Biomass Fuel Production through Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of Palm Oil Mill Effluent and Empty Fruit Bunch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofeedstocks
2.2. Microorganism and Inoculum Preparation
2.3. Batch Fermentation
2.4. Analytical Methods
3. Results and Discussion
3.1. Batch Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of POME and EFB
3.2. Biodegradation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BOD | Biochemical oxygen demand |
COD | Chemical oxygen demand |
POME | Palm oil mill effluent |
EFB | Empty fruit bunch |
TSS | Total suspended solid |
CHN | Carbon, hydrogen, nitrogen |
CEV | Calorific energy value |
RPM | Rate per minute |
MC | Moisture content |
MF | Mesocarp fibers |
PKS | Palm kernel shells |
OPT | Oil palm trunk |
OPF | Oil palm fronds |
HRT | Hydraulic retention time |
DOE | Department of environment |
References
- Alam, A.F.; Er, A.C.; Begum, H. Malaysian oil palm industry: Prospect and problem. J. Food Agric. Environ. 2015, 13, 143–148. [Google Scholar]
- Production of Crude Palm Oil. Available online: https://bepi.mpob.gov.my/index.php/en/production/production-2021/production-of-crude-oil-palm-2021 (accessed on 24 June 2022).
- Parveez, G.K.A.; Tarmizi, A.H.A.; Sundram, S.; Loh, S.K.; Ong-Abdullah, M.; Palam, K.D.P.; Salleh, K.M.; Ishak, S.M.; Idris, Z. Oil palm economic performance in Malaysia and R&D progress in 2020. J. Oil Palm Res. 2021, 33, 181–214. [Google Scholar]
- Uemura, Y.; Omar, W.N.; Tsutsui, T.; Yusup, S.B. Torrefaction of oil palm wastes. Fuel 2011, 90, 2585–2591. [Google Scholar] [CrossRef]
- Onoja, E.; Chandren, S.; Abdul Razak, F.I.; Mahat, N.A.; Wahab, R.A. Oil palm (Elaeis guineensis) biomass in Malaysia: The present and future prospects. Waste Biomass Valorization 2019, 10, 2099–2117. [Google Scholar] [CrossRef]
- Loh, S.K.; Choo, Y.M. Prospect, Challenges and Opportunities on Biofuels in Malaysia. In Advances in Biofuels; Pogaku, R., Sarbatly, R., Eds.; Springer: Boston, MA, USA, 2013; Volume 1, pp. 3–14. [Google Scholar]
- Madaki, Y.S.; Seng, L. Palm oil mill effluent (POME) from Malaysia palm oil mills: Waste or resource. Int. J. Sci. Environ. Technol. 2013, 2, 1138–1155. [Google Scholar]
- Dominic, D.; Baidurah, S. Recent Developments in Biological Processing Technology for Palm Oil Mill Effluent Treatment—A Review. Biology 2022, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.I.H.A.; Hanafiah, M.M. The potential of palm oil mill effluent (POME) as a renewable energy source. J. Green Energy 2017, 1, 323–346. [Google Scholar] [CrossRef]
- Tan, Y.D.; Lim, J.S. Feasibility of palm oil mill effluent elimination towards sustainable Malaysian palm oil industry. Renew. Sustain. Energy Rev. 2019, 111, 507–522. [Google Scholar] [CrossRef]
- Mohammad, S.; Baidurah, S.; Kobayashi, T.; Ismail, N.; Leh, C.P. Palm oil mill effluent treatment processes—A review. Processes 2021, 9, 739. [Google Scholar] [CrossRef]
- Sethupathi, S. Removal of Residue Oil From Palm Oil Mill Effluent (POME) Using Chitosan. Master’s Thesis, Universiti Sains Malaysia, Penang, Malaysia, 2004. [Google Scholar]
- Wu, T.Y.; Mohammad, A.W.; Jahim, J.M.; Anuar, N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J. Environ. Manag. 2010, 91, 1467–1490. [Google Scholar] [CrossRef]
- Mohammad, S.; Baidurah, S.; Kamimura, N.; Matsuda, S.; Bakar, N.A.S.A.; Muhamad, N.N.I.; Ahmad, A.H.; Dominic, D.; Kobayashi, T. Fermentation of Palm Oil Mill Effluent in the Presence of Lysinibacillus sp. LC 556247 to Produce Alternative Biomass Fuel. Sustainability 2021, 13, 11915. [Google Scholar] [CrossRef]
- Geng, A. Conversion of oil palm empty fruit bunch to biofuels. In Liquid, Gaseous and Solid Biofuels-Conversion Techniques; Zhen., F., Ed.; Intech: Rijeka, Croatia, 2013; Volume 1, pp. 479–490. [Google Scholar]
- Chan, K.W.; Watson, I.; Lim, K.C. Use of oil palm waste material for increased production. Planter 1981, 57, 14–37. [Google Scholar]
- Osman, N.A.; Ujang, F.A.; Roslan, A.M.; Ibrahim, M.F.; Hassan, M.A. The effect of palm oil mill effluent final discharge on the characteristics of Pennisetum purpureum. Sci. Rep. 2020, 10, 6613. [Google Scholar] [CrossRef]
- Utami, N.U.; Said, M.; Faizal, M.; Komariah, L.N. Conversion of Palm Oil Mill Effluent on Biogas Production with Consortium Bacteria. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 2035–2041. [Google Scholar] [CrossRef]
- Imran, A.M.; Widodo, S.; Irvan, U.R. Correlation of fixed carbon content and calorific value of South Sulawesi Coal, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 473, 012106. [Google Scholar]
- Yacob, S.; Hassan, M.A.; Shirai, Y.; Wakisaka, M.; Subash, S. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Sci. Total Environ. 2006, 366, 187–196. [Google Scholar] [CrossRef]
- Bakar, N.A.S.A.; Khuzaini, N.A.; Baidurah, S. Co-fermentation involving Lysinibacillus sp. and Aspergillus flavus for simultaneous palm oil waste treatment and renewable biomass fuel production. AIMS Microbiol. 2022, 8, 357–371. [Google Scholar] [CrossRef]
- Bakar, N.A.S.A.; Baidurah, S. Bio-valorization of palm oil mill effluent waste for the potential production of renewable biomass fuel pellets. Malays. J. Microbiol. 2022, 18, 408–423. [Google Scholar]
- Low, T.J.; Mohammad, S.; Sudesh, K.; Baidurah, S. Utilization of banana (Musa sp.) fronds extract as an alternative carbon source for poly (3-hydroxybutyrate) production by Cupriavidus Necator H16. Biocatal. Agric. Biotechnol. 2021, 34, 102048. [Google Scholar] [CrossRef]
- Liew, W.L.; Kassim, M.A.; Muda, K.; Loh, S.K.; Affam, A.C. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: A review. J. Environ. Manag. 2015, 149, 222–235. [Google Scholar] [CrossRef]
- Ng, K.H. Adoption of TiO2-photocatalysis for palm oil mill effluent (POME) treatment: Strengths, weaknesses, opportunities, threats (SWOT) and its practicality against traditional treatment in Malaysia. Chemosphere 2021, 270, 129378. [Google Scholar] [CrossRef]
- Nahrul, H.Z.; Nor, F.J.; Ropandi, M.; Astimar, A.A. A review on the development of palm oil mill effluent (POME) final discharge polishing treatments. J. Oil Palm Res. 2017, 29, 528–540. [Google Scholar]
- Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef]
- Czekała, W.; Bartnikowska, S.; Dach, J.; Janczak, D.; Smurzyńska, A.; Kozłowski, K.; Bugała, A.; Lewicki, A.; Cieślik, M.; Typańska, D.; et al. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy 2018, 159, 1118–1122. [Google Scholar] [CrossRef]
- Loh, S.K. The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag. 2017, 141, 285–298. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K.; Serri, N.A.; Yusoff, S.B.; Shahrin, N.A.M.; Seng, K.Y.; Bakar, M.H.A.; Keong, L.C. Sustainable Biorefinery Concept for Industrial Bioprocessing. In Biorefinery Production Technologies for Chemicals and Energy, 1st ed.; Kuila, A., Mukhopadhyay, M., Eds.; Wiley & Sons: Hoboken, NJ, USA; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 15–53. [Google Scholar]
- Sen, K.Y.; Baidurah, S. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Curr. Opin. Green Sustain. Chem. 2020, 27, 100412. [Google Scholar] [CrossRef]
- Bajpai, P. Biermann’s Handbook of Pulp and Paper: Paper and Board Making. In Biermann’s Handbook of Pulp and Paper: Paper and Board Making; Bajpai., P., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 1–31. [Google Scholar]
- Bendicho, C.; Lavilla, I. Water analysis: Sewage. In Encyclopedia of Analytical Science, 2nd ed.; Wordfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; Volume 10, pp. 300–307. [Google Scholar]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Constituents in Wastewater. In Wastewater Engineering: Treatment, Disposal, and Reuse, 4th ed.; Wordfold, P., Townshend, A., Poole, C., Eds.; McGraw-Hill: New York, NY, USA, 2004; Volume 1, pp. 80–98. [Google Scholar]
- Chan, Y.J.; Chong, M.F.; Law, C.L. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). J. Environ. Manag. 2010, 91, 1738–1746. [Google Scholar] [CrossRef]
- Li, B.; Bishop, P.L. Oxidation–Reduction Potential Changes in Aeration Tanks and Microprofiles of Activated Sludge Floc in Medium-and Low-Strength Wastewaters. Water Environ. Res. 2004, 76, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Abu-Bakar, N.A.; Ibrahim, N. Indigenous microorganisms production and the effect on composting process. AIP Conf. Proc. 2013, 1571, 283–286. [Google Scholar]
- Kumar, B.L.; Gopal, D.V.R. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 2015, 5, 867–876. [Google Scholar] [CrossRef]
- Zawierucha, I.; Malina, G. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil. J. Phys. Conf. Ser. 2013, 289, 012035. [Google Scholar] [CrossRef]
- Khan, S.; Ali, J. Chemical Analysis in Air and Water. In Bioassays: Advanced Methods and Applications; Hader, D., Erzinger, G., Eds.; Elsevier: Oxford, UK, 2017; Volume 1, pp. 21–36. [Google Scholar]
- Li, J.; Luo, G.; He, L.; Xu, J.; Lyu, J. Analytical approaches for determining chemical oxygen demand in water bodies: A review. Crit. Rev. Anal. Chem. 2018, 48, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Pankhania, M.; Stephenson, T.; Semmens, M.J. Hollow fibre bioreactor for wastewater treatment using bubbleless membrane aeration. Water Res. 1994, 28, 2233–2236. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G.; Adelodun, A.A. Recent advances on the adsorption of herbicides and pesticides from polluted waters: Performance evaluation via physical attributes. J. Ind. Eng. Chem. 2021, 93, 117–137. [Google Scholar] [CrossRef]
- Capdeville, B.; Nguyen, K.M. Kinetics and modelling of aerobic and anaerobic film growth. Water Sci. Technol. 1990, 22, 147–170. [Google Scholar] [CrossRef]
- Atnaw, S.M.; Sulaiman, S.A.; Yusup, S. Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds. Sci. World J. 2014, 2014, 121908. [Google Scholar] [CrossRef]
- Hasan, M.F. Physical and Combustion Characteristics of Densified Palm Biomass. Master’s Thesis, University of Teknology, Skudai, Malaysia, 2009. [Google Scholar]
- Özyuğuran, A.; Yaman, S. Prediction of calorific value of biomass from proximate analysis. Energy Procedia 2017, 107, 130–136. [Google Scholar] [CrossRef]
- Asamoah, B.; Nikiema, J.; Gebrezgabher, S.; Odonkor, E.; Njenga, M. A review on production, marketing and use of fuel briquettes. In Resource, Reuse and Recovery; Chandrasoma, M., Ed.; CGIAR: Research Program on Water, Land, and Ecosystem (WLE); International Water Management Institute (IWMI): Colombo, Sri Lanka, 2016; Volume 7, pp. 15–36. [Google Scholar]
- Safana, A.A. The Mixture of Bio-Oil and Biochar Produced from Slow Pyrolysis of Palm Oil Wastes for Briquettes Production and Combustion as Solid Fuels. Ph.D. Thesis, Universiti Sains Malaysia, Penang, Malaysia, 2018. [Google Scholar]
- Awad, O.I.; Mamat, R.; Ibrahim, T.K.; Hagos, F.Y.; Noor, M.M.; Yusri, I.M.; Leman, A.M. Calorific value enhancement of fuel oil by moisture removal and its effect on the performance and combustion of a spark ignition engine. Energy Convers. Manag. 2017, 137, 86–96. [Google Scholar] [CrossRef]
- Ferguson, S.C.; Dahale, A.; Shotorban, B.; Mahalingam, S.; Weise, D.R. The role of moisture on combustion of pyrolysis gases in wildland fires. Combust. Sci. Technol. 2013, 185, 435–453. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Karim, M.F.; Nazmi, M.; Moni, Z.; Atnaw, S.M. On gasification of different tropical plant-based biomass materials. Asian J. Sci. Res. 2013, 6, 245–253. [Google Scholar] [CrossRef]
- Putro, L.H.S. Emissions of CH4 and CO2 from wastewater of palm oil mills: A real contribution to increase the greenhouse gas and its potential as renewable energy sources. Environ. Nat. Resour. J. 2022, 20, 61–72. [Google Scholar] [CrossRef]
- Cleveland, C.J.; Morris, C. Climate Change. In Handbook of Energy, 1st ed.; Cleveland, C.J., Morris, C., Eds.; Elservier: Oxford, UK, 2014; Volume 2, pp. 805–820. [Google Scholar]
- Hassan, S.; Kee, L.S.; Al-Kayiem, H.H. Experimental study of palm oil mill effluent and oil palm frond waste mixture as an alternative biomass fuel. J. Eng. Sci. Technol. 2013, 8, 703–712. [Google Scholar]
- Ma, Q.; Zhang, Q.; Chen, J.; Huang, Y.; Shi, Y. Effects of hydrogen on combustion characteristics of methane in air. Int. J. Hydrog. Energy 2014, 39, 11291–11298. [Google Scholar] [CrossRef]
- Wierzba, I.; Ale, B.B. Rich flammability limits of fuel mixtures involving hydrogen at elevated temperatures. Int. J. Hydrog. Energy 2000, 25, 75–80. [Google Scholar] [CrossRef]
- İlbaş, M.; Yılmaz, İ. Experimental analysis of the effects of hydrogen addition on methane combustion. Int. J. Energy Res. 2012, 36, 643–647. [Google Scholar] [CrossRef]
- Mani, S.; Tabil, L.G.; Sokhansanj, S. Evaluation of compaction equations applied to four biomass species. Can. Biosyst. Eng. 2004, 46, 55–61. [Google Scholar]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- Hedlund, F.H.; Astad, J.; Nichols, J. Inherent hazards, poor reporting and limited learning in the solid biomass energy sector: A case study of a wheel loader igniting wood dust, leading to fatal explosion at wood pellet manufacturer. Biomass Bioenergy 2014, 66, 450–459. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
Group 1 (Ratio 7:3) | Group 2 (Ratio 8:2) | Group 3 (Ratio 9:1) | Group 4 (Ratio 10:0) | Control Experiment | Commercial Product ‘B’ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | 0 h | 120 h | RE | 0 h | 120 h | RE | 0 h | 120 h | RE | 0 h | 120 h | RE | 0 h | 120 h | RE | |
TSS (g/L) | 11.47 ± 0.15 | 6.67 ± 0.15 | 41.86 ± 1.78 | 348.83 ± 0.03 | 25.50 ± 0.06 | 92.69 ± 0.02 | 42.07 ± 0.18 | 9.40 ± 0.12 | 77.65 ± 0.26 | 1123.50 ± 0.08 | 68.10 ± 0.10 | 93.94 ± 2.03 | 2.70 ± 0.06 | 2.67 ± 0.06 | 1.00 ± 0.27 | NR |
pH | 5.0 ± 0.00 | 5.1 ± 0.00 | NR | 5.3 ± 0.00 | 5.8 ± 0.00 | NR | 4.8 ± 0.00 | 5.0 ± 0.00 | NR | 5.3 ± 0.00 | 5.6 ± 0.00 | NR | 4.7 ± 0.00 | 4.5 ± 0.00 | NR | NR |
MC (%) | 86.38 ± 2.00 | 2.24 ± 0.05 | NR | 86.38 ± 2.00 | 0.55 ± 0.05 | NR | 86.38 ± 2.00 | 1.92 ± 0.03 | NR | 86.38 ± 2.00 | 0.58 ± 0.02 | NR | 86.38 ± 2.00 | 4.41 ± 0.02 | NR | 9.8 |
CEV (MJ/kg) | 14.97 | 16.98 | NR | 22.21 | 16.02 | NR | 23.69 | 18.27 | NR | 31.36 | 20.26 | NR | 19.25 | 18.67 | NR | 17.35 |
Oil and grease (%) | 46.27 ± 0.18 | 15.46 ± 0.00 | 66.58 ± 0.13 | 68.46 ± 0.00 | 31.04 ± 0.08 | 54.65 ± 0.11 | 50.61 ± 0.02 | 42.63 ± 0.01 | 15.78 ± 0.05 | 28.59 ± 0.05 | 23.61 ± 0.00 | 17.43 ± 0.15 | 20.97 ± 0.01 | 19.63 ± 0.01 | 6.39 ± 0.03 | NR |
Group | TOC (%) | TC (%) | IC (%) | Compression Strength (kN) |
---|---|---|---|---|
1 | 45.09 | 45.11 | 0.02 | 0.069 ± 0.020 |
2 | 44.31 | 44.32 | 0.01 | 0.072 ± 0.010 |
3 | 57.97 | 57.99 | 0.02 | 0.099 ± 0.001 |
4 | 66.27 | 66.28 | 0.02 | 0.337 ± 0.037 |
CE | 47.19 | 47.20 | 0.01 | 0.056 ± 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominic, D.; Baidurah, S. Biomass Fuel Production through Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of Palm Oil Mill Effluent and Empty Fruit Bunch. Processes 2023, 11, 1444. https://doi.org/10.3390/pr11051444
Dominic D, Baidurah S. Biomass Fuel Production through Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of Palm Oil Mill Effluent and Empty Fruit Bunch. Processes. 2023; 11(5):1444. https://doi.org/10.3390/pr11051444
Chicago/Turabian StyleDominic, Debbie, and Siti Baidurah. 2023. "Biomass Fuel Production through Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of Palm Oil Mill Effluent and Empty Fruit Bunch" Processes 11, no. 5: 1444. https://doi.org/10.3390/pr11051444
APA StyleDominic, D., & Baidurah, S. (2023). Biomass Fuel Production through Fermentation of Lysinibacillus sp. LC 556247 in Various Ratios of Palm Oil Mill Effluent and Empty Fruit Bunch. Processes, 11(5), 1444. https://doi.org/10.3390/pr11051444