Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oil Preparation and Chemical Analysis
2.2. Space Disinfectant Preparation and Space Disinfectant Test
3. Results and Discussion
3.1. C. obtusa Essential Oil Component Analysis
3.2. Indoor Space Disinfectant Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirskaya, E.; Agranovski, I.E. Control of Airborne Microorganisms by Essential Oils Released by VaxiPod. Atmosphere 2021, 12, 1418. [Google Scholar] [CrossRef]
- Musee, N.; Ngwenya, P.; Motaung, L.K.; Moshuhla, K.; Nomngongo, P. Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. Environ. Chem. Ecotoxicol. 2023, 5, 62–78. [Google Scholar] [CrossRef]
- Stetzenbach, L.D. Airborne Infectious Microorganisms. Encycl. Microbiol. 2009, 52, 175–182. [Google Scholar] [CrossRef]
- Rai, M.; Zacchino, S.; Derita, M. Essential Oils and Nanotechnology for Treatment of Microbial Diseases; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Cavanagh, H.M. Antibacterial activity of essential oils from Australian native plants. Phytother. Res. PTR 2005, 19, 643–646. [Google Scholar] [CrossRef]
- May, J.; Chan, C.H.; King, A.; Williams, L.; French, G.L. Time-kill studies of tea tree oils on clinical isolates. J. Antimicrob. Chemother. 2000, 45, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical variability and biological activities of Eucalyptus spp. essential oils. Molecules 2016, 21, 1671. [Google Scholar] [CrossRef]
- Usachev, E.V.; Pyankov, O.V.; Usacheva, O.V.; Agranovski, I.E. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. J. Aerosol Sci. 2013, 59, 22–30. [Google Scholar] [CrossRef]
- Tian, F.; Lee, S.Y.; Chun, H.S. Comparison of the Antifungal and Antiaflatoxigenic Potential of Liquid and Vapor Phase of Thymus vulgaris Essential Oil against Aspergillus flavus. J. Food Prot. 2019, 82, 2044–2048. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.C.; Young, D.G.; Oberg, C.J. Effect of a diffused essential oil blend on bacterial bioaerosols. J. Essent. Oil Res. 1998, 10, 517–523. [Google Scholar] [CrossRef]
- Lanzerstorfer, A.; Hackl, M.; Schlömer, M.; Rest, B.; Deutsch-Grasl, E.; Lanzerstorfer, C. The influence of air-dispersed essential oils from lemon (Citrus limon) and silver fir (Abies alba) on airborne bacteria and fungi in hospital rooms. J. Environ. Sci. Health Part A 2019, 54, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.S.; Park, D.H.; Choi, C.Y.; Kim, G.Y.; Yoo, J.C.; Cho, S.S. Essential Oils and Non-volatile Compounds Derived from Chamaecyparis obtusa: Broad Spectrum Antimicrobial Activity against Infectious Bacteria and MDR(multidrug resistant) Strains. Nat. Prod. Commun. 2016, 11, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Han, S.-R.; Yang, M. Evaluations on the Deodorization Effect and Antibacterial Activity of Chamaecyparis obtusa Essential Oil. J. Odor Indoor Environ. 2009, 8, 101–107. [Google Scholar]
- Manter, D.K.; Kelsey, R.G.; Karchesy, J.J. Antimicrobial activity of extractable conifer heartwood compounds toward Phytophthora ramorum. J. Chem. Ecol. 2007, 33, 2133–2147. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Journey of Limonene as an Antimicrobial Agent. J. Pure Appl. Microbiol. 2021, 15, 1094–1110. [Google Scholar] [CrossRef]
- Borges, M.F.d.A.; Lacerda, R.d.S.; Correia, J.P.d.A.; de Melo, T.R.; Ferreira, S.B. Potential Antibacterial Action of α-Pinene. Med. Sci. Forum 2022, 12, 11. [Google Scholar]
No | RT (min) | % in Sample | Hit Name |
---|---|---|---|
1 | 8.753 | 1.299 | Bicyclo[3.1.0]hex-2-ene, 2-methyl-5-(1-methylethyl)- |
2 | 9.019 | 2.27 | 1R-alpha-Pinene |
3 | 9.551 | 0.542 | Camphene |
4 | 10.638 | 1.756 | .beta.-Phellandrene |
5 | 10.711 | 0.256 | .beta.-Pinene |
6 | 12.439 | 3.212 | Bicyclo[4.1.0]hept-2-ene, 3,7,7-trimethyl- |
7 | 12.747 | 1.482 | Benzene, 1-methyl-3-(1-methylethyl)- |
8 | 13.007 | 6.004 | Limonene |
9 | 14.233 | 5.735 | 1,4-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- |
10 | 14.445 | 0.09 | Terpineol, cis-.beta.- |
11 | 15.321 | 2.191 | Cyclohexene, 1-methyl-4-(1-methylethylidene)- |
12 | 15.647 | 0.064 | Terpineol, cis-.beta.- |
13 | 15.768 | 0.049 | 1,6-Octadien-3-ol, 3,7-dimethyl- |
14 | 16.288 | 0.051 | 1-Octen-3-yl-acetate |
15 | 16.547 | 0.058 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, trans- |
16 | 17.254 | 0.05 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, cis- |
17 | 17.387 | 0.071 | Bicyclo[2.2.1]heptan-2-one, 1,7,7-trimethyl-, (1R)- |
18 | 20.269 | 0.076 | Bicyclo[2.2.1]heptan-2-ol, 1,3,3-trimethyl-, acetate, (1S-exo)- |
19 | 21.574 | 0.206 | 1,6-Octadien-3-ol, 3,7-dimethyl-, 2-aminobenzoate |
20 | 22.746 | 8.374 | Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, acetate, (1S-endo)- |
21 | 25.006 | 13.384 | 3-Cyclohexene-1-methanol, alpha.,.alpha.,4-trimethyl-, acetate |
22 | 25.961 | 0.131 | Di-epi-alpha.-cedrene-(I) |
23 | 26.045 | 0.046 | 2H-2,4a-Methanonaphthalene, 1,3,4,5,6,7-hexahydro-1,1,5,5-tetramethyl-, (2S)- |
24 | 26.178 | 0.195 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1.alpha.,2.beta.,4.beta.)]- |
25 | 26.831 | 0.722 | 1H-3a,7-Methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]- |
26 | 27.06 | 0.614 | 1H-3a,7-Methanoazulene, octahydro-3,8,8-trimethyl-6-methylene-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]- |
27 | 27.471 | 3.012 | Thujopsene |
28 | 27.58 | 0.137 | 1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- |
29 | 28.021 | 0.084 | beta-Guaiene |
30 | 28.112 | 0.098 | 1,4,7,-Cycloundecatriene, 1,5,9,9-tetramethyl-, Z,Z,Z- |
31 | 28.202 | 0.078 | 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene-, (E)- |
32 | 28.438 | 1.476 | (+)-Epi-bicyclosesquiphellandrene |
33 | 28.523 | 0.034 | Di-epi-.alpha.-cedrene |
34 | 29.115 | 0.216 | Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(1-methylethenyl)-, [2R-(2.alpha.,4a.alpha.,8a.beta.)]- |
35 | 29.562 | 2.748 | Tricyclo[5.4.0.0(2,8)]undec-9-ene, 2,6,6,9-tetramethyl- |
36 | 29.665 | 0.12 | Spiro[5.5]undeca-1,8-diene, 1,5,5,9-tetramethyl-, (R)- |
37 | 29.755 | 0.731 | Benzene, 1-methyl-4-(1,2,2-trimethylcyclopentyl)-, (R)- |
38 | 29.979 | 0.28 | Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)- |
39 | 30.275 | 1.979 | Naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- |
40 | 30.68 | 0.148 | 1H-Cycloprop[e]azulene, 1a,2,3,4,4a,5,6,7b-octahydro-1,1,4,7-tetramethyl-, [1aR-(1a.alpha.,4.alpha.,4a.beta.,7b.alpha.)]- |
41 | 31.272 | 0.07 | gamma-Elemene |
42 | 31.441 | 0.087 | 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, [S-(Z)]- |
43 | 32.607 | 1.522 | Cedrol |
44 | 32.673 | 0.042 | 2-Naphthalenemethanol, 1,2,3,4,4a,5,6,8a-octahydro-alpha,alpha,4a,8-tetramethyl-, (2.alpha.,4a.alpha.,8a.alpha.)- |
45 | 33.09 | 0.138 | 2-Naphthalenemethanol, 1,2,3,4,4a,5,6,7-octahydro-alpha,alpha,4a,8-tetramethyl-, (2R-cis)- |
46 | 49.627 | 0.041 | 2-Phenanthrenol, 4b,5,6,7,8,8a,9,10-octahydro-4b,8,8-trimethyl-1-(1-methylethyl)-, (4bS-trans)- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.-Y.; Park, D.-H.; Lee, S.-H.; Choi, C.-Y.; Shim, J.-H.; Yoon, G.; Park, J.-W.; Bae, M.-S.; Cho, S.-S. Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil. Processes 2023, 11, 1446. https://doi.org/10.3390/pr11051446
Song S-Y, Park D-H, Lee S-H, Choi C-Y, Shim J-H, Yoon G, Park J-W, Bae M-S, Cho S-S. Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil. Processes. 2023; 11(5):1446. https://doi.org/10.3390/pr11051446
Chicago/Turabian StyleSong, Seung-Yub, Dae-Hun Park, Sung-Ho Lee, Chul-Yung Choi, Jung-Hyun Shim, Goo Yoon, Jin-Woo Park, Min-Suk Bae, and Seung-Sik Cho. 2023. "Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil" Processes 11, no. 5: 1446. https://doi.org/10.3390/pr11051446
APA StyleSong, S. -Y., Park, D. -H., Lee, S. -H., Choi, C. -Y., Shim, J. -H., Yoon, G., Park, J. -W., Bae, M. -S., & Cho, S. -S. (2023). Indoor Space Disinfection Effect and Bioactive Components of Chamaecyparis obtusa Essential Oil. Processes, 11(5), 1446. https://doi.org/10.3390/pr11051446