Corrosion Effect in Carbon Steel: Process Modeling Using Fuzzy Logic Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of the Experiment
2.2. Statistical Treatment
2.3. Data Mining and Fuzzy Logic
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valente, T.; Grande, J.A.; de la Torre, M.L.; Gomes, P.; Santisteban, M.; Borrego, J.; Sequeira Braga, M.A. Mineralogy and geochemistry of a clogged mining reservoir affected by historical acid mine drainage in an abandoned mining area. J. Geochem. Explor. 2015, 157, 66–76. [Google Scholar] [CrossRef]
- Sainz, A.; Grande, J.A.; De la Torre, M.L. Characterisation of heavy metal discharge into the Ria of Huelva. Environ. Int. 2004, 30, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Fortes, J.C.; Sarmiento, A.M.; Luís, A.T.; Santisteban, M.; Dávila, J.M.; Córdoba, F.; Grande, J.A. Wasted Critical Raw Materials: A Polluted Environmental Scenario as potential source of economic interest elements in the Spanish part of the Iberian Pyrite Belt. Water Air Soil Pollut. 2021, 232, 232–241. [Google Scholar] [CrossRef]
- Tomiyama, S.; Igarashi, T.; Tabelin, C.B.; Tangviroon, P.; Ii, H. Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. J. Contam. Hydrol. 2019, 225, 103502. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Grande, J.A.; Luís, A.T.; Santisteban, M.; Davila, J.M.; Sarmiento, A.; Fortes, J.C.; Ferreira da Silva, E.; Córdoba, F. A common paragenesis and two A.M.D. pollution sources in the Iberian Pyrite Belt (SW Spain): Proposal of a natural attenuation model in the affected fluvial network. J. Iber. Geol. 2022, 48, 191–204. [Google Scholar] [CrossRef]
- Sarmiento, A.M.; Grande, J.A.; Luís, A.T.; Dávila, J.M.; Fortes, J.C.; Santisteban, M.; Curiel, J.; de la Torre, M.L.; Ferreira, E. Negative pH values in an open-air radical environment affected by acid mine drainage. Characterization and proposal of a hydrogeochemical model. Sci. Total Environ. 2018, 644, 1244–1253. [Google Scholar] [CrossRef]
- Grande, J.A.; Andújar, J.M.; Aroba, J.; de la Torre, M.L. Presence of As in the fluvial network due to AMD processes in the Riotinto mining area (SW Spain): A fuzzy logic qualitative model. J. Hazard. Mater. 2010, 176, 395–401. [Google Scholar] [CrossRef]
- Younger, P.L.; Banwart, S.A.; Hedin, R.S. Mine Water: Hydrology, Pollution, Remediation; Kluwer Academic Publishers: London, UK, 2002. [Google Scholar]
- Kefeni, K.; Msagati, A.M.; Mamba, B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Luis, A.T.; Grande, J.A.; Duraes, N.; Dávila, J.M.; Santisteban, M.; Salomé, F.P.; Sarmiento, A.M.; de la Torre, M.L.; Fortes, J.C.; Ferreira, E. Biogeochemical characterization of surface waters in the Aljustrel mining area (South Portugal). Environ. Geochem. Health 2019, 41, 1909–1921. [Google Scholar] [CrossRef]
- Córdoba, F.; Luís, A.T.; Leiva, M.; Sarmiento, A.M.; Santisteban, M.; Fortes, J.C.; Dávila, J.M.; Álvarez-Bajo, O.; Grande, J.A. Biogeochemical indicators (waters/diatoms) of acid mine drainage pollution in the Odiel river (Iberian Pyritic Belt, SW Spain). Environ. Sci. Pollut. Res. Int. 2022, 29, 31749–31760. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A. Eukaryotic organisms in extreme acidic environments. Life 2013, 3, 363–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiva, M.; Bryka, K.; Romero, S.; Santisteban, M.; Dávila, J.M.; Sarmiento, A.M.; Fortes, J.C.; Luis, A.T.; Grande, J.A.; Córdoba, F. Diatoms of the Odiel river basin: Distribution according to the degree of pollution by Acid Mine Drainage. Comun. Geológicas 2020, 107, 161–166. [Google Scholar] [CrossRef]
- Sun, W.; Sun, X.; Li, B.; Xu, R.; Young, L.; Dong, Y.; Zhang, M.; Kong, T.; Xiao, E.; Wang, Q. Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance. Environ. Int. 2020, 138, 105601. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alper, C.N. Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site. Proc. Natl. Acad. Sci. USA 1999, 96, 3455–3462. [Google Scholar] [CrossRef] [PubMed]
- El-Etre, A.Y.; Abdallah, M. Natural honey as corrosion inhibitor for metals and alloys. II. C-steel in high saline water. Corros. Sci. 2000, 42, 731–738. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Chen, H.; Zhang, Z.; Zou, X. Design of a Multilayered Oxygen-Evolution Electrode with High Catalytic Activity and Corrosion Resistance for Saline Water Splitting. Adv. Funct. Mater. 2021, 31, 2101820. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, W.; Fu, H.; Li, J. The effect of corrosion evolution on the stress corrosion cracking behavior of mooring chain steel. Corros. Sci. 2022, 203, 110316. [Google Scholar] [CrossRef]
- Biloshytskyi, M.; Tatarchenko, H.; Biloshytska, N.; Uvarov, P. Operational lifetime increase of the pumping equipment when pumping-out contaminated groundwater. Min. Miner. Depos. 2021, 15, 42–49. [Google Scholar] [CrossRef]
- Krupnik, L.; Yelemessov, K.; Beisenov, B.; Baskanbayeva, D. Substantiation and process design to manufacture polymer-concrete transfer cases for mining machines. Min. Miner. Depos. 2020, 14, 103–109. [Google Scholar] [CrossRef]
- Baskanbayeva, D.D.; Krupnik, L.A.; Yelemessov, K.K.; Bortebayev, S.A.; Igbayeva, A.E. Justification of rational parameters for manufacturing pump housings made of fibroconcrete. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2020, 5, 68–74. [Google Scholar] [CrossRef]
- Yoganandh, J.; Natarajan, S.; Kumaresh Babu, S. Erosive wear behavior of high-alloy cast iron and duplex stainless steel under mining conditions. J. Mater. Perform. 2015, 24, 3588–3598. [Google Scholar] [CrossRef]
- Ash, S.H.; Dierks, H.A.; Felegy, E.W.; Huston, K.M.; Kennedy, D.O.; Miller, P.S.; Rosella, J.J. Corrosive and Erosive Effects of Acid Mine Waters on Metals and Alloys for Mine Pumping Equipment and Drainage Facilities; Bulletin 555; US Bureau of Mines, Dept of the Interior: Washington, DC, USA, 1955. [Google Scholar]
- Aziz, N.I.; Craig, P.; Nemcik, J.A.; Hai, F.I. Rock bolt corrosion—An experimental study. Min. Technol. 2014, 123, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Javaherdashti, R.; Nikraz, H. On the role of deterioration of structures in their performance; with a focus on mining industry equipment and structures. Mater. Corros. 2010, 61, 885–890. [Google Scholar] [CrossRef]
- Kyaw, S.; Songmei, L.; Jianhua, L.; Mei, Y. Corrosion Behavior of 10CrNiCu Steel Influenced by Thiobacillus Ferrooxidans. Adv. Mater. Res. 2008, 233–235, 2633–2639. [Google Scholar]
- Fortes, J.C.; Dávila, J.M.; Sarmiento, A.M.; Luis, A.T.; Santisteban, M.; Díaz-Curiel, J.; Córdoba, F.; Grande, J.A. Corrosion of Metallic and Structural Elements Exposed to Acid Mine Drainage (AMD). Mine Water Environ. 2020, 39, 195–203. [Google Scholar] [CrossRef]
- Grande, J.A. Drenaje ácido de Mina en la Faja Pirítica; Universidad de Huelva: Huelva, Spain, 2016. [Google Scholar]
- Valente, T.; Grande, J.A.; de la Torre, M.L.; Santisteban, M.; Cerón, J.C. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain). Appl. Geochem. 2013, 39, 11–25. [Google Scholar] [CrossRef]
- Grande, J.; Borrego, J.; Morales, J. A study of heavy metal pollution in the Tinto-Odiel estuary in southwestern Spain using factor analysis. Environ. Geol. 2000, 39, 1095–1101. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T.; Pamplona, J.; Sequeira Braga, M.A.; Pissarra, J.; Grande, J.A.; de la Torre, M.L. Metal Uptake by Native Plants and Revegetation Potential of Mining Sulfide-Rich Waste-Dumps. Int. J. Phytoremediation 2014, 16, 1087–1103. [Google Scholar] [CrossRef]
- Valente, T.M.; Gomes, C.L. Fuzzy modelling of acid mine drainage environments using geochemical, ecological and mineralogical indicators. Environ. Geol. 2009, 57, 653. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, M.L.; Grande, J.A.; Sainz, A. Aplicación de Zeolita en Rocas Detríticas para la Reducción del Tránsito de Nutrientes Hacia Zona Saturada; Grupo de Recursos y Calidad del Agua, Universidad de Huelva: Huelva, Spain, 2000. [Google Scholar]
- Bisquerra, R. Introducción Conceptual al Análisis Multivariable; Promociones y Publicaciones Universitarias S.A.: Barcelona, Spain, 1989. [Google Scholar]
- Harman, H.H. Análisis Factorial Modern; Saltés: Madrid, Spain, 1980. [Google Scholar]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Luís, A.T.; Grande, J.A.; Dávila, J.M.; Aroba, J.; Duraes, N.; Almeida, S.F.P.; de la Torre, M.L.; Sarmiento, A.M.; Fortes, J.C.; Ferreira da Silva, E.; et al. Application of fuzzy logic tools for the biogeochemical characterisation of (un)contaminated waters from Aljustrel mining area (South Portugal). Chemosphere 2018, 211, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, D.; Jamshidnejad, A. Evolving fuzzy logic systems for creative personalized socially assistive robots. Eng. Appl. Artif. Intel. 2022, 114, 105064. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Liu, D.; Song, K.; Mohamed, M.A.A.; Aldaw, E.; Elubid, B.A. Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China. Int. J. Environ. Res. Public Health 2019, 16, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agah, A.; Soleimanpourmoghadam, N. Design and implementation of heavy metal prediction in acid mine drainage using multi-output adaptive neuro-fuzzy inference systems (ANFIS)—A case study. Int. J. Min. Geo-Eng. 2020, 54, 59–64. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Sugeno, M. A new method of choosing the number of clusters for fuzzy means method. In Proceedings of the 5th Fuzzy Systems Symposium; 1989; pp. 247–250. [Google Scholar]
- MathWorks Inc. Fuzzy Logic Toolbox Software. 2023. Available online: https://www.mathworks.com/help/fuzzy/type-2-fuzzy-inference-systems.html (accessed on 13 January 2023).
- Fortes, J.C.; Castilla-Gutierrrez, J.; Sarmiento, A.; Grande, J.A. Corrosion of Carbon Steel in Extreme Environments by Acid Mine Water: Experimental Study of the Process Using a Factorial Analysis Tool. Minerals 2022, 12, 1030. [Google Scholar] [CrossRef]
- Terrones-Saeta, J.M.; Fortes, J.C.; Luís, A.T.; Aroba, J.; Díaz-Curiel, J.; Romero, E.; Grande, J.A. Fuzzy Logic Tools Application to the Characterization of Stress–Strain Processes in Waste Construction Dam Geopolymers: A New Circular Mining. Materials 2022, 15, 8793. [Google Scholar] [CrossRef]
EC (mS/cm) | Eh (mV) | Exposure Time (days) | pH | Surface (cm2) | Temperature (Celsius) | Total Dissolved Solids (mg/L) | Volume (cm3) | Weight Loss (g) | |
---|---|---|---|---|---|---|---|---|---|
Count | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Mean | 18.7 | 258 | 112 | 2.63 | 71.1 | 18.4 | 7564 | 16.3 | 14.79 |
Coefficient of variation (%) | 63.1 | 21.2 | 56.8 | 15.6 | 2.62 | 22.7 | 56.9 | 7.30 | 73.7 |
Minimum | 5.40 | 190 | 9 | 2.05 | 66.9 | 10.5 | 2600 | 14.1 | 1.98 |
Maximum | 45.646 | 392 | 219 | 3.60 | 74.0 | 24.5 | 17100 | 17.9 | 37.0 |
Range | 40.2 | 202 | 210 | 1.55 | 7.06 | 14.0 | 290 | 3.75 | 35.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortes, J.C.; Terrones-Saeta, J.M.; Luís, A.T.; Santisteban, M.; Grande, J.A. Corrosion Effect in Carbon Steel: Process Modeling Using Fuzzy Logic Tools. Processes 2023, 11, 2104. https://doi.org/10.3390/pr11072104
Fortes JC, Terrones-Saeta JM, Luís AT, Santisteban M, Grande JA. Corrosion Effect in Carbon Steel: Process Modeling Using Fuzzy Logic Tools. Processes. 2023; 11(7):2104. https://doi.org/10.3390/pr11072104
Chicago/Turabian StyleFortes, Juan Carlos, Juan María Terrones-Saeta, Ana Teresa Luís, María Santisteban, and José Antonio Grande. 2023. "Corrosion Effect in Carbon Steel: Process Modeling Using Fuzzy Logic Tools" Processes 11, no. 7: 2104. https://doi.org/10.3390/pr11072104
APA StyleFortes, J. C., Terrones-Saeta, J. M., Luís, A. T., Santisteban, M., & Grande, J. A. (2023). Corrosion Effect in Carbon Steel: Process Modeling Using Fuzzy Logic Tools. Processes, 11(7), 2104. https://doi.org/10.3390/pr11072104