S.; Gong, J.; Yang, F. Artificial intelligence in health care: Bibliometric analysis. J. Med. Internet Res. 2020, 22, e18228. [Google Scholar] [CrossRef] [PubMed]
- Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. Role of Spectrum-Light on Productivity, and Plant Quality over Vertical Farming Systems: Bibliometric Analysis. Horticulturae 2023, 9, 63. [Google Scholar] [CrossRef]
- Blanco, I.; Luvisi, A.; De Bellis, L.; Schettini, E.; Vox, G.; Scarascia Mugnozza, G. Research Trends on Greenhouse Engineering Using a Science Mapping Approach. Horticulturae 2022, 8, 833. [Google Scholar] [CrossRef]
- Onofri, L. A Note on the Economics of Fruit Wines: State of the Arts and Research Gaps. Horticulturae 2022, 8, 163. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOS-viewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef]
- Stopar, K.; Mackiewicz-Talarczyk, M.; Bartol, T. Cotton fiber in web of science and scopus: Mapping and visualization of research topics and publishing patterns. J. Nat. Fibers 2020, 18, 547–558. [Google Scholar] [CrossRef]
- Meho, L.I.; Yang, K. Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 2105–2125. [Google Scholar] [CrossRef]
- Gong, R.; Xue, J.; Zhao, L.; Zolotova, O.; Ji, X.; Xu, Y. A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WoS) Platform. Sustainability 2019, 11, 3459. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, L. A Bibliometric Analysis of Research on Social Cohesion from 1994–2020. Publications 2022, 10, 5. [Google Scholar] [CrossRef]
- Valenzuela-Fernández, L.; Escobar-Farfán, M. Zero-Waste Management and Sustainable Consumption: A Comprehensive Bibliometric Mapping Analysis. Sustainability 2022, 14, 16269. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Bie, Z.L.; Sun, J. Bibliometric Analysis of Cucumber (Cucumis sativus L.) Research Publications from Horticulture Category Based on the Web of Science. HortScience 2021, 56, 1304–1314. [Google Scholar] [CrossRef]
- Kumar, A. Climate Change: Challenges to Reduce Global Warming and Role of Biofuels. In Climate Change, Photosynthesis and Advanced Biofuels, 1st ed.; Kumar, A., Yau, Y.Y., Ogita, S., Scheibe, R., Eds.; Springer: Singapore, 2020; pp. 13–54. [Google Scholar] [CrossRef]
- Albers, S.C.; Berklund, A.M.; Graff, G.D. The rise and fall of innovation in biofuels. Nat. Biotechnol. 2016, 34, 814–821. [Google Scholar] [CrossRef]
- Eugenie, L.B. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change”. J. Am. Plan. Assoc. 2014, 80, 184–185. [Google Scholar] [CrossRef]
- Harper, A.B.; Powell, T.; Cox, P.M.; House, J.; Huntingford, C.; Lenton, T.M.; Shu, S. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 2018, 9, 2938. [Google Scholar] [CrossRef] [Green Version]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Zhang, J.; Ma, R. The Prediction of Infectious Diseases: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6218. [Google Scholar] [CrossRef]
- Dima, A.; Bugheanu, A.-M.; Boghian, R.; Madsen, D.Ø. Mapping Knowledge Area Analysis in E-Learning Systems Based on Cloud Computing. Electronics 2023, 12, 62. [Google Scholar] [CrossRef]
- Zema, T.; Sulich, A. Models of Electricity Price Forecasting: Bibliometric Research. Energies 2022, 15, 5642. [Google Scholar] [CrossRef]
- Dabić, M.; Vlačić, B.; Scuotto, V.; Warkentin, M. Two decades of the Journal of Intellectual Capital: A bibliometric overview and an agenda for future research. J. Intellect. Cap. 2021, 22, 458–477. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Pang, R.; Xie, F.; Zhang, J.; Sun, D. Research Progress and Development Trend of Social Media Big Data (SMBD): Knowledge Mapping Analysis Based on Cite Space. ISPRS Int. J. Geo-Inf. 2020, 9, 632. [Google Scholar] [CrossRef]
- Alshater, M.M.; Saad, R.A.J.; Abd Wahab, N.; Saba, I. What do we know about zakat literature? A bibliometric review. J. Islam. Account. Bus. Res. 2021, 12, 544–563. [Google Scholar] [CrossRef]
- Wambu, E.W.; Ho, Y.S. A bibliometricanalysis of drinking water research in Africa. Water SA 2016, 42, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.S.; Ranasinghe, P. A bibliometric analysis of highly cited insulin resistance publications in Science Citation Index Expanded. Obes. Med. 2022, 31, 100399. [Google Scholar] [CrossRef]
- Song, M.; Zheng, C.; Wang, J. The role of digital economy in China’s sustainable development in a post-pandemic environment. J. Enterp. Inf. Manag. 2022, 35, 58–77. [Google Scholar] [CrossRef]
- Fokdal, J.; Čolić, R.; MilovanovićRodić, D. Integrating sustainability in higher planning education through international cooperation: Assessment of a pedagogical model and learning outcomes from the students’ perspective. Int. J. Sustain. High. Educ. 2020, 21, 1–17. [Google Scholar] [CrossRef]
- Eduan, W.; Yuanqun, J. Patterns of the China-Africa research collaborations from 2006 to 2016: A bibliometric analysis. High. Educ. 2019, 77, 979–994. [Google Scholar] [CrossRef]
- Hossain, S.; Batcha, M.S.; Atoum, I.; Ahmad, N.; Al-Shehri, A. Bibliometric Analysis of the Scientific Research on Sustainability in the Impact of Social Media on Higher Education during the COVID-19 Pandemic. Sustainability 2022, 14, 16388. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pandey, N. A retrospective evaluation of Marketing Intelligence and Planning: 1983–2019. Mark. Intell. Plan. 2021, 39, 48–73. [Google Scholar] [CrossRef]
- Gupta, A.; Valeri, M. Mapping research on family business in tourism and hospitality: A bibliometric analysis. J. Fam. Bus. Manag. 2022, 12, 367–392. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Sun, J. Bibliometric analysis of potato research publications from Agronomy Category based on Web of Science from 2000 to 2021. Potato Res. 2022, 65, 233–253. [Google Scholar] [CrossRef]
- Kuanova, L.A.; Sagiyeva, R.; Shirazi, N.S. Islamic social finance: A literature review and future research directions. J. Islam. Account. Bus. Res. 2021, 12, 707–728. [Google Scholar] [CrossRef]
Rank | Document Type | Records | % of 186 | Language | Records | % of 186 |
---|---|---|---|---|---|---|
1 | Article | 164 | 88.172 | English | 184 | 98.925 |
2 | Review Article | 22 | 11.828 | Chinese | 1 | 0.538 |
3 | Book Chapters | 7 | 3.763 | Turkish | 1 | 0.538 |
4 | Early Access | 5 | 2.688 | |||
5 | Proceeding Paper | 3 | 1.613 |
Rank | WoS Categories | TP | Ratio (%) | Research Areas | TP | Ratio (%) |
---|---|---|---|---|---|---|
1 | Energy Fuels | 33 | 17.742 | Chemistry | 60 | 32.258 |
2 | Chemical Engineering | 27 | 14.516 | Engineering | 42 | 22.581 |
3 | Food Science Technology | 21 | 11.290 | Energy Fuels | 33 | 17.742 |
4 | Analytical Chemistry | 20 | 10.753 | Environmental Sciences/Ecology | 24 | 12.903 |
5 | Environmental Sciences | 20 | 10.753 | Food Science Technology | 21 | 11.290 |
6 | Multidisciplinary Chemistry | 19 | 10.215 | Agriculture | 18 | 9.677 |
7 | Applied Chemistry | 14 | 7.527 | Biochemistry Molecular/Biology | 18 | 9.677 |
8 | Agronomy | 11 | 5.914 | Science Technology/Other T opics | 16 | 8.602 |
9 | Biochemistry/Molecular Biology | 11 | 5.914 | Plant Sciences | 11 | 5.914 |
10 | Environmental Engineering | 11 | 5.914 | Materials Science | 10 | 5.376 |
11 | Plant Sciences | 11 | 5.914 | Biotechnology/Applied Microbiology | 9 | 4.839 |
12 | Green Sustainable Science Technology | 10 | 5.376 | Thermodynamics | 8 | 4.301 |
13 | Agricultural Engineering | 9 | 4.839 | Polymer Science | 6 | 3.226 |
14 | Biotechnology/Applied Microbiology | 9 | 4.839 | Geology | 5 | 2.688 |
15 | Physical Chemistry | 9 | 4.839 | Integrative Complementary Medicine | 3 | 1.613 |
16 | Thermodynamics | 8 | 4.301 | Spectroscopy | 3 | 1.613 |
Rank | Journal | TP | Ratio | IF 2021 | IF 5-yr | QC |
---|---|---|---|---|---|---|
1 | Industrial Crops and Products | 8 | 4.301 | 6.449 | 6.508 | Q1 |
2 | Fuel | 7 | 3.763 | 8.035 | 7.621 | Q1 |
3 | Journal of Analytical and Applied Pyrolysis | 4 | 2.151 | 6.437 | 5.914 | Q1 |
4 | Journal of Chromatography A | 4 | 2.151 | 4.601 | 4.313 | Q1 |
5 | Energy Fuels | 3 | 1.613 | 4.654 | 4.582 | Q2 |
6 | Journal of Cleaner Production | 3 | 1.613 | 11.072 | 11.016 | Q1 |
7 | Journal of The American Oil Chemists Society | 3 | 1.613 | 1.952 | 2.346 | Q3 |
8 | Journal of Thermal Analysis and Calorimetry | 3 | 1.613 | 4.755 | 3.641 | Q1 |
9 | Molecules | 3 | 1.613 | 4.927 | 5.110 | Q2 |
10 | ACS Omega | 2 | 1.075 | 4.132 | 4.197 | Q2 |
11 | Algal Research Biomass Biofuels and Bioproducts | 2 | 1.075 | 5.276 | 5.813 | Q2 |
12 | Energies | 2 | 1.075 | 3.252 | 3.333 | Q3 |
13 | Food Chemistry | 2 | 1.075 | 9.231 | 8.795 | Q1 |
14 | Journal of Agricultural and Food Chemistry | 2 | 1.075 | 5.895 | 6.048 | Q1 |
15 | Journal of Applied Polymer Science | 2 | 1.075 | 3.057 | 2.813 | Q2 |
16 | Journal of Essential Oil Research | 2 | 1.075 | 2.532 | 2.450 | Q2 |
17 | Journal of Hazardous Materials | 2 | 1.075 | 14.224 | 12.984 | Q1 |
18 | Marine and Petroleum Geology | 2 | 1.075 | 5.361 | 5.476 | Q1 |
19 | Organic Geochemistry | 2 | 1.075 | 3.623 | 4.402 | Q2 |
20 | PLoS ONE | 2 | 1.075 | 3.752 | 4.069 | Q2 |
21 | Polymer Degradation and Stability | 2 | 1.075 | 5.204 | 5.147 | Q1 |
22 | Rapid Communications in Mass Spectrometry | 2 | 1.075 | 2.586 | 2.538 | Q3 |
23 | Russian Journal of Bioorganic Chemistry | 2 | 1.075 | 1.254 | 1.063 | Q4 |
24 | Sustainable Chemistry and Pharmacy | 2 | 1.075 | 5.464 | 5.599 | Q2 |
25 | AAPG Bulletin | 1 | 0.538 | 3.863 | 4.470 | Q2 |
Rank | Author | Articles | Citations | Organization | Country |
---|---|---|---|---|---|
1 | Rahman, S. M. Ashrafur | 6 | 91 | Queensland University of Technology | Australia |
2 | Cantrell, Charles L. | 5 | 47 | Mississippi State University | United States |
3 | Zheljazkov, Valtcho D. | 5 | 47 | Oregon State University | United States |
4 | Astatkie, Tessema | 3 | 19 | Dalhousie University | Canada |
5 | Brown, Richard J. | 3 | 37 | Queensland University of Technology | Australia |
6 | Dowell, Ashley | 3 | 82 | Southern Cross University | Australia |
7 | Kaloustian, Jacques | 3 | 47 | UDICE-French Research Universities | France |
8 | Nabi, Md. Nurun | 3 | 37 | Central Queensland University | Australia |
9 | Ristovski, Zoran (Ristovski, Z. D.) | 3 | 37 | Queensland University of Technology | Australia |
10 | Islam, Aminul (Islam, M. A.) | 3 | 37 | Technical University of Denmark | Denmark |
11 | Aucejo, Susana (Aucejo, S.) | 2 | 13 | ITENE Research Center | Spain |
12 | Babinszki, Bence (Babinszki, B.) | 2 | 21 | Hungarian Academy of Sciences | Hungary |
13 | Barta-Rajnai, Eszter (Barta-Rajnai, E.) | 2 | 21 | Hungarian Research Centre for Natural Sciences | Hungary |
14 | Saldaña, Jose Maria Bermudez (Bermudez, J. M.) | 2 | 13 | ITENE Research Center | Spain |
15 | Blazso, Marianne (Blazso, M.) | 2 | 21 | Hungarian Research Centre for Natural Sciences | Hungary |
16 | Burkhardt, Andy (Burkhardt, Andy) | 2 | 28 | Montana State University | United States |
17 | Camean, Ana Maria (Camean, A. M.) | 2 | 13 | University of Sevilla | Spain |
18 | Czegeny, Zs. | 2 | 21 | Hungarian Academy of Sciences | Hungary |
19 | Davin, Laurence B. | 2 | 54 | Washington State University | United States |
20 | Dowell, Averie (Dowell, A.) | 2 | 9 | Southern Cross University | Australia |
Rank | Country/Region | Records | Cluster | Total Link Strength | Citations |
---|---|---|---|---|---|
1 | China | 27 | 4 | 5 | 485 |
2 | United States | 23 | 10 | 23 | 332 |
3 | India | 23 | 5 | 6 | 258 |
4 | Australia | 15 | 8 | 17 | 243 |
5 | France | 10 | 3 | 4 | 419 |
6 | Canada | 8 | 5 | 7 | 358 |
7 | Egypt | 7 | 5 | 7 | 107 |
8 | Malaysia | 7 | 2 | 2 | 408 |
9 | Saudi Arabia | 5 | 5 | 9 | 38 |
10 | Taiwan | 4 | 1 | 1 | 69 |
11 | Greece | 3 | 1 | 1 | 75 |
12 | Pakistan | 3 | 3 | 3 | 5 |
13 | Republic of Korea | 3 | 5 | 6 | 24 |
14 | Austria | 2 | 8 | 0 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biberci, M.A. Bibliometric Analysis of the Use of Biodiesel Production from Essential Oils as Biofuels. Processes 2023, 11, 974. https://doi.org/10.3390/pr11040974
Biberci MA. Bibliometric Analysis of the Use of Biodiesel Production from Essential Oils as Biofuels. Processes. 2023; 11(4):974. https://doi.org/10.3390/pr11040974
Chicago/Turabian StyleBiberci, Mehmet Ali. 2023. "Bibliometric Analysis of the Use of Biodiesel Production from Essential Oils as Biofuels" Processes 11, no. 4: 974. https://doi.org/10.3390/pr11040974
APA StyleBiberci, M. A. (2023). Bibliometric Analysis of the Use of Biodiesel Production from Essential Oils as Biofuels. Processes, 11(4), 974. https://doi.org/10.3390/pr11040974