Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Juice Preparation
2.3. Freeze Concentration
2.4. Vacuum Concentration
2.5. Ascorbic Acid Analysis
2.6. TPC Analysis
2.7. DPPH Assay
2.8. Flavonoid Analysis
2.9. Statistical Analyses
3. Results and Discussion
3.1. Bioactive Components of Original Lime Juices
3.1.1. Ascorbic Acid and Total Phenolic Content
3.1.2. Flavonoids of Lime Juices
3.1.3. DPPH Scavenging Capacity of Lime Juices
3.2. Changes in Ascorbic Acid of Lime Juices during Vacuum and Freeze Concentrations
3.3. Changes in Total Phenolic Content of Lime Juices during Vacuum and Freeze Concentrations
3.4. Changes in Flavonoids of Lime Juices during Vacuum and Freeze Concentrations
3.5. Changes in DPPH Scavenging Capacity of Lime Juices during Vacuum and Freeze Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Citrus Fruit Statistical Compendium 2020; FAO: Rome, Italy, 2021. [Google Scholar]
- Huynh, T.D.; Kha, C.T.; Nguyen, T.D.; Nguyen, S.H.; Vo, T.N.M. Quality parameters of lime fruits (Citrus sp.) cultivated in Long An province. J. Sci. Can Tho University 2021, 57, 170–176. [Google Scholar] [CrossRef]
- Oikeh, E.I.; Omoregie, E.S.; Oviasogie, F.E.; Oriakhi, K. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates. Food Sci. Nutr. 2016, 4, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Cirmi, S.; Maugeri, A.; Ferlazzo, N.; Gangemi, S.; Calapai, G.; Schumacher, U.; Navarra, M. Anticancer potential of citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Front. Pharmacol. 2017, 8, 420. [Google Scholar] [CrossRef] [Green Version]
- Leksrisompong, P.; Lopetcharat, K.; Guthrie, B.; Drake, M. Preference mapping of lemon lime carbonated beverages with regular and diet beverage consumers. J. Food Sci. 2013, 78, S320–S328. [Google Scholar] [CrossRef]
- Kieling, D.D.; Prudencio, S.H. Blends of lemongrass derivatives and lime for the preparation of mixed beverages: Antioxidant, physicochemical, and sensory properties. J. Sci. Food Agric. 2019, 99, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Rangel, C.N.; Carvalho, L.M.J.d.; Fonseca, R.B.F.; Soares, A.G.; Jesus, E.O.d. Nutritional value of organic acid lime juice (Citrus latifolia T.), cv. Tahiti. Food Sci. Technol. 2011, 31, 918–922. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants 2020, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Buyukkurt, O.K.; Guclu, G.; Kelebek, H.; Selli, S. Characterization of phenolic compounds in sweet lime (Citrus limetta) peel and freshly squeezed juices by LC-DAD-ESI-MS/MS and their antioxidant activity. J. Food Meas. 2019, 13, 3242–3249. [Google Scholar] [CrossRef]
- Miyake, Y.; Yamamoto, K.; Morimitsu, Y.; Osawa, T. Characteristics of antioxidative flavonoid glycosides in lemon fruit. Int. J. Food Sci. Technol. Tokyo 1998, 4, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Bozkir, H.; Tekgül, Y. Production of orange juice concentrate using conventional and microwave vacuum evaporation: Thermal degradation kinetics of bioactive compounds and color values. J. Food Process. Preserv. 2022, 46, e15902. [Google Scholar] [CrossRef]
- Tavares, H.M.; Tessaro, I.C.; Cardozo, N.S.M. Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. Innov. Food Sci. Emerg. Technol. 2022, 75, 102905. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, X.; Zhao, J.; Li, Y.; Cheng, Y.; Guan, J. Vacuum Concentration Improves the Quality and Antioxidant Capacity of Pear Paste. J. Food Qual. 2022. [Google Scholar] [CrossRef]
- Bazaria, B.; Kumar, P. Compositional changes in functional attributes of vacuum concentrated beetroot juice. J. Food Process. Preserv. 2016, 40, 1215–1222. [Google Scholar] [CrossRef]
- Miyawaki, O.; Gunathilake, M.; Omote, C.; Koyanagi, T.; Sasaki, T.; Take, H.; Matsuda, A.; Ishisaki, K.; Miwa, S.; Kitano, S. Progressive freeze-concentration of apple juice and its application to produce a new type apple wine. J. Food Eng. 2016, 171, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Vieira, G.S.; Moreira, F.K.; Matsumoto, R.L.; Michelon, M.; Francisco Filho, M.; Hubinger, M.D. Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. J. Food Eng. 2018, 226, 31–41. [Google Scholar] [CrossRef]
- Braddock, R.; Marcy, J. Quality of freeze concentrated orange juice. J. Food Sci. 1987, 52, 159–162. [Google Scholar] [CrossRef]
- Miyawaki, O.; Inakuma, T. Development of progressive freeze concentration and its application: A review. Food Bioprocess Technol. 2021, 14, 39–51. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Petzold, G.; Pierre, L.; Pensaben, J.M. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration. Food Chem. Toxicol. 2017, 109, 1093–1102. [Google Scholar] [CrossRef]
- Zielinski, A.A.; Zardo, D.M.; Alberti, A.; Bortolini, D.G.; Benvenutti, L.; Demiate, I.M.; Nogueira, A. Effect of cryoconcentration process on phenolic compounds and antioxidant activity in apple juice. J. Sci. Food Agric. 2019, 99, 2786–2792. [Google Scholar] [CrossRef]
- da Silva Haas, I.C.; de Espindola, J.S.; de Liz, G.R.; Luna, A.S.; Bordignon-Luiz, M.T.; Prudêncio, E.S.; de Gois, J.S.; Fedrigo, I.M.T. Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives. J. Food Eng. 2022, 315, 110802. [Google Scholar] [CrossRef]
- Miyawaki, O.; Kato, S.; Watabe, K. Yield improvement in progressive freeze-concentration by partial melting of ice. J. Food Eng. 2012, 108, 377–382. [Google Scholar] [CrossRef]
- Kimball, D.A. Citrus Processing: A Complete Guide; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Uckoo, R.M.; Jayaprakasha, G.K.; Nelson, S.D.; Patil, B.S. Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography. Talanta 2011, 83, 948–954. [Google Scholar] [CrossRef]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. Effect of spray drying of four fruit juices on physicochemical, phytochemical and antioxidant properties. J. Food Process. Preserv. 2015, 39, 1656–1664. [Google Scholar] [CrossRef]
- Xu, G.; Liu, D.; Chen, J.; Ye, X.; Ma, Y.; Shi, J. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem. 2008, 106, 545–551. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Xi, W.; Shen, Y.; Qiao, L.; Zhong, L.; Ye, X.; Zhou, Z. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014, 145, 674–680. [Google Scholar] [CrossRef]
- Raddatz-Mota, D.; Franco-Mora, O.; Mendoza-Espinoza, J.A.; Rodríguez-Verástegui, L.L.; de León-Sánchez, F.D.; Rivera-Cabrera, F. Effect of different rootstocks on Persian lime (Citrus latifolia T.) postharvest quality. Sci. Hortic. 2019, 257, 1–10. [Google Scholar] [CrossRef]
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Teixeira Filho, J.; Godoy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Oboh, G.; Bello, F.O.; Ademosun, A.O.; Akinyemi, A.J.; Adewuni, T.M. Antioxidant, hypolipidemic, and anti-angiotensin-1-converting enzyme properties of lemon (Citrus limon) and lime (Citrus aurantifolia) juices. Comp. Clin. Path. 2015, 24, 1395–1406. [Google Scholar] [CrossRef]
- Najwa, F.R.; Azrina, A. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 2017, 24, 726. [Google Scholar]
- Tavallali, V.; Zareiyan, F. Maintenance of physicochemical qualities of lime during cold storage using vacuum infiltration with salicylic acid. J. Food Meas. 2018, 12, 2955–2963. [Google Scholar] [CrossRef]
- Kumar, D.; Ladaniya, M.; Gurjar, M. Underutilized Citrus sp. Pomelo (Citrus grandis) and Kachai lemon (Citrus jambhiri) exhale in phytochemicals and antioxidant potential. J. Food Sci. Technol. 2019, 56, 217–223. [Google Scholar] [CrossRef]
- Fayek, N.M.; Farag, M.A.; Abdel Monem, A.R.; Moussa, M.Y.; Abd-Elwahab, S.M.; El-Tanbouly, N.D. Comparative Metabolite Profiling of Four Citrus Peel Cultivars via Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight-Mass Spectrometry and Multivariate Data Analyses. J. Chromatogr. Sci. 2019, 57, 349–360. [Google Scholar] [CrossRef]
- Li, L.; Feng, X.; Chen, Y.; Li, S.; Sun, Y.; Zhang, L. A comprehensive study of eriocitrin metabolism in vivo and in vitro based on an efficient UHPLC-Q-TOF-MS/MS strategy. RSC Adv. 2019, 9, 24963–24980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xiao, H.; Liang, X.; Shi, D.; Liu, J. LC–MS/MS determination of naringin, hesperidin and neohesperidin in rat serum after orally administrating the decoction of Bulpleurum falcatum L. and Fractus aurantii. J. Pharm. Biomed. Anal. 2004, 34, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Xu, L.; Jiang, L.; Jiang, Y.; Zhang, J.; Liu, B. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS n. Xenobiotica 2020, 50, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xu, J.; Qian, D.; Guo, J.; Jiang, S.; Shang, E.x.; Duan, J.a. Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Biomed. Chromatogr. 2014, 28, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Stalmach, A.; Mullen, W.; Pecorari, M.; Serafini, M.; Crozier, A. Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J. Agric. Food Chem. 2009, 57, 7104–7111. [Google Scholar] [CrossRef]
- Araujo-León, J.A.; Ortiz-Andrade, R.; Vera-Sánchez, R.A.; Oney-Montalvo, J.E.; Coral-Martínez, T.I.; Cantillo-Ciau, Z. Development and optimization of a high sensitivity LC-MS/MS method for the determination of hesperidin and naringenin in rat plasma: Pharmacokinetic approach. Molecules 2020, 25, 4241. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Afifi, S.M.; Kabbash, E.M.; Berger, R.G.; Krings, U.; Esatbeyoglu, T. Comparative Untargeted Metabolic Profiling of Different Parts of Citrus sinensis Fruits via Liquid Chromatography–Mass Spectrometry Coupled with Multivariate Data Analyses to Unravel Authenticity. Foods 2023, 12, 579. [Google Scholar] [CrossRef]
- El-Zahar, H.; Menze, E.T.; Handoussa, H.; Osman, A.K.; El-Shazly, M.; Mostafa, N.M.; Swilam, N. UPLC-PDA-MS/MS Profiling and Healing Activity of Polyphenol-Rich Fraction of Alhagi maurorum against Oral Ulcer in Rats. Plants 2022, 11, 455. [Google Scholar] [CrossRef]
- Kumar, S.; Chandra, P.; Bajpai, V.; Singh, A.; Srivastava, M.; Mishra, D.; Kumar, B. Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Ind. Crops Prod. 2015, 69, 143–152. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Guo, S.; Wang, Z.; Jiang, L.; Wang, F.; Zhang, J.; Liu, B. Profiling and comparison of the metabolites of diosmetin and diosmin in rat urine, plasma and feces using UHPLC-LTQ-Orbitrap MSn. J. Chromatogr. B 2019, 1124, 58–71. [Google Scholar] [CrossRef]
- Xi, W.; Lu, J.; Qun, J.; Jiao, B. Characterization of phenolic profile and antioxidant capacity of different fruit part from lemon (Citrus limon Burm.) cultivars. J. Food Sci. Technol. 2017, 54, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeidi, I.; Hadjmohammadi, M.R.; Peyrovi, M.; Iranshahi, M.; Barfi, B.; Babaei, A.B.; Dust, A.M. HPLC determination of hesperidin, diosmin and eriocitrin in Iranian lime juice using polyamide as an adsorbent for solid phase extraction. J. Pharm. Biomed. Anal. 2011, 56, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, F.; Shakeri, M.; Pour Ramezani, F.; Pirhadi, M.; Aman Mohammadi, M.; Shokri, S.; Zeinali, T. Measurement of Phenolic Compounds by Spectrometry and Chromatography in Lime Juices. J. Spectrosc. 2022. [Google Scholar] [CrossRef]
- Patil, J.R.; Chidambara Murthy, K.; Jayaprakasha, G.; Chetti, M.B.; Patil, B.S. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J. Agric. Food Chem. 2009, 57, 10933–10942. [Google Scholar] [CrossRef]
- Perlatti, B.; Fernandes, J.B.; Silva, M.F.; Ardila, J.A.; Carneiro, R.L.; Souza, B.H.; Costa, E.N.; Eduardo, W.I.; Boiça Junior, A.L.; Forim, M.R. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. J. Braz. Chem. Soc. 2016, 27, 475–483. [Google Scholar] [CrossRef]
- da Silva, C.M.G.; Contesini, F.J.; Sawaya, A.C.F.; Cabral, E.C.; da Silva Cunha, I.B.; Eberlin, M.N.; de Oliveira Carvalho, P. Enhancement of the antioxidant activity of orange and lime juices by flavonoid enzymatic de-glycosylation. Food Res. Int. 2013, 52, 308–314. [Google Scholar] [CrossRef]
- Peterson, J.J.; Beecher, G.R.; Bhagwat, S.A.; Dwyer, J.T.; Gebhardt, S.E.; Haytowitz, D.B.; Holden, J.M. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compost. Anal. 2006, 19, S74–S80. [Google Scholar] [CrossRef]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Jegham, S.; Njima, Y.B.; Hamdaoui, G.; Zemni, H.; Marzouk, B. Juice components and antioxidant capacity of four Tunisian Citrus varieties. J. Sci. Food Agric. 2011, 91, 142–151. [Google Scholar] [CrossRef]
- Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 2011, 18, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Arena, E.; Fallico, B.; Maccarone, E. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem. 2001, 74, 423–427. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Abushita, A.; Daood, H.; Biacs, P. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Petzold, G.; Andana, I.; Torres, N.; Cuevas, C. Retention of ascorbic acid and solid concentration via centrifugal freeze concentration of orange juice. J. Food Qual. 2017. [Google Scholar] [CrossRef] [Green Version]
- Igual, M.; García-Martínez, E.; Camacho, M.; Martínez-Navarrete, N. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem. 2010, 118, 291–299. [Google Scholar] [CrossRef]
- Darvishi, H.; Mohammadi, P.; Fadavi, A.; Saba, M.K.; Behroozi-Khazaei, N. Quality preservation of orange concentrate by using hybrid ohmic–Vacuum heating. Food Chem. 2019, 289, 292–298. [Google Scholar] [CrossRef]
- Sabancı, S.; Icier, F. Effects of vacuum ohmic evaporation on some quality properties of sour cherry juice concentrates. Int. J. Food Eng. 2019, 15. [Google Scholar] [CrossRef]
- Boaventura, B.C.B.; Murakami, A.N.N.; Prudêncio, E.S.; Maraschin, M.; Murakami, F.S.; Amante, E.R.; Amboni, R.D.d.M.C. Enhancement of bioactive compounds content and antioxidant activity of aqueous extract of mate (Ilex paraguariensis A. St. Hil.) through freeze concentration technology. Food Res. Int. 2013, 53, 686–692. [Google Scholar] [CrossRef]
- Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Influence of block freeze concentration and evaporation on physicochemical properties, bioactive compounds and antioxidant activity in blueberry juice. Food Sci. Technol. 2020, 40, 387–394. [Google Scholar] [CrossRef]
- Petzold, G.; Orellana, P.; Moreno, J.; Cuevas, C. Process parameters of vacuum-assisted freeze concentration. Chem. Eng. Trans. 2017, 57, 1789–1794. [Google Scholar] [CrossRef]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, H.; Kaya, M.; Berktas, S.; Basyigit, B.; Cam, M. Pressurised hot water extraction of phenolic compounds with a focus on eriocitrin and hesperidin from lemon peel. Int. J. Food Sci. Tech. 2023, 58, 2060–2066. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Sacristán, I.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Effect of Storage and Drying Treatments on Antioxidant Activity and Phenolic Composition of Lemon and Clementine Peel Extracts. Molecules 2023, 28, 1624. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Wang, R.; Zhang, J.; Li, G.; Zhang, J.; Ou, S.; Shan, Y. Effect of drying temperature on the sugars, organic acids, limonoids, phenolics, and antioxidant capacities of lemon slices. Food Sci. Biotechnol. 2017, 26, 1523–1533. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Ioannou, I.; M’hiri, N.; Chaaban, H.; Boudhrioua, N.M.; Ghoul, M. Effect of the process, temperature, light and oxygen on naringin extraction and the evolution of its antioxidant activity. Int. J. Food Sci. Tech. 2018, 53, 2754–2760. [Google Scholar] [CrossRef]
- Lou, S.-N.; Lin, Y.-S.; Hsu, Y.-S.; Chiu, E.-M.; Ho, C.-T. Soluble and insoluble phenolic compounds and antioxidant activity of immature calamondin affected by solvents and heat treatment. Food Chem. 2014, 161, 246–253. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and blackcurrant drink. Food Chem. 1997, 60, 331–337. [Google Scholar] [CrossRef]
- Wilmsen, P.K.; Spada, D.S.; Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 2005, 53, 4757–4761. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Z.; Li, Z.; Ding, Y.; Jiang, F.; Liu, J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb. Pathog. 2021, 159, 105121. [Google Scholar] [CrossRef] [PubMed]
- Arab, H.H.; Salama, S.A.; Omar, H.A.; Arafa, E.-S.A.; Maghrabi, I.A. Diosmin protects against ethanol-induced gastric injury in rats: Novel anti-ulcer actions. PLoS ONE 2015, 10, e0122417. [Google Scholar] [CrossRef] [Green Version]
- Petzold, G.; Moreno, J.; Lastra, P.; Rojas, K.; Orellana, P. Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innov. Food Sci. Emerg. Technol. 2015, 30, 192–197. [Google Scholar] [CrossRef]
Parameters | Lime Variety | |
---|---|---|
C. latifolia | C. limonia | |
Ascorbic acid (mg/100 mL) | 30.43 ± 0.13 a | 14.39 ± 0.83 b |
TPC (mg GAE/100 mL) | 318.20 ± 6.10 a | 114.70 ± 4.38 b |
DPPH inhibition (%) | 44.58 ± 2.50 a | 25.35 ± 3.20 b |
Flavonoids (mg/100 mL) | ||
Hesperidin | 23.72 ± 0.36 a | 4.72 ± 0.21 b |
Eriocitrin | 12.78 ± 0.68 a | 2.97 ± 0.16 b |
Rutin | 2.65 ± 0.07 a | nd |
Diosmin | 1.36 ± 0.08 a | 0.69 ± 0.04 b |
Naringin | 0.91 ± 0.01 a | 0.36 ± 0.01 b |
No. | Retention Time (min) | [M-H]− m/z | Ion Fragment | Compounds | Chemical Class | C. latifolia | C. limonia |
---|---|---|---|---|---|---|---|
1 | 1.35 | 191.0576 | 127.0422 | Quinic acid | Organic acid | + | + |
3 | 2.27 | 289.0703 | 247.0231 | (+)-Catechin | Flavanol | + | + |
6 | 2.78 | 353.0912 | 191.0579 | Chlorogenic acid | Phenolic acid | + | + |
11 | 9.04 | 433.0421 | 243.0881 | Elllagic acid-O-arabinoside | Polyphenol | + | − |
15 | 10.80 | 595.1654 | 287.0552 | Eriocitrin | Flavanone | + | + |
16 | 10.85 | 609.1426 | 301.0725 | Rutin | Flavonol | + | − |
17 | 10.91 | 593.1539 | 285.0401 | Kaempferol-3-O-rutinoside | Flavonol | + | − |
18 | 10.95 | 579.1709 | 271.0632 | Naringin | Flavanone | + | + |
19 | 11.12 | 609.1806 | 301.0725 | Hesperidin | Flavanone | + | + |
21 | 11.68 | 607.1643 | 299.0566 | Diosmin | Flavone | + | + |
23 | 12.01 | 461.0711 | 285.0428 | Kaempferol-3-O-glucuronide | Flavonol | + | + |
26 | 12.48 | 287.0559 | 151.0049 | Eriodictyol | Flavanone | + | + |
31 | 13.55 | 271.0589 | 161.0482 | Naringenin | Flavanone | + | + |
33 | 14.22 | 301.0712 | 164.9288 | Hesperetin | Flavanone | + | + |
35 | 14.78 | 285.0412 | 151.0056 | Luteolin | Flavone | + | + |
49 | 19.24 | 623.1626 | 315.0709 | Isorhamnetin-3-O-rutinoside | Flavonol | + | + |
Juice Concentrate | Flavonoid Content (mg/100 mL) | Flavonoid Retention (%) | ||||||
---|---|---|---|---|---|---|---|---|
C. latifolia | C. limonia | C. latifolia | C. limonia | |||||
VC | FC | VC | FC | VC | FC | VC | FC | |
Eriocitrin | ||||||||
JC1 | 19.99 ± 0.84 cC | 23.47 ± 0.28 aD | 4.83 ± 0.02 aA | 5.60 ± 0.10 aB | 79.48 ± 3.35 dA | 93.34 ± 1.13 dB | 80.75 ± 0.30 dA | 93.69 ± 1.61 dB |
JC2 | 20.12 ± 0.87 cC | 28.49 ± 0.50 bD | 4.87 ± 0.05 aA | 6.85 ± 0.18 bB | 63.10 ± 2.71 cA | 89.33 ± 1.57 cdB | 64.09 ± 0.63 cA | 90.16 ± 2.42 cdB |
JC3 | 18.63 ± 0.85 cC | 34.14 ± 0.62 cD | 5.06 ± 0.07 bA | 8.23 ± 0.16 cB | 46.69 ± 2.14 bA | 85.57 ± 1.56 bC | 53.32 ± 0.72 bB | 86.77 ± 1.71 bC |
JC4 | 16.30 ± 0.52 bC | 36.39 ± 0.93 dD | 5.17 ± 0.05 bA | 8.85 ± 0.45 cB | 34.13 ± 1.09 aA | 76.19 ± 1.95 aC | 45.47 ± 0.42 aB | 77.84 ± 3.99 aC |
Rutin | ||||||||
JC1 | 4.08 ± 0.06 abA | 4.87 ± 0.15 aB | nd | nd | 78.18 ± 1.23 dA | 93.30 ± 2.90 cB | nd | nd |
JC2 | 4.31 ± 0.14 bA | 5.69 ± 0.05 bB | nd | nd | 65.10 ± 2.14 cA | 88.09 ± 2.96 cB | nd | nd |
JC3 | 4.23 ± 0.03 bA | 6.46 ± 0.27 cB | nd | nd | 51.06 ± 0.42 bA | 80.67 ± 2.01 bB | nd | nd |
JC4 | 3.80 ± 0.16 aA | 7.11 ± 0.31 dB | nd | nd | 38.39 ± 1.64 aA | 73.84 ± 1.65 aB | nd | nd |
Naringin | ||||||||
JC1 | 1.75 ± 0.02 aB | 1.71 ± 0.02 aB | 0.68 ± 0.01 aA | 0.66 ± 0.02 aA | 97.23 ± 0.91 aC | 95.29 ± 0.98 cB | 95.19 ± 0.87 bB | 92.52 ± 2.80 cA |
JC2 | 2.17 ± 0.06 bB | 2.07 ± 0.05 bB | 0.84 ± 0.01 bA | 0.81 ± 0.01 bA | 94.96 ± 2.45 aB | 90.55 ± 2.21 cA | 92.54 ± 1.40 abAB | 89.09 ± 1.09 bcA |
JC3 | 2.69 ± 0.05 cC | 2.42 ± 0.08 cB | 1.04 ± 0.01 cA | 0.97 ± 0.02 cA | 94.11 ± 1.68 aB | 84.61 ± 2.79 bA | 91.85 ± 1.14 abB | 85.33 ± 1.77 bA |
JC4 | 3.21 ± 0.08 dD | 2.64 ± 0.06 dC | 1.21 ± 0.04 dB | 1.03 ± 0.04 cA | 93.94 ± 2.25 aC | 77.34 ± 1.87 aA | 88.63 ± 2.84 aB | 75.75 ± 3.00 aA |
Hesperidin | ||||||||
JC1 | 39.70 ± 1.16 aC | 44.24 ± 0.75 aD | 8.33 ± 0.17 aA | 8.84 ± 0.12 aB | 85.08 ± 2.48 dA | 94.81 ± 1.62 dB | 87.73 ± 1.83 bA | 93.04 ± 1.24 dB |
JC2 | 47.22 ± 2.47 bC | 53.78 ± 0.99 bD | 9.52 ± 0.09 bA | 10.69 ± 0.31 bB | 79.80 ± 2.43 cA | 90.87 ± 1.67 cB | 78.82 ± 0.72 aA | 88.54 ± 2.54 cdB |
JC3 | 52.47 ± 0.51 cC | 62.62 ± 0.75 cD | 10.17 ± 0.12 cA | 12.93 ± 0.24 cB | 70.87 ± 0.68 bA | 84.58 ± 1.01 bB | 67.48 ± 0.80 aA | 85.79 ± 1.57 bB |
JC4 | 57.94 ± 1.07 dC | 68.40 ± 0.87 dD | 11.41 ± 0.32 dA | 13.93 ± 0.23 dB | 65.36 ± 1.21 aA | 77.16 ± 0.98 aA | 63.15 ± 1.46 aA | 77.12 ± 1.28 aA |
Diosmin | ||||||||
JC1 | 2.53 ± 0.05 aB | 2.51 ± 0.05 aB | 1.31 ± 0.04 aA | 1.30 ± 0.03 aA | 94.86 ± 1.70 bA | 94.13 ± 1.74 cA | 93.94 ± 2.62 bA | 92.92 ± 1.97 cA |
JC2 | 3.10 ± 0.05 bB | 3.02 ± 0.08 bB | 1.60 ± 0.07 bA | 1.58 ± 0.02 bA | 91.54 ± 1.41 abA | 89.14 ± 2.33 bcA | 89.91 ± 3.69 abA | 88.78 ± 1.00 cA |
JC3 | 3.81 ± 0.09 cD | 3.58 ± 0.09 cC | 1.99 ± 0.05 cB | 1.84 ± 0.03 cA | 89.83 ± 2.18 aB | 84.50 ± 2.10 bA | 89.61 ± 2.43 abB | 82.77 ± 1.34 bA |
JC4 | 4.45 ± 0.08 dD | 3.80 ± 0.10 dC | 2.28 ± 0.04 dB | 1.99 ± 0.06 dA | 87.67 ± 1.67 aB | 74.96 ± 1.98 aA | 85.69 ± 1.50 aB | 74.86 ± 2.32 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, D.T.; Vo, M.T.N.; Kha, T.C. Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes. Processes 2023, 11, 1883. https://doi.org/10.3390/pr11071883
Huynh DT, Vo MTN, Kha TC. Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes. Processes. 2023; 11(7):1883. https://doi.org/10.3390/pr11071883
Chicago/Turabian StyleHuynh, Dat Tien, Mai Thi Nguyet Vo, and Tuyen Chan Kha. 2023. "Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes" Processes 11, no. 7: 1883. https://doi.org/10.3390/pr11071883
APA StyleHuynh, D. T., Vo, M. T. N., & Kha, T. C. (2023). Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes. Processes, 11(7), 1883. https://doi.org/10.3390/pr11071883