Rapid and High-Yield Recovery of Sodium Alginate from Undaria pinnatifida via Microwave-Assisted Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis Method of Sugars and Sodium Alginate in Undaria pinnatifida
2.3. Effects of Variables on Sodium Alginate Yield Using Microwave-Assisted Extraction
2.4. Experimental Design and Statistical Optimization
2.5. Analytical Methods
2.5.1. HPLC
2.5.2. FT-IR
3. Results and Discussion
3.1. Analysis of Components in Undaria pinnatifida
3.2. Investigation of Variables Affecting Sodium Alginate Microwave-Assisted Extraction
3.3. Optimization of Alkali Extraction Conditions for Undaria pinnatifida Using RSM
3.4. Effect of Extraction Time on Yield
3.5. FT-IR
3.6. Evaluation of the Sodium Alginate Extraction Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef]
- Rathour, R.K.; Devi, M.; Dahiya, P.; Sharma, N.; Kaushik, N.; Kumari, D.; Kumar, P.; Baadhe, R.R.; Walia, A.; Bhatt, A.K.; et al. Recent Trends, Opportunities and Challenges in Sustainable Management of Rice Straw Waste Biomass for Green Bio-refinery. Energies 2023, 16, 1429. [Google Scholar] [CrossRef]
- Hwang, E.K.; Yotsukura, N.; Pang, S.J.; Su, L.; Shan, T.F. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 2019, 58, 484–495. [Google Scholar] [CrossRef]
- Radulovich, R.; Neori, A.; Valderrama, D.; Reddy, C.R.K.; Cronin, H.; Forster, J. Farming of seaweeds. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 27–59. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. The State of World Fisheries and Aquaculture, 2006; Food and Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Choi, Y.; Lee, E.C.; Na, Y.; Lee, S.R. Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens. Asian-Australas. J. Anim. Sci. 2018, 31, 1654–1659. [Google Scholar] [CrossRef]
- Park, J.S.; Shin, S.K.; Wu, H.; Yarish, C.; Yoo, H.I.; Kim, J.K. Evaluation of nutrient bioextraction by seaweed and shellfish aquaculture in Korea. J. World Aquac. Soc. 2021, 52, 1118–1134. [Google Scholar] [CrossRef]
- Wang, L.; Park, Y.-J.; Jeon, Y.-J.; Ryu, B. Bioactivities of the edible brown seaweed, Undaria pinnatifida: A review. Aquaculture 2018, 495, 873–880. [Google Scholar] [CrossRef]
- Saji, S.; Hebden, A.; Goswami, P.; Du, C. A Brief Review on the Development of Alginate Extraction Process and Its Sustain-ability. Sustainability 2022, 14, 5181. [Google Scholar] [CrossRef]
- Kothale, D.; Verma, U.; Dewangan, N.; Jana, P.; Jain, A.; Jain, D. Alginate as promising natural polymer for pharmaceutical, food, and biomedical applications. Curr. Drug Deliv. 2020, 17, 755–775. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Butler, T.O.; Pandhal, J.; Vaidyanathan, S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef]
- Kohli, K.; Katuwal, S.; Biswas, A.; Sharma, B.K. Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresour. Technol. 2020, 303, 122897. [Google Scholar] [CrossRef]
- Mattina, M.I.; Berger, W.I.; Denson, C. Microwave-assisted extraction of taxanes from Taxus biomass. J. Agric. Food Chem. 1997, 45, 4691–4696. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, P.; Lu, C.; Li, S.; Chen, Z.; Wang, X.; Duan, D. Transcriptome sequencing of Saccharina japonica sporophytes during whole developmental periods reveals regulatory networks underlying alginate and mannitol biosynthesis. BMC Genom. 2019, 20, 975. [Google Scholar] [CrossRef] [PubMed]
- Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 2013, 19, 99–105. [Google Scholar] [CrossRef]
- Mohammed, A.; Rivers, A.; Stuckey, D.C.; Ward, K. Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology. Carbohydr. Polym. 2020, 245, 116419. [Google Scholar] [CrossRef] [PubMed]
- Fertah, M.; Belfkira, A.; Dahmane, E.M.; Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Koo, J.-G. Chemical composition and rheological properties of polysaccharides isolated from different parts of brown seaweed Undaria pinnatifida. Korean J. Fish. Aquat. Sci. 2020, 53, 665–671. [Google Scholar] [CrossRef]
- Skriptsova, A.; Khomenko, V.; Isakov, V. Seasonal changes in growth rate, morphology and alginate content in Undaria pin-natifida at the northern limit in the Sea of Japan (Russia). J. Appl. Phycol. 2004, 16, 17–21. [Google Scholar]
- Yoon, M.-O.; Lee, S.-C.; Rhim, J.-W.; Kim, J.-M. Comparison of alginic acid yields and viscosity by different extraction con-ditions from various seaweeds (Laminaria religiosa, Hizikia fusiforme, and Undaria pinnatifida). J. Korean Soc. Food Sci. Nutr. 2004, 33, 747–752. [Google Scholar] [CrossRef]
- Lee, Y.-J. A study on mineral and alginic acid contents by different parts of sea mustards (Undaria pinnatifida). J. Korean Soc. Food Cult. 2004, 19, 691–700. [Google Scholar]
- Lorbeer, A.J.; Lahnstein, J.; Bulone, V.; Nguyen, T.; Zhang, W. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresour. Technol. 2015, 197, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.; Holdt, S.L.; De Francisci, D.; Alvarado-Morales, M.; Mishra, H.N.; Angelidaki, I. Extraction of alginate from Sargassum muticum: Process optimization and study of its functional activities. J. Appl. Phycol. 2016, 28, 3625–3634. [Google Scholar] [CrossRef]
- Sugiono, S.; Masruri, M.; Estiasih, T.; Widjanarko, S.B. Optimization of extrusion-assisted extraction parameters and charac-terization of alginate from brown algae (Sargassum cristaefolium). J. Food Sci. Technol. 2019, 56, 3687–3696. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Carmona, G.; McHugh, D.J.; Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E. Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 1998, 10, 507–513. [Google Scholar] [CrossRef]
- Torres, M.; Cortizo, A.; Oberti, T.; Fernández, J. Characterization of commercial and algae (Undaria pinnatifida) extracted sodium alginate for future application in bone tissue engineering. Environ. Sci. 2016, 24, 1–13. [Google Scholar]
- Fang, S.-E.; Perera, R. Damage identification by response surface based model updating using D-optimal design. Mech. Syst. Signal Process. 2011, 25, 717–733. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Experimental Designs Using ANOVA; Thomson/Brooks/Cole: Belmont, CA, USA, 2007; Volume 724. [Google Scholar]
- Chauhan, B.; Gupta, R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 2004, 39, 2115–2122. [Google Scholar] [CrossRef]
- Mohammed, A.; Bissoon, R.; Bajnath, E.; Mohammed, K.; Lee, T.; Bissram, M.; John, N.; Jalsa, N.K.; Lee, K.Y.; Ward, K. Mul-tistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydr. Polym. 2018, 198, 109–118. [Google Scholar] [CrossRef]
- Liudvinaviciute, D.; Rutkaite, R.; Bendoraitiene, J.; Klimaviciute, R.; Dagys, L. Formation and characteristics of alginate and anthocyanin complexes. Int. J. Biol. Macromol. 2020, 164, 726–734. [Google Scholar] [CrossRef]
- Morais, S. Ultrasonic- and microwave-assisted extraction and modification of algal components. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 585–605. [Google Scholar]
- Faidi, A.; Stumbé, J.F.; Safta, F.; Sfar, S. Implementation of response surface methodology for the optimization of the extraction of sodium alginate from Padina pavonica brown algae. J. Food Meas. Charact. 2022, 16, 4457–4469. [Google Scholar] [CrossRef]
- Gomez, C.G.; Perez Lambrecht, M.V.; Lozano, J.E.; Rinaudo, M.; Villar, M.A. Influence of the extraction-purification con-ditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 2009, 44, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Borazjani, N.J.; Tabarsa, M.; You, S.; Rezaei, M. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int. J. Biol. Macromol. 2017, 101, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Florez-Fernandez, N.; Dominguez, H.; Torres, M.D. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int. J. Biol. Macromol. 2019, 124, 451–459. [Google Scholar] [CrossRef]
- Torabi, P.; Hamdami, N.; Keramat, J. Microwave-assisted extraction of sodium alginate from brown macroalgae Nizimuddinia zanardini, optimization and physicochemical properties. Sep. Sci. Technol. 2021, 57, 872–885. [Google Scholar] [CrossRef]
Factor | Units | Symbol | Low Level | High Level |
---|---|---|---|---|
Solid/liquid ratio (x1) | g/L | x1 | 10 | 30 |
Extraction temperature (x2) | °C | x2 | 50 | 100 |
Extraction solvent concentration (x3) | % (w/v) | x3 | 1 | 5 |
Algae | Monosaccharides/Polysaccharide Contents (%) | |||
---|---|---|---|---|
Glucose | XMG | Arabinose | Sodium Alginate | |
Undaria pinnatifida | 4.9 | 3.0 | - | 41.11 |
Sodium Alginate Yield (%) | |||||
---|---|---|---|---|---|
Solid/liquid ratio | 20 | 60 | 100 | ||
Extraction temperature | |||||
50 | 33.57 | 22.03 | 13.82 | ||
Extraction solvent concentration: 1% | |||||
Extraction Temperature | 50 | 70 | 90 | ||
Extraction solvent concentration | |||||
1 | 33.57 | 36.48 | 37.40 | ||
Solid/liquid ratio: 20 g/L | |||||
Extraction solvent Concentration | 1 | 5 | 10 | ||
Solid/liquid ratio | |||||
20 | 33.57 | 25.14 | 12.49 | ||
Extraction temperature: 50 °C |
Run | Extraction Parameters | Yield (%) | ||
---|---|---|---|---|
x1: Solid/Liquid Ratio (g/L) | x2: Extraction Temperature (°C) | x3: Extraction Solvent Concentration (% (w/v)) | ||
1 | 18 | 50 | 3 | 29.91 |
2 | 10 | 100 | 1 | 36.02 |
3 | 30 | 50 | 5 | 21.12 |
4 | 30 | 80 | 3 | 34.73 |
5 | 30 | 50 | 1 | 27.35 |
6 | 18 | 50 | 3 | 29.73 |
7 | 30 | 100 | 5 | 36.26 |
8 | 28 | 75 | 5 | 34.58 |
9 | 10 | 100 | 4 | 37.66 |
10 | 23 | 100 | 1 | 34.99 |
11 | 30 | 50 | 1 | 27.23 |
12 | 18 | 80 | 3 | 35.54 |
13 | 10 | 50 | 5 | 24.80 |
14 | 10 | 67 | 1 | 36.03 |
15 | 30 | 100 | 5 | 34.93 |
16 | 23 | 69 | 1 | 33.22 |
17 | 10 | 50 | 5 | 24.26 |
18 | 18 | 80 | 5 | 34.82 |
19 | 28 | 55 | 3 | 27.28 |
20 | 10 | 67 | 1 | 36.01 |
Extraction time: 5 min |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 448.90 | 9 | 49.88 | 54.29 | <0.0001 |
x1: S/L | 20.62 | 1 | 20.62 | 22.45 | 0.0008 |
x2: Temperature | 202.60 | 1 | 202.60 | 220.51 | <0.0001 |
x3: Concentration | 11.82 | 1 | 11.82 | 12.87 | 0.0050 |
x1x2 | 2.02 | 1 | 2.02 | 2.20 | 0.1690 |
x1x3 | 2.03 | 1 | 2.03 | 2.21 | 0.1677 |
x2x3 | 30.41 | 1 | 30.41 | 33.10 | 0.0002 |
x12 | 1.22 | 1 | 1.22 | 1.32 | 0.2766 |
x22 | 27.06 | 1 | 27.06 | 29.45 | 0.0003 |
x32 | 5.14 | 1 | 5.14 | 5.59 | 0.0396 |
Residual | 9.19 | 10 | 0.92 | ||
Lack of Fit | 8.13 | 5 | 1.63 | 7.68 | 0.0215 |
Pure Error | 1.06 | 5 | 0.21 | ||
Cor Total | 458.09 | 19 |
Factor | Actual Level | ||
---|---|---|---|
Solid/liquid ratio (x1) | 13.27 g/L | ||
Extraction temperature (x2) | 91.86 °C | ||
Extraction solvent concentration (x3) | 2.51% (w/v) | ||
Response | Predicted | Experimental | |
37.79% | 36.21% |
Algae | Solvent and the Others | Extraction Condition | Extraction Time | Yield | Reference |
---|---|---|---|---|---|
Sargassum | Pretreatment, 3.75% alkali, 12.63 mL/g, 80 °C | Hydrothermal extraction | 6 h | 20.76% | [17] |
Sargassum muticum | Pretreatment, 3% alkali, 86 °C, Precipitated with 93% EtOH | Hydrothermal extraction | 3 h | 13.57% | [24] |
Padina pavonica | Pretreatment, 4% alkali, 50 mL/g, 50 °C | Hydrothermal extraction | 5 h | 36.5% | [34] |
Ecklonia radiata | Pretreatment, 0.2 M alkali, 45 °C | Hydrothermal extraction | 2 h | 45% | [23] |
Macrocystis pyrifera | Pretreatment, 1 N alkali, 25 mL/g, 60 °C | Hydrothermal extraction | 2 h | 34% | [35] |
Sargassum cristaefolium | Pretreatment, pH 10.3 alkali, 31.1 g/L | Extrusion system (2.95 rpm) | 6.8 min | 34.96% | [25] |
Sargassum angustifolium | Pretreatment, 5% alcalase, pH 8, 50 °C, 3% alkali, pH 11, 65 °C | Enzyme-assisted extraction | 24 h (alcalase)/3 h (alkali) | 3.50% | [36] |
Sargassum muticum | 20 mL/g, 25 °C | Ultrasound-assisted extraction (150 W) | 30 min | 15% | [37] |
Nizimuddinia zanardini | Pretreatment, 29 mL/g, 67 °C | Microwave-assisted extraction (400 W) | 19 min | 31.39% | [38] |
Undaria pinnatifida | 2.51% alkali, 13.27 g/L, 92 °C | Microwave-assisted extraction | 15 min | 38.41% | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.-B.; Lee, K.H.; Yoo, H.Y.; Park, C.; Lim, J.-M.; Lee, J.H. Rapid and High-Yield Recovery of Sodium Alginate from Undaria pinnatifida via Microwave-Assisted Extraction. Processes 2024, 12, 208. https://doi.org/10.3390/pr12010208
Nam H-B, Lee KH, Yoo HY, Park C, Lim J-M, Lee JH. Rapid and High-Yield Recovery of Sodium Alginate from Undaria pinnatifida via Microwave-Assisted Extraction. Processes. 2024; 12(1):208. https://doi.org/10.3390/pr12010208
Chicago/Turabian StyleNam, Hyeon-Bin, Kang Hyun Lee, Hah Young Yoo, Chulhwan Park, Jong-Min Lim, and Ja Hyun Lee. 2024. "Rapid and High-Yield Recovery of Sodium Alginate from Undaria pinnatifida via Microwave-Assisted Extraction" Processes 12, no. 1: 208. https://doi.org/10.3390/pr12010208
APA StyleNam, H. -B., Lee, K. H., Yoo, H. Y., Park, C., Lim, J. -M., & Lee, J. H. (2024). Rapid and High-Yield Recovery of Sodium Alginate from Undaria pinnatifida via Microwave-Assisted Extraction. Processes, 12(1), 208. https://doi.org/10.3390/pr12010208