Transport Properties of Carbohydrates: Towards the Minimization Toxicological Risks of Cobalt and Chromium Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Techniques
2.2.1. pH Measurements
2.2.2. Taylor Dispersion Technique
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed] [Green Version]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Bellouard, M.; Gasser, M.; Lenglet, S.; Gilardi, F.; Bararpour, N.; Augsburger, M.; Thomas, A.; Alvarez, J.-C. Toxicity and Metabolomic Impact of Cobalt, Chromium, and Nickel Exposure on HepaRG Hepatocytes. Chem. Res. Toxicol. 2022, 35, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Hariyani, N.; Berniyanti, T.; Setyowati, D. Effects of Occupational Environmental Controls on the Level of Co, Ni and Cr among Dental Technicians. Int. J. Environ. Sci. Dev. 2015, 6, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Lison, D.; van den Brule, S.; Van Maele-Fabry, G. Cobalt and Its Compounds: Update on Genotoxic and Carcinogenic Activities. Crit. Rev. Toxicol. 2018, 48, 522–539. [Google Scholar] [CrossRef]
- Karagas, M.R.; Wang, A.; Dorman, D.C.; Hall, A.L.; Pi, J.; Sergi, C.M.; Symanski, E.; Ward, E.M.; Arrandale, V.H.; Azuma, K.; et al. Carcinogenicity of Cobalt, Antimony Compounds, and Weapons-Grade Tungsten Alloy. Lancet Oncol. 2022, 23, 577–578. [Google Scholar] [CrossRef]
- Grosgogeat, B.; Vaicelyte, A.; Gauthier, R.; Janssen, C.; Le Borgne, M. Toxicological Risks of the Cobalt–Chromium Alloys in Dentistry: A Systematic Review. Materials 2022, 15, 5801. [Google Scholar] [CrossRef]
- Vaicelyte, A.; Janssen, C.; Le Borgne, M.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Eichenbaum, G.; Wilsey, J.T.; Fessel, G.; Qiu, Q.-Q.; Perkins, L.; Hasgall, P.; Monnot, A.; More, S.L.; Egnot, N.; Sague, J.; et al. An Integrated Benefit-Risk Assessment of Cobalt-Containing Alloys Used in Medical Devices: Implications for Regulatory Requirements in the European Union. Regul. Toxicol. Pharmacol. 2021, 125, 105004. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Tian, T.; Lin, S.; Xu, P.; Zhou, L.; Dai, C.; Hao, Q.; Wu, Y.; Zhai, Z.; et al. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. Front. Oncol. 2019, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Meek, R.M.D.; Afolaranmi, G.A.; Tettey, J.; Grant, M.H. Release of Chromium from Orthopaedic Arthroplasties. Open Orthop. J. 2008, 2, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Haugli, K.H.; Syverud, M.; Samuelsen, J.T. Ion Release from Three Different Dental Alloys—Effect of Dynamic Loading and Toxicity of Released Elements. Biomater. Investig. Dent. 2020, 7, 71–79. [Google Scholar] [CrossRef]
- Fangaia, S.I.G.; Nicolau, P.M.G.; Guerra, F.A.D.R.A.; Rodrigo, M.M.; Utzeri, G.; Cabral, A.M.T.D.P.V.; Valente, A.J.M.; Esteso, M.A.; Ribeiro, A.C.F. Effect of Cobalt and Chromium Ions on the Chlorhexidine Digluconate as Seen by Intermolecular Diffusion. Int. J. Mol. Sci. 2021, 22, 13266. [Google Scholar] [CrossRef]
- Affatato, S.; Grillini, L. Topography in Bio-Tribocorrosion. In Bio-Tribocorrosion in Biomaterials and Medical Implants; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–22. [Google Scholar]
- Arregui, M.; Latour, F.; Gil, F.J.; Pérez, R.A.; Giner-Tarrida, L.; Delgado, L.M. Ion Release from Dental Implants, Prosthetic Abutments and Crowns under Physiological and Acidic Conditions. Coatings 2021, 11, 98. [Google Scholar] [CrossRef]
- Golgovici, F.; Prodana, M.; Ionascu, F.G.; Demetrescu, I. A Comparative Electrochemical and Morphological Investigation on the Behavior of NiCr and CoCr Dental Alloys at Various Temperatures. Metals 2021, 11, 256. [Google Scholar] [CrossRef]
- Schmalz, G.; Langer, H.; Schweikl, H. Cytotoxicity of Dental Alloy Extracts and Corresponding Metal Salt Solutions. J. Dent. Res. 1998, 77, 1772–1778. [Google Scholar] [CrossRef]
- Milheiro, A.; Nozaki, K.; Kleverlaan, C.J.; Muris, J.; Miura, H.; Feilzer, A.J. In Vitro Cytotoxicity of Metallic Ions Released from Dental Alloys. Odontology 2016, 104, 136–142. [Google Scholar] [CrossRef]
- Sharma, N.; Baldi, A. Exploring Versatile Applications of Cyclodextrins: An Overview. Drug Deliv. 2016, 23, 729–747. [Google Scholar] [CrossRef]
- Fangaia, S.I.G.; Cabral, A.M.T.D.P.V.; Nicolau, P.M.G.; Guerra, F.A.D.R.A.; Rodrigo, M.M.; Ribeiro, A.C.F.; Valente, A.J.M.; Esteso, M.A. Diffusion of Vanadium Ions in Artificial Saliva and Its Elimination from the Oral Cavity by Pharmacological Compounds Present in Mouthwashes. Biomolecules 2022, 12, 947. [Google Scholar] [CrossRef]
- Bellia, F.; La Mendola, D.; Pedone, C.; Rizzarelli, E.; Saviano, M.; Vecchio, G. Selectively Functionalized Cyclodextrins and Their Metal Complexes. Chem. Soc. Rev. 2009, 38, 2756–2781. [Google Scholar] [CrossRef]
- Valente, A.J.M.; Söderman, O. The Formation of Host–Guest Complexes between Surfactants and Cyclodextrins. Adv. Colloid Interface Sci. 2014, 205, 156–176. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.F.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Simões, S.M.N.; Sobral, A.J.F.N.; Ramos, L.; Burrows, H.D.; Amado, A.M.; Amorim da Costa, A.M. Interactions of Copper (II) Chloride with β-Cyclodextrin in Aqueous Solutions. J. Carbohydr. Chem. 2006, 25, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Norkus, E.; Grincien, G.; Vaitkus, R. Interaction of Lead(II) with β-Cyclodextrin in Alkaline Solutions. Carbohydr. Res. 2002, 337, 1657–1661. [Google Scholar] [CrossRef] [PubMed]
- Buvári, Á.; Barcza, L. Complex Formation of Inorganic Salts with?-Cyclodextrin. J. Incl. Phenom. Mol. Recognit. Chem. 1989, 7, 379–389. [Google Scholar] [CrossRef]
- Buvári, Á.; Barcza, L. β-Cyclodextrin Complexes of Different Type with Inorganic Compounds. Inorg. Chim. Acta 1979, 33, L179–L180. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Valente, A.J.M.; Simões, S.M.N.; Sobral, A.J.F.N.; Ramos, M.L.; Burrows, H.D. Association between Ammonium Monovanadate and β-Cyclodextrin as Seen by NMR and Transport Techniques. Polyhedron 2006, 25, 3581–3587. [Google Scholar] [CrossRef]
- Hedges, A.R. Industrial Applications of Cyclodextrins. Chem. Rev. 1998, 98, 2035–2044. [Google Scholar] [CrossRef]
- Salwowska, N.M.; Bebenek, K.A.; Żądło, D.A.; Wcisło-Dziadecka, D.L. Physiochemical Properties and Application of Hyaluronic Acid: A Systematic Review. J. Cosmet. Dermatol. 2016, 15, 520–526. [Google Scholar] [CrossRef]
- Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic Acid: A Review on Its Biology, Aspects of Drug Delivery, Route of Administrations and a Special Emphasis on Its Approved Marketed Products and Recent Clinical Studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029. [Google Scholar] [CrossRef]
- Radzki, D.; Wilhelm-Węglarz, M.; Pruska, K.; Kusiak, A.; Ordyniec-Kwaśnica, I. A Fresh Look at Mouthwashes—What Is Inside and What Is It For? Int. J. Environ. Res. Public Health 2022, 19, 3926. [Google Scholar] [CrossRef]
- Rodrigues, S.V.; Acharya, A.B.; Bhadbhade, S.; Thakur, S.L. Hyaluronan-Containing Mouthwash as an Adjunctive Plaque-Control Agent. Oral Health Prev. Dent. 2010, 8, 389–394. [Google Scholar]
- Boccalari, E.; Tadakamadla, S.K.; Occhipinti, C.; Lanteri, V.; Maspero, C. Evaluation of the Effectiveness of a Novel Mouth Rinse Containing Hyaluronic Acid and Hydrogen Peroxide on Gingivitis: A Randomized Pilot Controlled Trial. Clin. Exp. Dent. Res. 2022, 8, 673–679. [Google Scholar] [CrossRef]
- Carrouel, F.; Gonçalves, L.S.; Conte, M.P.; Campus, G.; Fisher, J.; Fraticelli, L.; Gadea-Deschamps, E.; Ottolenghi, L.; Bourgeois, D. Antiviral Activity of Reagents in Mouth Rinses against SARS-CoV-2. J. Dent. Res. 2021, 100, 124–132. [Google Scholar] [CrossRef]
- Carrouel, F.; Valette, M.; Gadea, E.; Esparcieux, A.; Illes, G.; Langlois, M.E.; Perrier, H.; Dussart, C.; Tramini, P.; Ribaud, M.; et al. Use of an Antiviral Mouthwash as a Barrier Measure in the SARS-CoV-2 Transmission in Adults with Asymptomatic to Mild COVID-19: A Multicentre, Randomized, Double-Blind Controlled Trial. Clin. Microbiol. Infect. 2021, 27, 1494–1501. [Google Scholar] [CrossRef]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids; Butterworths: London, UK, 1984. [Google Scholar]
- Faro, M.P.R.T.; Barros, M.C.F.; Santos, C.I.A.V.; Ribeiro, A.C.F. Coupled Mutual Diffusion in Aqueous Calcium Sulphate + Sulphuric Acid Solutions. J. Chem. Thermodyn. 2022, 165, 106659. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Lobo, V.M.M.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Esteso, M.A. Diffusion Coefficients of the Ternary System (2-Hydroxypropyl-β-Cyclodextrin+caffeine+water) at T = 298.15K. J Chem Thermodyn. 2009, 41, 1324–1328. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Barros, M.C.F.; Verissimo, L.M.P.; Esteso, M.A.; Leaist, D.G. Coupled Mutual Diffusion in Aqueous Sodium (Salicylate + sodium Chloride) Solutions at 25 °C. J. Chem. Thermodyn. 2019, 138, 282–287. [Google Scholar] [CrossRef]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Loh, W. A Técnica de Dispersão de Taylor Para Estudos de Difusão Em Líquidos e Suas Aplicações. Quim. Nova 1997, 20, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Barthel, J.; Gores, H.J.; Lohr, C.M.; Seidl, J.J. Taylor Dispersion Measurements at Low Electrolyte Concentrations. I. Tetraalkylammonium Perchlorate Aqueous Solutions. J. Solut. Chem. 1996, 25, 921–935. [Google Scholar] [CrossRef]
- Filho, C.M.C.; Verissimo, L.M.P.; Valente, A.J.M.; Ribeiro, A.C.F. Limiting Diffusion Coefficients of Sodium Octanoate, and Octanoic Acid in Aqueous Solutions without and with α-Cyclodextrin. J. Chem. Thermodyn. 2016, 94, 234–237. [Google Scholar] [CrossRef]
- Romero, C.M.; Trujillo, G.P.; Verissimo, L.M.P.; Esteso, M.A.; Ramos, M.L.; Ribeiro, A.C.F. Limiting Diffusion Coefficients of α,ω-Amino Acids in Water and in Sodium Chloride Aqueous Solutions at 298.15 K. Eur. Phys. J. E 2019, 42, 94. [Google Scholar] [CrossRef] [PubMed]
- Musilová, L.; Mráček, A.; Azevedo, E.F.G.; Valente, A.J.M.; Cabral, A.M.T.D.P.V.; Ribeiro, A.C.F.; Esteso, M.A. Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. Int. J. Mol. Sci. 2023, 24, 2889. [Google Scholar] [CrossRef]
- Baes, C.F., Jr.; Mesmer, R.E. The Hydrolysis of Cations; John Wiley & Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Oliveira, L.R.C.; Burrows, H.D.; Azevedo, E.F.G.; Fangaia, S.I.G.; Nicolau, P.M.G.; Guerra, F.A.D.R.A. Diffusion Coefficients of Chromium Chloride in Aqueous Solutions at 298.15 K and 303.15 K. J. Chem. Eng. Data 2005, 50, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.C.F.; Lobo, V.M.M.; Natividade, J.J.S. Diffusion Coefficients in Aqueous Solutions of Cobalt Chloride at 298.15 K. J. Chem. Eng. Data 2002, 47, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.J.M.; Ribeiro, A.C.F.; Lobo, V.M.M.; Jiménez, A. Diffusion Coefficients of Lead (II) Nitrate in Nitric Acid Aqueous Solutions at 298 K. J. Mol. Liq. 2004, 111, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Lu, R.; Leaist, D.G. Diffusion with Hydrolysis and Ion Association in Aqueous Solutions of Beryllium Sulfate. J. Solut. Chem. 1996, 25, 231–242. [Google Scholar] [CrossRef]
- Musilová, L.; Mráček, A.; Azevedo, E.F.G.; Rodrigo, M.M.; Valente, A.J.M.; Esteso, M.A.; Ribeiro, A.C.F. Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions. Processes 2021, 9, 1433. [Google Scholar] [CrossRef]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef]
- Cai, W.; Sun, T.; Shao, X.; Chipot, C. Can the Anomalous Aqueous Solubility of β-Cyclodextrin Be Explained by Its Hydration Free Energy Alone? Phys. Chem. Chem. Phys. 2008, 10, 3236–3243. [Google Scholar] [CrossRef]
- Coleman, A.W.; Nicolis, I. Inorganic Salt Modulation of the Aqueous Solubility of β-Cyclodextrin. Supramol. Chem. 1993, 2, 93–97. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2021, 3, 1–31. [Google Scholar] [CrossRef]
- Veríssimo, L.M.P.; Valada, T.I.C.; Sobral, A.J.F.N.; Azevedo, E.E.F.G.; Azevedo, M.L.G.; Ribeiro, A.C.F. Mutual Diffusion of Sodium Hyaluranate in Aqueous Solutions. J. Chem. Thermodyn. 2014, 71, 14–18. [Google Scholar] [CrossRef]
Chemical Name | Source | CAS Number | Mass Fraction Purity 1 |
---|---|---|---|
Cobalt(II) chloride hexahydrate | Panreac | 7791-13-1 | >0.98 |
Chromium (III) chloride hexahydrate | Sigma-Aldrich | 10060-12-5 | >0.98 |
Sodium hyaluronate 2 | Contipro Ltd. (Dolní Dobrouč, Czech Republic) | 9067-32-7 | |
α-Cyclodextrin | Sigma-Aldrich | 10016-20-3 | |
β-Cyclodextrin 3 | Sigma-Aldrich | 7585-39-9 | >0.97 |
γ-Cyclodextrin | Sigma-Aldrich | 17465-86-0 | |
H2O | Millipore-Q water (ρ = 1.82 × 105 Ω m at 298.15 K) | 7732-18-5 |
Aqueous System | pH | Aqueous System | pH |
---|---|---|---|
CoCl2 | 5.59 | CrCl3 | 3.45 |
CoCl2/α-CD | 5.67 | CrCl3/α-CD | 3.25 |
CoCl2/β-CD | 5.92 | CrCl3/β-CD | 3.20 |
CoCl2/γ-CD | 5.75 | CrCl3/γ-CD | 3.15 |
NaHy 1 | 6.09 | CrCl3/NaHy 1 | 3.90 |
NaHy 2 | 6.45 | CrCl3/NaHy 2 | 3.80 |
CoCl2/NaHy 1 | 5.46 | ||
CoCl2/NaHy 2 | 5.30 |
C12 | C22 | X1 | D11 ± SD 3 | D12 ± SD 3 | D21 ± SD 3 | D22 ± SD 3 |
---|---|---|---|---|---|---|
CrCl3 (C1) + α-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.267 ± 0.010 | −0.013 ± 0.004 | −0.019 ± 0.015 | 0.467 ± 0.020 |
0.000 | 0.010 | 0.000 | 1.285 ± 0.010 | −0.007 ± 0.004 | −0.030 ± 0.015 | 0.470 ± 0.015 |
0.010 | 0.000 | 1.000 | 1.172 ± 0.019 | −0.016 ± 0.009 | 0.014 ± 0.004 | 0.499 ± 0.021 |
CrCl3 (C1) + β-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.210 ± 0.020 | −0.183 ± 0.020 | −0.020 ± 0.010 | 0.408 ± 0.007 |
0.000 | 0.007 | 0.000 | 1.270 ± 0.020 | −0.023 ± 0.014 | −0.070 ± 0.010 | 0.401 ± 0.010 |
0.007 | 0.000 | 1.000 | 1.180 ± 0.020 | −0.092 ± 0.020 | −0.025 ± 0.010 | 0.418 ± 0.005 |
CrCl3 (C1) + γ-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.232 ± 0.014 | −0.019 ± 0.012 | 0.019 ± 0.010 | 0.458 ± 0.001 |
0.000 | 0.010 | 0.000 | 1.242 ± 0.011 | −0.007 ± 0.010 | 0.019 ± 0.010 | 0.450 ± 0.001 |
0.010 | 0.000 | 1.000 | 1.160 ± 0.017 | −0.020 ± 0.008 | 0.009 ± 0.003 | 0.460 ± 0.002 |
C12 | C22 | X1 | D11 ± SD 3 | D12 ± SD 3 | D21 ± SD 3 | D22 ± SD 3 |
---|---|---|---|---|---|---|
CoCl2 (C1) + α-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.201 ± 0.010 | −0.070 ± 0.024 | −0.010 ± 0.020 | 0.471 ± 0.026 |
0.000 | 0.010 | 0.000 | 1.300 ± 0.007 | −0.010 ± 0.018 | 0.008 ± 0.0001 | 0.469 ± 0.014 |
0.010 | 0.000 | 1.000 | 1.258 ± 0.007 | −0.030 ± 0.018 | 0.0001 ± 0.0001 | 0.479 ± 0.034 |
CoCl2 (C1) + β-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.219 ± 0.021 | −0.268 ± 0.024 | 0.010 ± 0.010 | 0.435 ± 0.010 |
0.000 | 0.007 | 0.000 | 1.268 ± 0.020 | −0.015 ± 0.013 | −0.040 ± 0.010 | 0.438 ± 0.016 |
0.007 | 0.000 | 1.000 | 1.235 ± 0.021 | −0.190 ± 0.014 | +0.002 ± 0.010 | 0.435 ± 0.029 |
CoCl2 (C1) + γ-CD (C2) solutions | ||||||
0.001 | 0.000 | 1.000 | 1.260 ± 0.010 | −0.030 ± 0.043 | −0.010 ± 0.010 | 0.479 ± 0.019 |
0.000 | 0.010 | 0.000 | 1.289 ± 0.015 | −0.011 ± 0.013 | −0.010 ± 0.010 | 0.440 ± 0.020 |
0.010 | 0.000 | 1.000 | 1.256 ± 0.004 | −0.040 ± 0.016 | +0.003 ± 0.002 | 0.480 ± 0.023 |
Aqueous System | appD0T ± SD/(10−9 m2 s−1) 1 | (ΔappD0T/D0)% 4 |
---|---|---|
CoCl2 (0.001 M) | 0.081 ± 0.008 2 | −86 |
CoCl2 (0.001 M) | 0.082 ± 0.006 3 | −85 |
CoCl2 (0.010 M) | 0.296 ± 0.030 2 | −49 |
CoCl2 (0.010 M) | 0.312 ± 0.020 3 | −44 |
CrCl3 (0.001 M) | 0.092 ± 0.010 2 | −84 |
CrCl3 (0.001 M) | 0.099 ± 0.025 3 | −82 |
CrCl3 (0.010 M) | 0.192 ± 0.009 2 | −67 |
CrCl3 (0.010 M) | 0.125 ± 0.010 3 | −78 |
Salt | C1 /(mol dm−3) | D11 ± SD /(10−9 m2 s−1) | D12 ± SD /(10−9 m2 s−1) | D21 ± SD /(10−9 m2 s−1) | D22 ± SD /(10−9 m2 s−1) |
---|---|---|---|---|---|
COCl2 | 0.001 2 | 1.281 ± 0.025 | –0.318 ± 0.030 | 0.058 ± 0.039 | 0.162 ± 0.019 |
0.001 3 | 1.255 ± 0.010 | –0.124 ± 0.030 | 0.040 ± 0.019 | 0.065 ± 0.013 | |
COCl2 | 0.010 2 | 1.276 ± 0.020 | –0.265 ± 0.035 | 0.008 ± 0.011 | 0.172 ± 0.013 |
0.010 3 | 1.215 ± 0.010 | –0.205 ± 0.060 | 0.010 ± 0.019 | 0.192 ± 0.013 | |
CrCl3 | 0.010 2 | 1.136 ± 0.008 | –0.195 ± 0.038 | 0.012 ± 0.015 | 0.157 ± 0.010 |
0.010 3 | 1.137 ± 0.012 | –0.182 ± 0.040 | –0.050 ± 0.029 | 0.302 ± 0.017 |
Species | Ds/(10−9 m2 s−1) |
---|---|
CrCl3 | 1.266 1 |
CoCl2 | 1.272 2 |
β-CD | 0.400 3 |
CoCl2-β-CD | 0.396 3 |
CoCl3-β-CD | 0.395 3 |
[CoCl2]/(M) | Aqueous System | D12/D22 | [CrCl3]/(M) | D12/D22 | |
---|---|---|---|---|---|
0.001 | CoCl2/(α-CD) | −0.15 | 0.001 | CrCl3/(α-CD) | −0.08 |
CoCl2/(β-CD) | −0.62 | CrCl3/(β-CD) | −0.45 | ||
CoCl2/γ-CD | −0.06 | CrCl3(γ-CD) | −0.02 | ||
CoCl2/NaHy 1 | −1.96 | ||||
CoCl2/NaHy 2 | −1.91 | ||||
0.010 | CoCl2/(α-CD) | −0.12 | 0.010 | CrCl3/(α-CD) | −0.03 |
CoCl2/(β-CD) | −0.44 | CrCl3/(β-CD) | −0.22 | ||
CoCl2/γ-CD | −0.08 | CrCl3/γ-CD | −0.04 | ||
CoCl2/NaHy 1 | −1.54 | CrCl3/NaHy 1 | −1.24 | ||
CoCl2/NaHy 2 | −1.07 | CrCl3/NaHy 2 | −0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trindade, A.C.V.; Fangaia, S.I.G.; Nicolau, P.M.G.; Messias, A.; Ribeiro, A.C.F.; Silva, D.S.A.; Valente, A.J.M.; Rodrigo, M.M.; Esteso, M.A. Transport Properties of Carbohydrates: Towards the Minimization Toxicological Risks of Cobalt and Chromium Ions. Processes 2023, 11, 1701. https://doi.org/10.3390/pr11061701
Trindade ACV, Fangaia SIG, Nicolau PMG, Messias A, Ribeiro ACF, Silva DSA, Valente AJM, Rodrigo MM, Esteso MA. Transport Properties of Carbohydrates: Towards the Minimization Toxicological Risks of Cobalt and Chromium Ions. Processes. 2023; 11(6):1701. https://doi.org/10.3390/pr11061701
Chicago/Turabian StyleTrindade, Ana C. V., Sónia I. G. Fangaia, Pedro M. G. Nicolau, Ana Messias, Ana C. F. Ribeiro, Daniela S. A. Silva, Artur J. M. Valente, M. Melia Rodrigo, and Miguel A. Esteso. 2023. "Transport Properties of Carbohydrates: Towards the Minimization Toxicological Risks of Cobalt and Chromium Ions" Processes 11, no. 6: 1701. https://doi.org/10.3390/pr11061701
APA StyleTrindade, A. C. V., Fangaia, S. I. G., Nicolau, P. M. G., Messias, A., Ribeiro, A. C. F., Silva, D. S. A., Valente, A. J. M., Rodrigo, M. M., & Esteso, M. A. (2023). Transport Properties of Carbohydrates: Towards the Minimization Toxicological Risks of Cobalt and Chromium Ions. Processes, 11(6), 1701. https://doi.org/10.3390/pr11061701