A Comprehensive Review of Organic Rankine Cycles
Abstract
:1. Introduction
2. Description of Organic Rankine Cycles
Working Fluids for ORC
3. Single-Stage ORC
3.1. Thermoeconomic and Life Cycle Analysis of ORC
3.2. Experimental Studies
3.3. Discussion of Basic and Experimental ORCs
4. Recuperative, Regenerative, Reheated, and Supercritical ORCs
4.1. Comparison between Recuperative, Regenerative, and Reheated ORCs
4.2. Supercritical ORC
4.3. Discussion on Recuperative, Regenerative, Reheated, and Supercritical Cycles
5. Two-Stage ORC
Discussion of Two-Stage ORC
6. Hybrid ORC
Discussion of Hybrid Systems
7. Conclusions
8. Future Directions
- Simulation of dynamic systems: Some recent studies on energy systems, including ORCs, have proposed dynamic models that consider the transient behavior of the main operating parameters, showing a more realistic performance than the steady-state models.
- Experimental validation: to date, the vast majority of studies on ORC have not been validated experimentally, which results in a huge number of cycles with attractive performance parameters, but without certainty regarding their technical or economic viability. A major experimental research effort should be carried out in the short and medium term.
- Characterization of working fluids: To move towards new possibilities in terms of working fluids, it is fundamental that there should shortly be more research on the definition of the thermophysical properties of new working fluids, particularly for zeotropic mixtures, under the conditions of interest for the ORC.
- Cogeneration systems: the analyses of current hybrid structures mostly predict a better performance of the systems in which the ORCs are integrated. Future proposals for systems producing several useful effects, particularly those of an empirical nature, should be encouraged.
- Multi-objective optimization: the vast majority of optimization analyses have focused on energy and economic parameters; however, they leave aside environmental aspects. It is expected that the studies on new power cycles will soon be complemented, including an environmental approach (life cycle analyses or assessment of direct/indirect emissions).
- Supercritical ORC: some studies [93] indicate that supercritical cycles can be more efficient than subcritical ones in certain conditions (low-temperature heat sources). Thus, research efforts should be addressed to investigate the actual potential of these systems.
- Cleaner production: it is expected that the growing operation of ORCs driven by clean energy sources such as geothermal, solar, and biomass will be maintained, or even those driven by waste heat of an industrial nature or any process where the integration of an ORC has the potential to improve overall energy efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACS | absorption cooling system |
CCS | compression cooling system |
DS | dehumidification system |
ECS | ejector cooling system |
ExD | exergy destruction |
Exp | expander |
COP | coefficient of performance |
G | generator |
HPE | high-pressure evaporator |
HPT | high-pressure turbine |
HS | heat source |
LPE | low-pressure evaporator |
LPT | low-pressure turbine |
LCOE | levelized cost of energy |
ORC | organic Rankine cycle |
PBP | payback period |
SP | single-pressure |
TP | two-pressure |
References
- IEA. Global Energy Review: CO2 Emissions in 2021; IEA: Paris, France, 2022. [Google Scholar]
- BCS. Waste Heat Recovery: Technology and Opportunities in U. S. Industry; BCS, Inc.: Laurel, MD, USA, 2008. [Google Scholar]
- Thekdi, A.; Nimbalkar, S.U. Industrial Waste Heat Recovery-Potential Applications, Available Technologies and Crosscutting R&D Opportunities; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2015. [Google Scholar]
- Park, B.-S.; Usman, M.; Imran, M.; Pesyridis, A. Review of Organic Rankine Cycle experimental data trends. Energy Convers. Manag. 2018, 173, 679–691. [Google Scholar] [CrossRef]
- Tartière, T.; Astolfi, M. A world overview of the organic Rankine cycle market. Energy Procedia 2017, 129, 2–9. [Google Scholar] [CrossRef]
- Pethurajan, V.; Sivan, S.; Joy, G.C. Issues, comparisons, turbine selections and applications–An overview in organic Rankine cycle. Energy Convers. Manag. 2018, 166, 474–488. [Google Scholar] [CrossRef]
- Ahmadi, A.; Assad ME, H.; Jamali, D.H.; Kumar, R.; Li, Z.X.; Salameh, T.; Al-Shabi, M.; Ehyaei, M.A. Applications of geothermal organic Rankine Cycle for electricity production. J. Clean. Prod. 2020, 274, 122950. [Google Scholar] [CrossRef]
- Haghighi, A.; Pakatchian, M.R.; Assad, M.E.H.; Duy, V.N.; Alhuyi Nazari, M. A review on geothermal Organic Rankine cycles: Modeling and optimization. J. Therm. Anal. Calorim. 2021, 144, 1799–1814. [Google Scholar] [CrossRef]
- Wieland, C.; Schifflechner, C.; Dawo, F.; Astolfi, M. The organic Rankine cycle power systems market: Recent developments and future perspectives. Appl. Therm. Eng. 2023, 224, 119980. [Google Scholar] [CrossRef]
- Nondy, J.; Gogoi, T.K. Exergoeconomic investigation and multi-objective optimization of different ORC configurations for waste heat recovery: A comparative study. Energy Convers. Manag. 2021, 245, 114593. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; He, M.; Wang, J. Selection and evaluation of dry and isentropic organic working fluids used in organic Rankine cycle based on the turning point on their saturated vapor curves. J. Therm. Sci. 2019, 28, 643–658. [Google Scholar] [CrossRef]
- Györke, G.; Groniewsky, A.; Imre, A.R. A simple method of finding new dry and isentropic working fluids for organic rankine cycle. Energies 2019, 12, 480. [Google Scholar] [CrossRef] [Green Version]
- Imre, A.R.; Kustán, R.; Groniewsky, A. Thermodynamic selection of the optimal working fluid for organic Rankine cycles. Energies 2019, 12, 2028. [Google Scholar] [CrossRef] [Green Version]
- Györke, G.; Deiters, U.K.; Groniewsky, A.; Lassu, I.; Imre, A.R. Novel classification of pure working fluids for Organic Rankine Cycle. Energy 2018, 145, 288–300. [Google Scholar] [CrossRef]
- Wang, E.; Zhang, M.; Meng, F.; Zhang, H. Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine. Energy 2022, 243, 123097. [Google Scholar] [CrossRef]
- Blondel, Q.; Tauveron, N.; Lhermet, G.; Caney, N. Zeotropic mixtures study in plate heat exchangers and ORC systems. Appl. Therm. Eng. 2023, 219, 119418. [Google Scholar] [CrossRef]
- Yang, L.; Gong, M.; Guo, H.; Dong, X.; Shen, J.; Wu, J. Effects of critical and boiling temperatures on system performance and fluid selection indicator for low temperature organic Rankine cycles. Energy 2016, 109, 830–844. [Google Scholar] [CrossRef]
- Li, J.; Alvi, J.Z.; Pei, G.; Su, Y.; Li, P.; Gao, G.; Ji, J. Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature. Energy 2016, 115, 668–683. [Google Scholar] [CrossRef] [Green Version]
- Dai, B.; Zhu, K.; Wang, Y.; Sun, Z.; Liu, Z. Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: Advanced exergy and advanced exergoeconomic analyses. Energy Convers. Manag. 2019, 197, 111876. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Liang, J.; Qi, J.; Su, W.; Yang, Z.; Chen, J.; Wang, C.; Chen, Y. Improved correlations for working fluid properties prediction and their application in performance evaluation of sub-critical Organic Rankine Cycle. Energy 2019, 174, 122–137. [Google Scholar] [CrossRef]
- Fan, W.; Han, Z.; Li, P.; Jia, Y. Analysis of the thermodynamic performance of the organic Rankine cycle (ORC) based on the characteristic parameters of the working fluid and criterion for working fluid selection. Energy Convers. Manag. 2020, 211, 112746. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y. An examination of super dry working fluids used in regenerative organic Rankine cycles. Energy 2023, 263, 125931. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascale, A.; Melino, F.; Ottaviano, S.; Peretto, A.; Torricelli, N. Performance and total warming impact assessment of pure fluids and mixtures replacing HFCs in micro-ORC energy systems. Appl. Therm. Eng. 2022, 203, 117888. [Google Scholar] [CrossRef]
- Bahrami, M.; Pourfayaz, F.; Kasaeian, A. Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications. Energy Rep. 2022, 8, 2976–2988. [Google Scholar] [CrossRef]
- Nurhilal, O.; Mulyana, C.; Suhendi, N.; Sapdiana, D. The simulation of organic rankine cycle power plant with n-pentane working fluid. In AIP Conference Proceedings; AIP Publishing LLC: Long Island, NY, USA, 2016; p. 040003. [Google Scholar] [CrossRef] [Green Version]
- Herath, H.M.D.P.; Wijewardane, M.A.; Ranasinghe, R.A.C.P.; Jayasekera, J.G.A.S. Working fluid selection of Organic Rankine Cycles. Energy Rep. 2020, 6, 680–686. [Google Scholar] [CrossRef]
- Yadav, K.; Sircar, A. Selection of working fluid for low enthalpy heat source Organic Rankine Cycle in Dholera, Gujarat, India. Case Stud. Therm. Eng. 2019, 16, 100553. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wang, L.; Bu, X. Thermodynamic Analysis of Organic Rankine Cycle with Hydrofluoroethers as Working Fluids. Energy Procedia. 2017, 105, 1889–1894. [Google Scholar] [CrossRef]
- Sakhrieha, A.; Shreimb, W.; Fakhruldeenb, H.; Hasanb, H.; Al-Salaymeh, A. Combined Solar-Geothermal Power Generation using Organic Rankine Cycle. Jordan J. Mech. Ind. Eng. 2016, 10, 1–9. [Google Scholar]
- Senturk Acar, M.; Arslan, O. Energy and exergy analysis of solar energy-integrated, geothermal energy-powered Organic Rankine Cycle. J. Therm. Anal. Calorim. 2019, 137, 659–666. [Google Scholar] [CrossRef]
- Bademlioglu, A.H. Exergy analysis of the organic rankine cycle based on the pinch point temperature difference. J. Therm. Eng. 2019, 5, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Yamankaradeniz, N.; Bademlioglu, A.H.; Kaynakli, O. Performance Assessments of Organic Rankine Cycle With Internal Heat Exchanger Based on Exergetic Approach. J. Energy Resour. Technol. 2018, 140, 102001. [Google Scholar] [CrossRef]
- Invernizzi, C.; Binotti, M.; Bombarda, P.; Di Marcoberardino, G.; Iora, P.; Manzolini, G. Water Mixtures as Working Fluids in Organic Rankine Cycles. Energies 2019, 12, 2629. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Huang, Y.; Tian, N.; Lin, K. Performance improvement of ORC by breaking the barrier of ambient pressure. Energy 2023, 262, 125408. [Google Scholar] [CrossRef]
- de Neto, R.O.; Sotomonte, C.A.R.; Coronado, C.J.R. Off-design model of an ORC system for waste heat recovery of an internal combustion engine. Appl. Therm. Eng. 2021, 195, 117188. [Google Scholar] [CrossRef]
- Ping, X.; Yang, F.; Zhang, H.; Xing, C.; Yu, M.; Wang, Y. Investigation and multi-objective optimization of vehicle engine-organic Rankine cycle (ORC) combined system in different driving conditions. Energy 2023, 263, 125672. [Google Scholar] [CrossRef]
- Khosravi, A.; Syri, S.; Zhao, X.; Assad, M.E.H. An artificial intelligence approach for thermodynamic modeling of geothermal based-organic Rankine cycle equipped with solar system. Geothermics 2019, 80, 138–154. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Q.; Duan, Y. Effects of evaporator pinch point temperature difference on thermo-economic performance of geothermal organic Rankine cycle systems. Geothermics 2018, 75, 249–258. [Google Scholar] [CrossRef]
- Mustapic, N.; Brkic, V.; Kerin, M. Subcritical organic ranking cycle based geothermal power plant thermodynamic and economic analysis. Therm. Sci. 2018, 22, 2137–2150. [Google Scholar] [CrossRef] [Green Version]
- Kyriakarakos, G.; Ntavou, E.; Manolakos, D. Investigation of the Use of Low Temperature Geothermal Organic Rankine Cycle Engine in an Autonomous Polygeneration Microgrid. Sustainability 2020, 12, 10475. [Google Scholar] [CrossRef]
- Usman, M.; Imran, M.; Yang, Y.; Lee, D.H.; Park, B.-S. Thermo-economic comparison of air-cooled and cooling tower based Organic Rankine Cycle (ORC) with R245fa and R1233zde as candidate working fluids for different geographical climate conditions. Energy 2017, 123, 353–366. [Google Scholar] [CrossRef]
- Oyewunmi, O.; Markides, C. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System. Energies 2016, 9, 448. [Google Scholar] [CrossRef] [Green Version]
- Yaïci, W.; Entchev, E.; Talebizadehsardari, P.; Longo, M. Thermodynamic, Economic and Sustainability Analysis of Solar Organic Rankine Cycle System with Zeotropic Working Fluid Mixtures for Micro-Cogeneration in Buildings. Appl. Sci. 2020, 10, 7925. [Google Scholar] [CrossRef]
- Baral, S. Experimental and Techno-Economic Analysis of Solar-Geothermal Organic Rankine Cycle Technology for Power Generation in Nepal. Int. J. Photoenergy 2019, 2019, 5814265. [Google Scholar] [CrossRef] [Green Version]
- Ergun, A.; Ozkaymak, M.; Aksoy Koc, G.; Ozkan, S.; Kaya, D. Exergoeconomic analysis of a geothermal organic Rankine cycle power plant using the SPECO method. Environ. Prog. Sustain. Energy 2017, 36, 936–942. [Google Scholar] [CrossRef]
- Oyekale, J.; Petrollese, M.; Heberle, F.; Brüggemann, D.; Cau, G. Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant. Energy Convers. Manag. 2020, 215, 112905. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, S.; Li, Q.; Huo, E. Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis. Energy Convers. Manag. 2022, 254, 115238. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, X.; Ding, Y.; Liu, C. Emergy analysis of Organic Rankine Cycle (ORC) for waste heat power generation. J. Clean. Prod. 2018, 183, 1207–1215. [Google Scholar] [CrossRef]
- Li, G. Organic Rankine cycle environmental impact investigation under various working fluids and heat domains concerning refrigerant leakage rates. Int. J. Environ. Sci. Technol. 2019, 16, 431–450. [Google Scholar] [CrossRef]
- Yi, Z.; Luo, X.; Yang, Z.; Wang, C.; Chen, J.; Chen, Y.; Ponce-Ortega, J.M. Thermo-economic-environmental optimization of a liquid separation condensation-based organic Rankine cycle driven by waste heat. J. Clean. Prod. 2018, 184, 198–210. [Google Scholar] [CrossRef]
- Pintoro, A.; Ambarita, H.; Nur, T.B.; Napitupulu, F.H. Performance analysis of low temperature heat source of organic Rankine cycle for geothermal application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 308, 012026. [Google Scholar] [CrossRef]
- Boydak, O.; Ekmekci, I.; Yilmaz, M.; Koten, H. Thermodynamic investigation of organic Rankine cycle energy recovery system and recent studies. Therm. Sci. 2018, 22, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Hsu, P.P.; He, Y.L.; Shuai, Y.; Hung, T.C.; Feng, Y.Q.; Chang, Y.H. Investigations on experimental performance and system behavior of 10 kW organic Rankine cycle using scroll-type expander for low-grade heat source. Energy 2019, 177, 94–105. [Google Scholar] [CrossRef]
- Prasetyo, T.; Surindra, M.D.; Caesarendra, W.; Taufik Glowacz, A.; Irfan, M.; Glowacz, W. Influence of Superheated Vapour in Organic Rankine Cycles with Working Fluid R123 Utilizing Low-Temperature Geothermal Resources. Symmetry 2020, 12, 1463. [Google Scholar] [CrossRef]
- Alshammari, F.; Elashmawy, M.; Bechir Ben Hamida, M. Effects of working fluid type on powertrain performance and turbine design using experimental data of a 7.25ℓ heavy-duty diesel engine. Energy Convers. Manag. 2021, 231, 113828. [Google Scholar] [CrossRef]
- Abbas, W.K.A.; Linnemann, M.; Baumhögger, E.; Vrabec, J. Experimental study of two cascaded organic Rankine cycles with varying working fluids. Energy Convers. Manag. 2021, 230, 113818. [Google Scholar] [CrossRef]
- Tumen Ozdil, N.F.; Segmen, M.R. Investigation of the effect of the water phase in the evaporator inlet on economic performance for an Organic Rankine Cycle (ORC) based on industrial data. Appl. Therm. Eng. 2016, 100, 1042–1051. [Google Scholar] [CrossRef]
- Surindra, M.; Caesarendra, W.; Prasetyo, T.; Mahlia, T.; Taufik. Comparison of the Utilization of 110 °C and 120 °C Heat Sources in a Geothermal Energy System Using Organic Rankine Cycle (ORC) with R245fa, R123, and Mixed-Ratio Fluids as Working Fluids. Processes 2019, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Özkaraca, O.; Keçebaş, P.; Demircan, C.; Keçebaş, A. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm. Energies 2017, 10, 1691. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Khan, T.; Hajri, E. A Computer program for working fluid selection of low temperature organic Rankine cycle. In ASME Power Conference; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Li, G. Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation. Renew. Sustain. Energy Rev. 2016, 53, 477–499. [Google Scholar] [CrossRef]
- Unverdi, M.; Cerci, Y. Thermodynamic analysis and performance improvement of Irem geothermal power plant in Turkey: A case study of organic Rankine cycle. Environ. Prog. Sustain. Energy 2018, 37, 1523–1539. [Google Scholar] [CrossRef]
- Moradi, R.; Habib, E.; Bocci, E.; Cioccolanti, L. Component-Oriented Modeling of a Micro-Scale Organic Rankine Cycle System for Waste Heat Recovery Applications. Appl. Sci. 2021, 11, 1984. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Molés, F.; Mota-Babiloni, A. Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy 2015, 85, 534–542. [Google Scholar] [CrossRef]
- Peris, B.; Navarro-Esbrí, J.; Mateu-Royo, C.; Mota-Babiloni, A.; Molés, F.; Gutiérrez-Trashorras, A.J.; Amat-Albuixech, M. Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery. Energy 2020, 213, 118898. [Google Scholar] [CrossRef]
- Landelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Performance Evaluation and Comparison of Experimental Organic Rankine Cycle Prototypes from Published Data. Energy Procedia. 2017, 105, 1706–1711. [Google Scholar] [CrossRef]
- Eyidogan, M.; Canka Kilic, F.; Kaya, D.; Coban, V.; Cagman, S. Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view. Renew. Sustain. Energy Rev. 2016, 58, 885–895. [Google Scholar] [CrossRef]
- Zhai, H.; An, Q.; Shi, L.; Lemort, V.; Quoilin, S. Categorization and analysis of heat sources for organic Rankine cycle systems. Renew. Sustain. Energy Rev. 2016, 64, 790–805. [Google Scholar] [CrossRef]
- Algieri, A.; Šebo, J. Energetic investigation of organic rankine cycles (ORCs) for the exploitation of low-temperature geothermal sources–a possible application in Slovakia. Procedia Comput. Sci. 2017, 109, 833–840. [Google Scholar] [CrossRef]
- Canbolat, A.S.; Bademlioglu, A.H.; Kaynakli, O. A modeling of electricity generation by using geothermal assisted organic Rankine cycle with internal heat recovery. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 212–228. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Yuan, P.; Liu, J. Guidelines for optimal selection of subcritical low-temperature geothermal organic Rankine cycle configuration considering reinjection temperature limits. Energies 2018, 11, 2878. [Google Scholar] [CrossRef] [Green Version]
- Proctor, M.; Yu, W.; Kirkpatrick, R.; Young, B. Dynamic modelling and validation of a commercial scale geothermal organic rankine cycle power plant. Energies 2016, 61, 63–74. [Google Scholar] [CrossRef]
- Uusitalo, A.; Honkatukia, J.; Turunen-Saaresti, T.; Grönman, A. Thermodynamic evaluation on the effect of working fluid type and fluids critical properties on design and performance of Organic Rankine Cycles. J. Clean. Prod. 2018, 188, 253–263. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Benato, A.; Stoppato, A.; Mirandola, A. The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design. Energy 2016, 102, 605–620. [Google Scholar] [CrossRef]
- Agromayor, R.; Nord, L.O. Fluid selection and thermodynamic optimization of organic Rankine cycles for waste heat recovery applications. Energy Procedia 2017, 129, 527–534. [Google Scholar] [CrossRef]
- Huster, W.R.; Bongartz, D.; Mitsos, A. Deterministic global optimization of the design of a geothermal organic rankine cycle. Energy Procedia 2017, 129, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Preißinger, M.; Brüggemann, D. Thermoeconomic evaluation of modular organic Rankine cycles for waste heat recovery over a broad range of heat source temperatures and capacities. Energies 2017, 10, 269. [Google Scholar] [CrossRef] [Green Version]
- Heberle, F.; Hofer, M.; Brüggemann, D. A Retrofit for Geothermal Organic Rankine Cycles based on Concentrated Solar Thermal Systems. Energy Procedia 2017, 129, 692–699. [Google Scholar] [CrossRef]
- Heberle, F.; Hofer, M.; Ürlings, N.; Schröder, H.; Anderlohr, T.; Brüggemann, D. Techno-economic analysis of a solar thermal retrofit for an air-cooled geothermal Organic Rankine Cycle power plant. Renew. Energy 2017, 113, 494–502. [Google Scholar] [CrossRef]
- Stoppato, A.; Benato, A. Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler. Energies 2020, 13, 1835. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, J.; Chen, S.; Pu, Y. Analysis of organic Rankine cycles using zeotropic mixtures as working fluids under different restrictive conditions. Energy Convers. Manag. 2016, 126, 704–716. [Google Scholar] [CrossRef]
- Tiwari, D.; Sherwani, A.F.; Asjad, M.; Arora, A. Grey relational analysis coupled with principal component analysis for optimization of the cyclic parameters of a solar-driven organic Rankine cycle. Grey Syst. 2017, 7, 218–235. [Google Scholar] [CrossRef]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. Appl. Energy 2019, 242, 716–731. [Google Scholar] [CrossRef]
- Imran, M.; Usman, M.; Park, B.S.; Yang, Y. Comparative assessment of Organic Rankine Cycle integration for low temperature geothermal heat source applications. Energy 2016, 102, 473–490. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhao, J.; Wang, Y.; An, Q.S. Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle. Appl. Therm. Eng. 2017, 114, 1355–1363. [Google Scholar] [CrossRef]
- Li, G. Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part II: Economic assessment aspect. Renew. Sustain. Energy Rev. 2016, 64, 490–505. [Google Scholar] [CrossRef]
- Yang, M.H.; Yeh, R.H. Economic performances optimization of an organic Rankine cycle system with lower global warming potential working fluids in geothermal application. Renew. Energy 2016, 85, 1201–1213. [Google Scholar] [CrossRef]
- Zhar, R.; Allouhi, A.; Jamil, A.; Lahrech, K. A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery. Case Stud. Therm. Eng. 2021, 28, 101608. [Google Scholar] [CrossRef]
- Javed, S.; Tiwari, A.K. Performance assessment of different Organic Rankine Cycle (ORC) configurations driven by solar energy. Process Saf. Environ. Prot. 2023, 171, 655–666. [Google Scholar] [CrossRef]
- Liu, C.; Gao, T.; Zhu, J.; Xu, J. Performance Optimization and Economic Analysis of Geothermal Power Generation by Subcritical and Supercritical Organic Rankine Cycles. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 3. [Google Scholar] [CrossRef]
- Manente, G.; Da Lio, L.; Lazzaretto, A. Influence of axial turbine efficiency maps on the performance of subcritical and supercritical Organic Rankine Cycle systems. Energy 2016, 107, 761–772. [Google Scholar] [CrossRef]
- Chagnon-Lessard, N.; Mathieu-Potvin, F.; Gosselin, L. Geothermal power plants with maximized specific power output: Optimal working fluid and operating conditions of subcritical and transcritical Organic Rankine Cycles. Geothermics 2016, 64, 111–124. [Google Scholar] [CrossRef]
- Moloney, F.; Almatrafi, E.; Goswami, D.Y. Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures. Renew. Energy 2020, 147, 2874–2881. [Google Scholar] [CrossRef]
- Erdogan, A.; Colpan, O. Performance assessment of shell and tube heat exchanger based subcritical and supercritical organic Rankine cycles. Therm. Sci. 2018, 22, 855–866. [Google Scholar] [CrossRef]
- Lukawski, M.Z.; Tester, J.W.; Dipippo, R. Impact of molecular structure of working fluids on performance of organic Rankine cycles (ORCs). Sustain. Energy Fuels 2017, 1, 1098–1111. [Google Scholar] [CrossRef]
- Song, C.; Gu, M.; Miao, Z.; Liu, C.; Xu, J. Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle. Energy 2019, 174, 97–109. [Google Scholar] [CrossRef]
- Wang, X.; Levy, E.K.; Pan, C.; Romero, C.E.; Banerjee, A.; Rubio-Maya, C.; Pan, L. Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Appl. Therm. Eng. 2019, 149, 1287–1304. [Google Scholar] [CrossRef]
- Cakici, D.M.; Erdogan, A.; Colpan, C.O. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors. Energy 2017, 120, 306–319. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Cheng, Z.; Wang, J.; Zhao, P.; Dai, Y. Thermodynamic Optimization of a Double-pressure Organic Rankine Cycle Driven by Geothermal Heat Source. Energy Procedia. 2017, 129, 591–598. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Cheng, Z.; Wang, J.; Zhao, P.; Dai, Y. Thermodynamic and economic optimization of a double-pressure organic Rankine cycle driven by low-temperature heat source. Renew. Energy 2020, 147, 2822–2832. [Google Scholar] [CrossRef]
- Manente, G.; Lazzaretto, A.; Bonamico, E. Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems. Energy 2017, 123, 413–431. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, C.; Xu, X.; Li, Q. Thermo-economic evaluations of dual pressure organic Rankine cycle (DPORC) driven by geothermal heat source. J. Renew. Sustain. Energy 2018, 10, 063901. [Google Scholar] [CrossRef]
- Fontalvo, A.; Solano, J.; Pedraza, C.; Bula, A.; Quiroga, A.G.; Padilla, R.V. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources. Entropy 2017, 19, 476. [Google Scholar] [CrossRef] [Green Version]
- Braimakis, K.; Karellas, S. Energetic optimization of regenerative Organic Rankine Cycle (ORC) configurations. Energy Convers. Manag. 2018, 159, 353–370. [Google Scholar] [CrossRef]
- Braimakis, K.; Karellas, S. Exergetic optimization of double stage Organic Rankine Cycle (ORC). Energy 2018, 149, 296–313. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Q.; Xu, J.; Miao, Z. Exergy Analysis of Two-Stage Organic Rankine Cycle Power Generation System. Entropy 2021, 23, 43. [Google Scholar] [CrossRef]
- Li, T.; Yuan, Z.; Li, W.; Yang, J.; Zhu, J. Strengthening mechanisms of two-stage evaporation strategy on system performance for organic Rankine cycle. Energy 2016, 101, 532–540. [Google Scholar] [CrossRef]
- Li, T.L.; Yuan, Z.H.; Xu, P.; Zhu, J.L. Entransy dissipation/loss-based optimization of two-stage organic Rankine cycle (TSORC) with R245fa for geothermal power generation. Sci. China Technol. Sci. 2016, 59, 1524–1536. [Google Scholar] [CrossRef]
- Wang, J.; Xu, P.; Li, T.; Zhu, J. Performance enhancement of organic Rankine cycle with two-stage evaporation using energy and exergy analyses. Geothermics 2017, 65, 126–134. [Google Scholar] [CrossRef]
- Li, J.; Ge, Z.; Duan, Y.; Yang, Z.; Liu, Q. Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles. Appl. Energy 2018, 217, 409–421. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Liu, Q.; Yuanyuan, Z. Thermodynamic and thermo-economic analysis of dual-pressure and single pressure evaporation organic Rankine cycles. Energy Convers. Manag. 2018, 177, 718–736. [Google Scholar] [CrossRef]
- Kazemi, N.; Samadi, F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources. Energy Convers. Manag. 2016, 121, 391–401. [Google Scholar] [CrossRef]
- Samadi, F.; Kazemi, N. Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources. Renew. Energy. 2020, 152, 1250–1265. [Google Scholar] [CrossRef]
- Nami, H.; Nemati, A.; Jabbari Fard, F. Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC). Appl. Therm. Eng. 2017, 122, 59–70. [Google Scholar] [CrossRef]
- Luo, X.; Huang, R.; Yang, Z.; Chen, J.; Chen, Y. Performance investigation of a novel zeotropic organic Rankine cycle coupling liquid separation condensation and multi-pressure evaporation. Energy Convers. Manag. 2018, 161, 112–127. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Sun, L.; Zhao, S.; Ashraf Talesh, S.S. Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures. Energy 2020, 194, 116785. [Google Scholar] [CrossRef]
- Surendran, A.; Seshadri, S. Design and performance analysis of a novel Transcritical Regenerative Series Two stage Organic Rankine Cycle for dual source waste heat recovery. Energy 2020, 203, 117800. [Google Scholar] [CrossRef]
- Li, T.; Hu, X.; Wang, J.; Kong, X.; Liu, J.; Zhu, J. Performance improvement of two-stage serial organic Rankine cycle (TSORC) driven by dual-level heat sources of geothermal energy coupled with solar energy. Geothermics 2018, 76, 261–270. [Google Scholar] [CrossRef]
- Heberle, F.; Schifflechner, C.; Brüggemann, D. Life cycle assessment of Organic Rankine Cycles for geothermal power generation considering low-GWP working fluids. Geothermics 2016, 64, 392–400. [Google Scholar] [CrossRef]
- Sadeghi, M.; Nemati, A.; Ghavimi, A.; Yari, M. Thermodynamic analysis and multi-objective optimization of various ORC (organic Rankine cycle) configurations using zeotropic mixtures. Energy 2016, 109, 791–802. [Google Scholar] [CrossRef]
- Chagnon-Lessard, N.; Mathieu-Potvin, F.; Gosselin, L. Optimal design of geothermal power plants: A comparison of single-pressure and dual-pressure organic Rankine cycles. Geothermics 2020, 86, 101787. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, T.; Meng, N. Techno-economic performance of two-stage series evaporation organic Rankine cycle with dual-level heat sources. Appl. Therm. Eng. 2020, 171, 115078. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, X.; Pan, H.; Zuo, Q.; Zhou, N.; Xie, B. Fluid selection and advanced exergy analysis of dual-loop ORC using zeotropic mixture. Appl. Therm. Eng. 2021, 185, 116423. [Google Scholar] [CrossRef]
- Najjar, Y.S.H.; Qatramez, A.E. Energy utilisation in a combined geothermal and organic Rankine power cycles. Int. J. Sustain. Energy 2019, 38, 831–848. [Google Scholar] [CrossRef]
- Matuszewska, D.; Olczak, P. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 2020, 13, 1499. [Google Scholar] [CrossRef] [Green Version]
- Yağlı, H.; Koç, Y.; Kalay, H. Optimisation and exergy analysis of an organic Rankine cycle (ORC) used as a bottoming cycle in a cogeneration system producing steam and power. Sustain. Energy Technol. Assess. 2021, 44, 100985. [Google Scholar] [CrossRef]
- Hassani Mokarram, N.; Mosaffa, A.H. Investigation of the thermoeconomic improvement of integrating enhanced geothermal single flash with transcritical organic Rankine cycle. Energy Convers. Manag. 2020, 213, 112831. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Xu, B. Optimization of mixed working fluids for a novel trigeneration system based on organic Rankine cycle installed with heat pumps. Appl. Therm. Eng. 2016, 94, 754–762. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, J.; Wang, J.; Li, T.; Li, Y.; Hou, Y.; Zhu, J. Performance improvement of two-stage serial organic Rankine cycle (TSORC) integrated with absorption refrigeration (AR) for geothermal power generation. Geothermics 2017, 69, 110–118. [Google Scholar] [CrossRef]
- Ehyaei, M.A.; Ahmadi, A.; El Haj Assad, M.; Rosen, M.A. Investigation of an integrated system combining an Organic Rankine Cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. J. Clean. Prod. 2020, 258, 120780. [Google Scholar] [CrossRef]
- Leveni, M.; Cozzolino, R. Energy, exergy, and cost comparison of Goswami cycle and cascade organic Rankine cycle/absorption chiller system for geothermal application. Energy Convers. Manag. 2021, 227, 113598. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, S.; Fei, Z.; Zhang, W.; Shao, L.; Sardari, F. Thermodynamic performance analysis a power and cooling generation system based on geothermal flash, organic Rankine cycles, and ejector refrigeration cycle; application of zeotropic mixtures. Sustain. Energy Technol. Assess. 2020, 40, 100749. [Google Scholar] [CrossRef]
- Jafary, S.; Khalilarya, S.; Shawabkeh, A.; Wae-hayee, M.; Hashemian, M. A complete energetic and exergetic analysis of a solar powered trigeneration system with two novel organic Rankine cycle (ORC) configurations. J. Clean. Prod. 2021, 281, 124552. [Google Scholar] [CrossRef]
- Jiménez-García, J.C.; Moreno-Cruz, I.; Rivera, W. Modeling of an Organic Rankine Cycle Integrated into a Double-Effect Absorption System for the Simultaneous Production of Power and Cooling. Processes 2023, 11, 667. [Google Scholar] [CrossRef]
- Lizarte, R.; Palacios-Lorenzo, M.E.; Marcos, J.D. Parametric study of a novel organic Rankine cycle combined with a cascade refrigeration cycle (ORC-CRS) using natural refrigerants. Appl. Therm. Eng. 2017, 127, 378–389. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Cao, C.; Gong, Z.; Gao, Y. Organic Rankine Cycle-assisted ground source heat pump combisystem for space heating in cold regions. Energy Convers. Manag. 2018, 165, 195–205. [Google Scholar] [CrossRef]
- Marty, F.; Serra, S.; Sochard, S.; Reneaume, J.M. Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant. Energy 2018, 159, 1060–1074. [Google Scholar] [CrossRef]
- Maali, R.; Khir, T. Thermodynamic analysis and optimization of an ORC hybrid geothermal–solar power plant. EuroMediterr. J. Environ. Integr. 2023, 8, 341–352. [Google Scholar] [CrossRef]
- Boukelia, T.E.; Arslan, O.; Djimli, S.; Kabar, Y. ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant. Energy 2023, 265, 126186. [Google Scholar] [CrossRef]
- Javanshir, N.; Mahmoudi, S.M.S.; Rosen, M.A. Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles. Sustainability 2019, 11, 3374. [Google Scholar] [CrossRef] [Green Version]
- Pashapour, M.; Jafarmadar, S.; Khalil Arya, S. Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold. Int. J. Eng. 2019, 32, 1320–1326. [Google Scholar] [CrossRef]
- Sharifishourabi, M.; Arab Chadegani, E. Performance assessment of a new organic Rankine cycle based multi-generation system integrated with a triple effect absorption system. Energy Convers. Manag. 2017, 150, 787–799. [Google Scholar] [CrossRef]
- Lee, H.; Ryu, B.; Anh, D.P.; Roh, G.; Lee, S.; Kang, H. Thermodynamic analysis and assessment of novel ORC- DEC integrated PEMFC system for liquid hydrogen fueled ship application. Int. J. Hydrogen Energy Energy 2023, 48, 3135–3153. [Google Scholar] [CrossRef]
- Geng, D.; Du, Y.; Yang, R. Performance analysis of an organic Rankine cycle for a reverse osmosis desalination system using zeotropic mixtures. Desalination 2016, 381, 38–46. [Google Scholar] [CrossRef]
- Wang, E.; Yu, Z.; Collings, P. Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle. Energy 2017, 141, 1038–1051. [Google Scholar] [CrossRef]
- Gholamian, E.; Habibollahzade, A.; Zare, V. Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Convers. Manag. 2018, 174, 112–125. [Google Scholar] [CrossRef]
- Azad, A.; Fakhari, I.; Ahmadi, P.; Javani, N. Analysis and optimization of a fuel cell integrated with series two-stage organic Rankine cycle with zeotropic mixtures. Int. J. Hydrogen Energy Energy 2022, 47, 3449–3472. [Google Scholar] [CrossRef]
- Kaşka, Ö.; Yılmaz, C.; Bor, O.; Tokgöz, N. The performance assessment of a combined organic Rankine-vapor compression refrigeration cycle aided hydrogen liquefaction. Int. J. Hydrogen Energy Energy 2018, 43, 20192–20202. [Google Scholar] [CrossRef]
- Ganjehsarabi, H. Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. Int. J. Hydrogen Energy Energy 2019, 44, 18703–18711. [Google Scholar] [CrossRef]
- Han, J.; Wang, X.; Xu, J.; Yi, N.; Ashraf Talesh, S.S. Thermodynamic analysis and optimization of an innovative geothermal-based organic Rankine cycle using zeotropic mixtures for power and hydrogen production. Int. J. Hydrogen Energy Energy 2020, 45, 8282–8299. [Google Scholar] [CrossRef]
- Cao, Y.; Haghghi, M.A.; Shamsaiee, M.; Athari, H.; Ghaemi, M.; Rosen, M.A. Evaluation and optimization of a novel geothermal-driven hydrogen production system using an electrolyser fed by a two-stage organic Rankine cycle with different working fluids. J. Energy Storage 2020, 32, 101766. [Google Scholar] [CrossRef]
- Fallah, M.; Mohammadi, Z.; Mahmoudi, S.M.S. Advanced exergy analysis of the combined S–CO2/ORC system. Energy 2022, 241, 122870. [Google Scholar] [CrossRef]
- Wieland, C.; Schifflechner, C.; Braimakis, K.; Kaufmann, F.; Dawo, F.; Karellas, S.; Besagni, G.; Markides, C.N. Innovations for organic Rankine cycle power systems: Current trends and future perspectives. Appl. Therm. Eng. 2023, 225, 120201. [Google Scholar] [CrossRef]
Reference | System Layout | Conditions | Working Fluid | Output | Efficiency (%) | Payback Period | |
---|---|---|---|---|---|---|---|
Thermal | Exergy | ||||||
Pintoro et al. [51] | Basic | THS = 100 °C | R134a and R245fa * | 1.9 kW | 5.62 | - | - |
Boydak et al. [52] | Basic | THS = 205 °C | R134a | 5.16 kW | 25.0 | 62 | - |
Lin et al. [53] | Basic | THS = 120 °C | R245fa | 10 kW | 8.9 | 63.2 | - |
Prasetyo et al. [54] | Basic | THS = 120 °C | R123 | 1.37 kW | 8.6 | - | - |
Abbas et al. [56] | Cascade two ORC | THS = 280 °C | Cyclopentane, propane, butane, and pentane | 4.92 kW | 5.5 | 20.2 | - |
Ozdil and Segmen [57] | Basic | - | R245fa | - | - | 38.79 | 3.27 years |
Surindra et al. [58] | Basic | THS = 120 °C | R245fa and R123 * | 6.5 kW | 13.5 | - | - |
Özkaraca et al. [59] | Recuperative | THS1 = 164 °C THS2 = 136 °C | n-pentane | 15 MW | - | 23.92 | - |
Unverdi and Cerci [62] | Basic | THS = 84.5 °C | R134a, R143a, R152a, R600 *, R290, and R227ea | 2.5 MW | 12.6 | 51.2 | - |
Landelle et al. [66] | Basic | - | R245, R123, and R134a | 100 kW | 11.0 | 30 |
Reference | Most Efficient Cycle | Conditions | Working Fluid | Output | Efficiency (%) | Component with the Highest Irreversibilities | LCOE | |
---|---|---|---|---|---|---|---|---|
Thermal | Exergy | |||||||
Algieri and Šebo [69] | Recuperative | THS = 139 °C | Isobutane, isopentane and R245ca * | 4.0 kW | 14.0 | - | - | - |
Canbolat et al. [70] | Recuperative | THS = 127 °C | R142b, R227ea, R245fa *, R600 and R600a | - | 16.7 | 60.0 | Evaporator | - |
Zhang et al. [71] | Superheated recuperative | THS = 100 °C | R245fa, R1234ze(Z), isopentane e isobutane * | 24.0 kW | 26.38 | 34.0 | - | - |
Uusitalo et al. [73] | Recuperative | THS = 300 °C | Hydrocarbons, siloxanes and fluorocarbons | 31.1 kW | 25.2 | - | - | - |
Ali et al. [60] | Basic, Recuperative | THS = 165 °C | Butane, Isobutane, Isopentane *, etc. | 89.61 kW | 19.83 | - | Evaporator | - |
Pezzuolo et al. [74] | Basic, Recuperative | THS = 170 °C | Benzene *, toluene, cyclopentane, etc. | 4.0 MW | 25.7 | 37.60 | - | 0.118 USD/kWh |
Agromayor and Nord [75] | Simple, Recuperative | THS = 600 °C | Alkylbenzenes, alkanes and siloxanes | 550 kW | - | 30.0 | - | - |
Lu et al. [81] | Basic, Recuperative | THS = 140 °C | Zeotropic mixtures R601a/R600 and R245fa/R600a | 36.4 kW | 11.11 | - | - | - |
Imran et al. [84] | Basic, Recuperative, Regenerative | THS = 160 °C | R600, R600a, R601, R601a, R245fa * and SES36. | 68.4 kW | 14.02 | 55.93 | - | - |
Wang et al. [85] | Basic, Recuperative, Regenerative | THS = 150 °C | Fourteen working fluids, R245fa * | - | 12.0 | 48.0 | - | - |
Li [87] and Li [61] | Basic, Regenerative, Recuperative, Reheated | THS = 130 °C | Fourteen working fluids, R245fa * | - | 13.2–13.8 | - | 0.26 USD/kWh | |
Yang and Yeh [87] | Reheated | THS = 94 °C | R600 *, R600a, R1233zd, R1234yf, R1234ze. | 332.7 kW | 8.29 | - | - | 0.3 USD/kWh |
Liu et al. [90] | Basic Supercritical | THS = 130 °C | R125, R218, R143a, R32, R290, R134a, R227ea, R1234ze(E), and R152a * | 599.1 kW | 11.18 | - | - | - |
Manente et al. [91] | Supercritical | THS = 150 °C | R1234yf *, R134a, R1234ze (E), R1234ze (Z), R245fa, R600a | 900.8 kW | 10.64 | - | - | - |
Moloney et al. [93] | Binary, Single flash | THS = 240 °C | Twenty different working fluids | 150 kW | 19.0 | 50.0 | Turbine | - |
Lukawski et al. [95] | Basic, Recuperative supercritical | THS = 220 °C | Thirteen working fluids, R134a * | 120 kW | 19.0 | - | - | - |
Cakici et al. [98] | Recuperative supercritical | THS = 160 °C | R134a *, R124, R142b, R227ea, and isobutane | 5800 kW | 12.0 | 45.0 | Parabolic trough solar collectors | - |
Reference | Most Efficient Cycle | Conditions | Working Fluid | Output | Efficiency (%) | Cost (LCOE or PBP) | Component with the Highest Irreversibilities | |
---|---|---|---|---|---|---|---|---|
Thermal | Exergy | |||||||
Sun et al. [99,100] | Basic, two-stage * | THS = 113 °C | R21, R114, and R245fa * | 818.6 kW | - | 5.85 | - | HPE |
Manente et al. [101] | Basic, two-stage * | THS = 200 °C | R134a, R1234ze (Z), isobutane, isopentane, and cyclopentane. | 8573 kW | 15.36 | - | - | - |
Wang et al. [102] | Two-stage | THS = 113.8 °C | R1234zd | 614.27 kW | - | - | PBP = 3.99 | - |
Fontalvo et al. [103] | Two-stage, basic, regenerative * | THS = 200 °C | R1234yf, R1234ze(E) *, and R1234ze(Z). | 33 kW | 18.1 | 60.0 | 0.3 USD/kWh PBP = 8 years | - |
Braimakis and Karellas [104,105] | Basic, two basic operating in cascade | THS = 100 °C | Butane, pentane, cyclopentane *, cyclohexane, toluene, R134ze, and R134yf. | - | 5.0 | 25.0 | - | - |
Liu et al. [106] | Basic, two basic operating in cascade | THS = 140 °C | R600, R600a, R601a, and R245fa | - | - | 41.0 | - | - |
Li et al. [107,108] | Two-stage | THS = 100 °C | R245fa | 9.0 kW | 9.2 | 42.0 | - | HPE |
Li et al. [110] | Basic, two-stage | THS = 200 °C | R227ea, R236ea, R245fa *, R600, R600a, R601, R601a, R1234yf and R1234ze(E) | 100 kW | 13.5 | - | - | - |
Wang et al. [111] | Basic, two-stage * | THS = 160 °C | Isobutane | 241.7 kW | 11.29 | - | 0.14 USD/kWh | - |
Kazemi and Samadi [112] | Three pressure levels | THS = 134.3 °C | Isobutane and R123 * | - | 15.31 | 54.25 | - | Condenser |
Samadi and Kazemi [113] | Three different pressure levels | THS = 124.5 °C | Isobutane, isopentane * | - | 13.78 | 53.02 | - | - |
Luo et al. [115] | Basic, two basic operating in parallel * | THS = 195 °C | Isobutane-isopentane (0.9–0.1) | 407.62 kW | - | 31.77 | HPE | |
Zhou et al. [116] | Two-stage | THS = 188 °C | Six working mixtures, pentane/Cis-2-butane (0.539/0.461) * | 5983.19 kW | 18.43 | 62.96 | - | HPE |
Surendran and Seshadri [117] | Transcritical regenerative two-stage | THS = 302 °C | Cyclopentane | 349 kW | 15.3 | 17.4 | - | HPE |
Sadeghi et al. [120] | Basic, two-stage parallel, series, two-stage * | THS = 100 °C | R407A | 940.3 kW | 8.53 | 55.63 | - | HPE |
Wang et al. [122] | Two-stage series with dual-level HS | THS = 104 °C | R123 | 78 kW | 6.0 | 28.0 | 0.084 USD/kWh PBP = 1.71 years | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-García, J.C.; Ruiz, A.; Pacheco-Reyes, A.; Rivera, W. A Comprehensive Review of Organic Rankine Cycles. Processes 2023, 11, 1982. https://doi.org/10.3390/pr11071982
Jiménez-García JC, Ruiz A, Pacheco-Reyes A, Rivera W. A Comprehensive Review of Organic Rankine Cycles. Processes. 2023; 11(7):1982. https://doi.org/10.3390/pr11071982
Chicago/Turabian StyleJiménez-García, José C., Alexis Ruiz, Alejandro Pacheco-Reyes, and Wilfrido Rivera. 2023. "A Comprehensive Review of Organic Rankine Cycles" Processes 11, no. 7: 1982. https://doi.org/10.3390/pr11071982
APA StyleJiménez-García, J. C., Ruiz, A., Pacheco-Reyes, A., & Rivera, W. (2023). A Comprehensive Review of Organic Rankine Cycles. Processes, 11(7), 1982. https://doi.org/10.3390/pr11071982