Surface Chemistry of Cherry Stone-Derived Activated Carbon Prepared by H3PO4 Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock and Activated Carbon Preparation
2.2. Characterization Techniques
3. Results and Discussion
3.1. Chemical Analyses
3.2. Surface Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Devi, R.; Kumar, V.; Kumar, S.; Bulla, M.; Jatrana, A.; Rani, R.; Mishra, A.K.; Singh, P. Recent Advancement in Biomass-Derived Activated Carbon for Waste Water Treatment, Energy Storage, and Gas Purification: A Review. J. Mater. Sci. 2023, 58, 12119–12142. [Google Scholar] [CrossRef]
- Álvarez-Gutiérrez, N.; Gil, M.V.; Rubiera, F.; Pevida, C. Kinetics of CO2 Adsorption on Cherry Stone-Based Carbons in CO2/CH4 Separations. Chem. Eng. J. 2017, 307, 249–257. [Google Scholar] [CrossRef]
- Venegas-Gómez, A.; Gómez-Corzo, M.; Macías-García, A.; Carrasco-Amador, J.P. Charcoal Obtained from Cherry Stones in Different Carbonization Atmospheres. J. Environ. Chem. Eng. 2020, 8, 103561. [Google Scholar] [CrossRef]
- Malovanyy, M.; Bordun, I.; Ableeva, I.; Krusir, H.; Sahdeeva, O. Synthesis of Activated Carbon from Plant Raw Materials by a Self-Activation Modified Method; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2021; Volume 1038, ISBN 9783035738896. [Google Scholar]
- El-Nemr, M.A.; Hassaan, M.A.; Ashour, I. Formation of Self-Nitrogen-Doping Activated Carbon from Fish/Sawdust/ZnCl2 by Hydrothermal and Pyrolysis for Toxic Chromium Adsorption from Wastewater. Sci. Rep. 2023, 13, 11556. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.R.; Lima, E.C.; Lima, D.R.; da Silva, R.S.; Thue, P.S.; Seliem, M.K.; Sher, F.; dos Reis, G.S.; Larsson, S.H. Removal of Captopril Pharmaceutical from Synthetic Pharmaceutical-Industry Wastewaters: Use of Activated Carbon Derived from Butia Catarinensis. J. Environ. Chem. Eng. 2020, 8, 104506. [Google Scholar] [CrossRef]
- Mani, D.; Elango, D.; Priyadharsan, A.; Al-Humaid, L.A.; Al-Dahmash, N.D.; Ragupathy, S.; Jayanthi, P.; Ahn, Y.-H. Groundnut Shell Chemically Treated with KOH to Prepare Inexpensive Activated Carbon: Methylene Blue Adsorption and Equilibrium Isotherm Studies. Environ. Res. 2023, 231, 116026. [Google Scholar] [CrossRef]
- Lopa, N.S.; Bhadra, B.N.; Khan, N.A.; Zhuiykov, S.; Rahman, M.M. KOH/NaOH-Activated Carbon. In Biomass-Based Supercapacitors: Design, Fabrication and Sustainability; Wiley: Hoboken, NJ, USA, 2023; pp. 161–178. ISBN 9781119866435. [Google Scholar]
- Ibrahim, M.; Souleiman, M.; Salloum, A. Methylene Blue Dye Adsorption onto Activated Carbon Developed from Calicotome Villosa via H3PO4 Activation. Biomass Convers. Biorefin. 2023, 13, 12763–12776. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Abdulhameed, A.S.; Ibrahim, S.; ALOthman, Z.A.; Wilson, L.D.; Jawad, A.H. High Surface Area Mesoporous Activated Carbon Produced from Iraqi Reed via Pyrolysis Assisted H3PO4 Activation: Box-Behnken Design for Surfactant Removal. Diam. Relat. Mater. 2023, 133, 109756. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Zhang, M. Preparation of Highly Mesoporous Wood-Derived Activated Carbon Fiber and the Mechanism of Its Porosity Development. Holzforschung 2017, 71, 363–371. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Huang, Z.; Zhang, H.H.; Lu, X.; Yan, J.; Cen, K.; Bo, Z. Pore-structure regulation and heteroatom doping of activated carbon for supercapacitors with excellent rate performance and power density. Waste Dispos. Sustain. Energy 2023, 5, 417–426. [Google Scholar] [CrossRef]
- Mehdi, E.; El, A.; Ojala, S.; Brahmi, R. Thermal treatment of H3PO4-impregnated hydrochar under controlled oxygen flows for producing materials with tunable properties and enhanced diclofenac adsorption. Sustain. Chem. Pharm. 2023, 34, 101164. [Google Scholar] [CrossRef]
- González-Domínguez, J.M.; Fernández-González, C.; Alexandre-Franco, M.; Ansón-Casaos, A.; Gómez-Serrano, V. The Influence of the Impregnation Method on Yield of Activated Carbon Produced by H3PO4 Activation. Mater. Lett. 2011, 65, 1423–1426. [Google Scholar] [CrossRef]
- González-Domínguez, J.M.; Alexandre-Franco, M.; Fernández-González, C.; Ansón-Casaos, A.; Gómez-Serrano, V. Activated Carbon from Cherry Stones by Chemical Activation: Influence of the Impregnation Method on Porous Structure. J. Wood Chem. Technol. 2017, 37, 148–162. [Google Scholar] [CrossRef]
- González-Domínguez, J.M.; Fernández-González, M.C.; Alexandre-Franco, M.; Gómez-Serrano, V. How Does Phosphoric Acid Interact with Cherry Stones? A Discussion on Overlooked Aspects of Chemical Activation. Wood Sci. Technol. 2018, 52, 1645–1669. [Google Scholar] [CrossRef]
- Anisuzzaman, S.M.; Joseph, C.G.; Daud, W.M.A.B.W.; Krishnaiah, D.; Yee, H.S. Preparation and Characterization of Activated Carbon from Typha Orientalis Leaves. Int. J. Ind. Chem. 2015, 6, 9–21. [Google Scholar] [CrossRef]
- Ruz, P.; Banerjee, S.; Das, T.; Kumar, A.; Sudarsan, V.; Patra, A.K.; Sastry, P.U. Tuning the Textural Properties and Surface Chemistry of Table Sugar Derived Activated Porous Carbons for Improved Hydrogen Storage. J. Porous Mater. 2023. [Google Scholar] [CrossRef]
- Azeez, M.O.; Tanimu, A.; Alhooshani, K.; Ganiyu, S.A. Synergistic Effect of Nitrogen and Molybdenum on Activated Carbon Matrix for Selective Adsorptive Desulfurization: Insights into Surface Chemistry Modification. Arab. J. Chem. 2022, 15, 103454. [Google Scholar] [CrossRef]
- Valdés-Rodríguez, E.M.; Mendoza-Castillo, D.I.; Reynel-Ávila, H.E.; Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A. Activated Carbon Manufacturing via Alternative Mexican Lignocellulosic Biomass and Their Application in Water Treatment: Preparation Conditions, Surface Chemistry Analysis and Heavy Metal Adsorption Properties. Chem. Eng. Res. Des. 2022, 187, 9–26. [Google Scholar] [CrossRef]
- Smith, M.; Scudiero, L.; Espinal, J.; McEwen, J.S.; Garcia-Perez, M. Improving the Deconvolution and Interpretation of XPS Spectra from Chars by Ab Initio Calculations. Carbon 2016, 110, 155–171. [Google Scholar] [CrossRef]
- Bryś, A.; Zielińska, J.; Głowacki, S.; Tulej, W.; Bryś, J. Analysis of Possibilities of Using Biomass from Cherry and Morello Cherry Stones for Energy Purposes. Proc. E3S Web Conf. 2020, 154, 01005. [Google Scholar] [CrossRef]
- Barkauskas, J.; Tautkus, S.; Kareiva, A. Residual Content of Inorganic Ions in Activated Carbons Prepared from Wood. J. Anal. Appl. Pyrolysis 2004, 71, 201–212. [Google Scholar] [CrossRef]
- Romanos, J.; Beckner, M.; Stalla, D.; Tekeei, A.; Suppes, G.; Jalisatgi, S.; Lee, M.; Hawthorne, F.; Robertson, J.D.; Firlej, L.; et al. Infrared study of boron—Carbon chemical bonds in boron-doped activated carbon. Carbon 2013, 54, 208–214. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, a practical approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Puziy, A.M.; Poddubnaya, O.I.; Martínez-Alonso, A.; Castro-Muñiz, A.; Suárez-García, F.; Tascón, J.M.D. Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 2007, 45, 1941–1950. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Orfao, J.J.M. Modification of the Surface Chemistry of Activated Carbons. Carbon 1999, 37, 1379–1389. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Socha, R.P.; Gurgul, J.; Wisniewski, M. XPS and NMR Studies of Phosphoric Acid Activated Carbons. Carbon 2008, 46, 2113–2123. [Google Scholar] [CrossRef]
- Figueiredo, J.L.; Pereira, M.F.R. The Role of Surface Chemistry in Catalysis with Carbons. Catal. Today 2010, 150, 2–7. [Google Scholar] [CrossRef]
- Puziy, A.M.; Poddubnaya, O.I.; Ziatdinov, A.M. On the Chemical Structure of Phosphorus Compounds in Phosphoric Acid-Activated Carbon. Appl. Surf. Sci. 2006, 252, 8036–8038. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Mullenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, MN, USA, 1979. [Google Scholar]
- Carriedo, G.A.; García Alonso, F.J.; González, P.A.; Menéndez, J.R. Infrared and Raman Spectra of the Phosphazene High Polymer [NP(O2C12H8)]n. J. Raman Spectrosc. 1998, 29, 327–330. [Google Scholar] [CrossRef]
- Preglo, A.R.; Namata, J.; Caculba, J.; Sanchez, G.; Joyno, C.; Pagalan, E.; Arazo, R.O. Paracetamol Removal from Aqueous Solution through Activated Carbon from Mango Seeds. Chem. Afr. 2023, 6, 699–710. [Google Scholar] [CrossRef]
Samples | Elemental Analysis (wt%) | Moisture (wt%) | Ashes (wt%) | Surface at.% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O + P | C | N | O | P | |||
Series 1 | ||||||||||
DA | 75.4 | 2.1 | 0.42 | 22.1 | 7.3 | 2.5 | 80.5 | 2.0 | 15.2 | 2.0 |
DL1A | 74.1 | 2.1 | 0.38 | 23.5 | 4.9 | 2.5 | 84.9 | 1.4 | 11.4 | 2.3 |
DL2A | 75.1 | 2.3 | 0.42 | 22.2 | 7.4 | 2.3 | 86.1 | 0.5 | 10.9 | 2.5 |
DI1A | 70.9 | 2.3 | 0.38 | 26.4 | 10.9 | 1.9 | 82.3 | 1.1 | 13.9 | 2.8 |
DL3A | 61.4 | 3.1 | 0.36 | 35.1 | 23.2 | 2.6 | 82.6 | 1.7 | 13.1 | 2.6 |
DFA | 73.4 | 2.1 | 0.33 | 24.2 | 5.5 | 1.8 | 84.5 | 1.5 | 11.9 | 2.2 |
DFWA | 86.6 | 2.5 | 0.47 | 10.4 | 2.5 | 1.9 | 87.3 | 2.3 | 10.4 | ~0 |
DRLA | 74.6 | 2.1 | 0.40 | 22.9 | 7.1 | 1.5 | 82.8 | 1.9 | 12.9 | 2.3 |
Series 2 | ||||||||||
C0A | 59.9 | 1.2 | 0.15 | 38.7 | 8.7 | 3.1 | 91.2 | ~0 | 6.7 | 2.1 |
C2A | 67.6 | 1.8 | 0.14 | 30.5 | 8.6 | 3.4 | 88.2 | ~0 | 8.8 | 2.9 |
C6A | 69.0 | 1.7 | 0.30 | 29.0 | 11.6 | 3.7 | 90.1 | ~0 | 7.6 | 2.3 |
C12A | 68.5 | 1.6 | 0.17 | 29.8 | 6.1 | 3.9 | 90.8 | ~0 | 7.0 | 2.2 |
C24A | 64.9 | 2.1 | 0.17 | 32.9 | 15.4 | 4.0 | 87.3 | ~0 | 9.8 | 2.9 |
Series 3 | ||||||||||
S200DA | 74.1 | 2.6 | 0.36 | 23.3 | 7.7 | 2.3 | 85.8 | ~0 | 11.6 | 2.6 |
S300DA | 69.9 | 2.4 | 0.46 | 27.3 | 6.6 | 3.2 | 82.7 | 1.2 | 12.4 | 2.9 |
S200CA | 54.7 | 1.2 | 0.18 | 44.0 | 5.2 | 3.6 | 85.7 | ~0 | 10.8 | 3.5 |
S300CA | 66.5 | 2.7 | 0.44 | 30.5 | 11.1 | 5.1 | 75.1 | 0.9 | 17.7 | 2.9 |
Specific Region | Contributions | |||
---|---|---|---|---|
Range of Appearance (eV) | Area Range | Assignation | ||
C1s | 284.3–284.6 | 47,000–79,000 | C-C (graphitic) | |
285.8–286.2 | 9000–27,000 | C-O | ||
286.9–287.3 | 3000–10,000 | C=O | ||
288.6–289.3 | 4000–8000 | O-C=O | ||
290.8–291.1 | 1000–6000 | π–π* | ||
O1s | 530.6–531.3 | 5000–35,000 | O=C/O=P | |
532.6–533.0 | 9000–42,000 | O-C/O-P | ||
534.7–536.4 | 500–6500 | Chemisorbed O/H2O | ||
P2p | P2p 3/2 | 132.7–133.2 | 200–3500 | PO43− and lineal polyphosphates |
P2p 1/2 | 133.7–134.5 | 0–2700 | Cyclic phosphates (metaphosphates) | |
P2p 3/2 | 137.0–137.5 | 0–500 | Phosphine oxide (O=P-R3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Domínguez, J.M.; Fernández-González, C.; Alexandre-Franco, M.; Gómez-Serrano, V. Surface Chemistry of Cherry Stone-Derived Activated Carbon Prepared by H3PO4 Activation. Processes 2024, 12, 149. https://doi.org/10.3390/pr12010149
González-Domínguez JM, Fernández-González C, Alexandre-Franco M, Gómez-Serrano V. Surface Chemistry of Cherry Stone-Derived Activated Carbon Prepared by H3PO4 Activation. Processes. 2024; 12(1):149. https://doi.org/10.3390/pr12010149
Chicago/Turabian StyleGonzález-Domínguez, Jose M., Carmen Fernández-González, María Alexandre-Franco, and Vicente Gómez-Serrano. 2024. "Surface Chemistry of Cherry Stone-Derived Activated Carbon Prepared by H3PO4 Activation" Processes 12, no. 1: 149. https://doi.org/10.3390/pr12010149
APA StyleGonzález-Domínguez, J. M., Fernández-González, C., Alexandre-Franco, M., & Gómez-Serrano, V. (2024). Surface Chemistry of Cherry Stone-Derived Activated Carbon Prepared by H3PO4 Activation. Processes, 12(1), 149. https://doi.org/10.3390/pr12010149