Supply Chain Sustainability in Outer Space: Lessons to Be Learnt from Remote Sites on Earth
Abstract
:1. Introduction
- Setting supply chains correctly with the purpose of them being neither too advanced (due to the risk of becoming too complex) nor simplistic (due to underdelivering) but “reliable” (just what is needed);
- Consider population increase and, therefore, the need for growth potential of the supply chain in question;
- Adjust life and business to supply chain, but without compromising well-being and social integrity;
- As small-community remote supply chains are intrinsically vulnerable, fast decision-making in a community manner will be useful for debottlenecking if needed (as catastrophes would impact on everyone to the same degree).
2. Methodology
3. Space Supply Chains—State of the Art
Supply Needs and Assets | Eden | SpaceNet | SMORS | MSP | SpaceX | Our Work | Main Off- Earth Site |
---|---|---|---|---|---|---|---|
NEAR-FUTURE STRATEGIC | |||||||
NUTRITION | |||||||
Food-payload | X | X | X | X | X | Space | |
Food-grown | X | X | Moon/Mars | ||||
Animals | X | Space | |||||
Fertilizers | X | X | Moon/Mars | ||||
MATERIALS | |||||||
Minerals | X | X | Moon | ||||
Metals | X | Asteroids | |||||
Construction materials | X | X | X | X | Moon | ||
Clothes (astronaut suits) | X | Space | |||||
Oxygen | X | X | Moon/Mars | ||||
Water | X | X | X | X | X | X | Moon/Mars |
TRANSPORT | |||||||
Hydrogen-fuel | X | X | X | X | Moon | ||
Methane/propellant | X | X | X | Moon/Mars | |||
Power/batteries | X | Space | |||||
Transport paths | X | X | X | Moon | |||
Vehicles | X | X | X | Moon | |||
Logistic nodes | X | X | X | Space/Moon | |||
COMMUNICATION | |||||||
Communication flow | X | X | X | Space | |||
Network and cybersecurity | X | X | Space | ||||
HEALTH | X | X | Moon/Mars | ||||
LONG-TERM STRATEGIC | |||||||
ECONOMICS | |||||||
Budgetary and schedule risk | X | Space | |||||
Trade | X | X | Moon/Asteroids | ||||
High-quality products | X | Moon | |||||
Brands/Monopoly | X | Moon | |||||
Tariff/currency | X | Moon | |||||
SOCIAL | |||||||
Jobs/labor | X | Space/Moon | |||||
Education | X | X | Moon | ||||
GOVERNANCE | |||||||
Common-pool resources and kin-related group governance | X | ||||||
Investor rights and business | X | Moon/Mars | |||||
No-take zones | X | Moon/Mars | |||||
SELF-SUFFICIENCY | |||||||
Avoid feast and famine cycle | X | Moon/Mars | |||||
Fund for self-sufficiency | X | Moon/Mars | |||||
PRODUCT QUALITY | |||||||
Safety-quality assurance | X | Moon/Mars | |||||
Good manufacturing practice | X | Moon/Mars | |||||
Product safety | X | Moon/Mars | |||||
ENVIRONMENTAL NODES | |||||||
Climate change, deforestation, and soil erosion | X | Moon/Mars | |||||
Water supply, sanitation, solid waste management | X | Space/Moon | |||||
Environmental monitoring | X | X | X | Moon/Mars | |||
PRODUCTS | |||||||
In situ manufacturing | X | Space/Moon | |||||
SPACE LAW | |||||||
International and political risks | X | Moon/Mars |
4. Learning from Remote Earth Sites for Space
4.1. Economics
4.1.1. Wealth of Economics
4.1.2. Abundant Available (Primary) Goods
Element | Low-Ti Mare Soils (%) | High-Ti Mare Soils (%) | Highland Soils (%) | KREEP Soils (%) a |
---|---|---|---|---|
O | 60.26 | 60.30 | 60.82 | 60.47 |
Si | 17.30 | 15.86 | 16.31 | 17.35 |
Al | 5.56 | 5.70 | 10.66 | 6.48 |
Mg | 5.53 | 5.70 | 3.84 | 5.39 |
Ca | 4.44 | 4.60 | 5.92 | 4.43 |
Fe | 5.85 | 5.29 | 1.90 | 4.47 |
Ti | 0.66 | 2.01 | 0.17 | 0.62 |
Na | 0.26 | 0.231 | 0.29 | 0.44 |
K | 0.06 | 0.05 | 0.05 | 0.19 |
Mn | 0.08 | 0.07 | 0.03 | 0.06 |
Oxide | VL-1 (wt %) | VL-2 (wt %) | Pathfinder (wt %) | |
---|---|---|---|---|
Alkaline | K2O | <0.15 | <0.15 | 0.3 |
Na2O | n.a. | n.a. | 2.1 | |
Cl | 0.7 | 0.5 | 0.5 | |
Alkaline Earth | CaO | 5.9 | 5.7 | 5.6 |
MgO | 6 | 6 | 7 | |
Metal | Fe2O3 | 18.5 | 17.8 | 16.5 |
TiO2 | 0.66 | 0.56 | 1.1 | |
MnO | n.a. | n.a. | n.a. | |
Non-metal | SiO2 | 43 | 43 | 44 |
Al2O3 | 7.3 | 7 | 7.5 | |
P2O5 | n.a. | n.a. | n.a. | |
SO3 | 6.6 | 8.1 | 4.9 | |
Total | 89 | 89 | 89.5 |
4.1.3. New Sources of Growth and Broadening the Revenue Base
4.1.4. Manufacture Exceptionally High-Quality Products
4.1.5. Create Brands and Protected Monopoly
4.1.6. From Reliance (Imports) to Resilience: Food and Fuel
4.1.7. Tariff and Currency
4.2. Social and Governance
4.2.1. Jobs and Labor
4.2.2. Education
4.2.3. Avoiding Feast and Famine Cycles and Supply Chain Disruptions
4.2.4. Communal Ownership, Common-Pool Resources, and Kin-Related Group Governance
4.2.5. General Fund for Self-Sufficiency
4.2.6. Investor Rights, Access to Land, and Business Registration
4.2.7. No-Take Zones to Protect Vulnerable Ecosystems
4.3. Safety, Quality Assurance & Health
4.3.1. Diseases
4.3.2. Good Manufacturing Practices
4.3.3. Product Safety and Audits
4.4. Environmental
4.4.1. Climate Change, Deforestation, and Soil Erosion
4.4.2. Water Supply, Sanitation, Solid Waste Management, and Land and Environmental Degradation
4.4.3. Steady-State Adjustment of Population and Resource Stocks
4.4.4. Environmental Monitoring
4.5. Transport/Supply Chain
4.5.1. Infrastructure Gaps and Local Transport
4.5.2. In Situ Manufacturing
4.5.3. Supply Chain Inventory
4.5.4. Supply Chain Infrastructure
4.5.5. Transport: Vehicles and Services
4.6. Supplementing Current Space Supply Chain Concepts with In-Practice Sustainability Principles from Remote Islands on Earth
5. Conclusions
- to improve inward/outward materials flow to foster economics (Figure 2);
- to develop technologies for the provision of indispensable products from abundant raw materials (Figure 3);
- to survive in environments with low contents of organic material (carbon) but rich in minerals (Moon/Mars) or rich in air/water (remote Earth sites) (Figure 4);
- to understand the local resources and circularly extract these (Figure 4);
- to produce high-quality products (Figure 5);
- to identify shortcomings of learning in small, isolated societies and to provide countermeasures to finally achieve good learning (Figure 6a);
- to use resources circularly and to adjust demand (population growth) to production and resupply (of goods) (Figure 6b);
- to facilitate effective decision-making in a small and hostile environment (Figure 7);
- to provide elemental manufacturing according to local resource opportunities and to adjust human life to it (Figure 8);
- to design local transportation based on local infrastructure needs and concepts (Figure 9a);
- to structure a supply chain with adequate frequencies from multiple nodes. Supply chains with one or a few nodes operating sporadically carry the risk of interruptions (Figure 9b);
- that better logistics will promote node and supply chain connection (Figure 10);
- to develop a holistic logistics concept based on nodes (Figure 11);
- to develop advanced life support systems (Figure 12);
- that human and goods mobility by transport is essential for the supply chain; while limited on islands in vast oceans, space settlements have better opportunities (Figure 13).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wooten, J.O.; Tang, C.S. Operations in Space: Exploring a New Industry. Decis. Sci. 2018, 49, 999–1023. [Google Scholar] [CrossRef]
- Wu, W.; Liu, W.; Qiao, D.; Jie, D. Investigation on the Development of Deep Space Exploration. Sci. China Technol. Sci. 2012, 55, 1086–1091. [Google Scholar] [CrossRef]
- Galluzzi, M.; Zapata, E.; De Weck, O.; Steele, M. Foundations of Supply Chain Management for Space Application. In Proceedings of the Space 2006, San Jose, CA, USA, 21 September 2006; p. 7234. [Google Scholar]
- Shull, S.A.; Gralla, E.L.; Silver, M.; de Weck, O. Logistics Information Systems for Human Space Exploration: State of the Art and Emerging Technologies. In Proceedings of the SpaceOps 2006 Conference, Rome, Italy, 19–23 June 2006. [Google Scholar]
- Jagannatha, B.B.; Ho, K. Event-Driven Network Model for Space Mission Optimization with High-Thrust and Low-Thrust Spacecraft. J. Spacecr. Rockets 2020, 57, 446–463. [Google Scholar] [CrossRef]
- Evans, W. Logistics and Supply chain management—A Space Operations Enabler. In Proceedings of the SpaceOps 2006 Conference, Rome, Italy, 19–23 June 2006; p. 5852. [Google Scholar]
- Grier, J.; Rivkin, A. Chapter 12—Future Exploration. In Airless Bodies of the Inner Solar System; Grier, J.A., Rivkin, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 255–273. [Google Scholar] [CrossRef]
- Cooijmans, C. Down by the River: Exploring the Logistics of Viking Encampment across Atlantic Europe. In Special Volume 1: Viking Wars 2021; Norwegian Archaeological Society: Oslo, Norway, 2021; pp. 187–206. [Google Scholar] [CrossRef]
- Dewicki, S.; Simpson, R., II; St Thomas, R.; O’Brien, A. The Emerging Role of Supply Chain Management in Commercial Space Operations. In Proceedings of the SpaceOps 2010 Conference Delivering on the Dream Hosted by NASA Marshall Space Flight Center and Organized by AIAA, Huntsville, AL, USA, 25–30 April 2010; p. 1939. [Google Scholar]
- Sanders, G.B.; Larson, W.E. Integration of In-Situ Resource Utilization into Lunar/Mars Exploration Through Field Analogs. Adv. Space Res. 2011, 47, 20–29. [Google Scholar] [CrossRef]
- Meurisse, A.; Carpenter, J. Past, Present and Future Rationale for Space Resource Utilisation. Planet. Space Sci. 2020, 182, 104853. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Near-Earth asteroid capture via using lunar flyby plus Earth aerobraking. Universe 2021, 7, 316. [Google Scholar] [CrossRef]
- McInnes, C.R. Near Earth Asteroid Resource Utilisation for Large In-Orbit Reflectors. Space Policy 2016, 37, 62–64. [Google Scholar] [CrossRef]
- NASA. NASA’s Moon to Mars Strategy and Objectives Development: A Blueprint for Sustained Human Presence and Exploration throughout the Solar System. 2023. Available online: https://www.nasa.gov/wp-content/uploads/2023/04/m2m_strategy_and_objectives_development.pdf (accessed on 23 November 2023).
- NASA. Artemis Overview. National Aeronautics and Space Administration. 2023. Available online: https://www.nasa.gov/specials/artemis/ (accessed on 14 June 2023).
- Ross, S.D. Near-Earth Asteroid Mining. Space NSS 2001. Available online: https://space.nss.org/wp-content/uploads/Near-Earth-Asteroid-Mining-Ross-2001.pdf (accessed on 12 June 2023).
- Anderson, S.W.; Christensen, K.; LaManna, J. The Development of Natural Resources in Outer Space. J. Energy Nat. Resour. Law 2019, 37, 227–258. [Google Scholar] [CrossRef]
- Spudis, P. The Moon: Port of Entry to Cislunar Space Paul. In Chapter 12, Toward a Theory of Spacepower; Lutes, C.D., Hays, P.L., Eds.; Institute for National Strategic Studies, National Defense University Press: Washington, DC, USA, 2011; pp. 241–251. [Google Scholar]
- Crawford, I.A. Lunar Resources: A Review. Prog. Phys. Geogr. Earth Environ. 2015, 39, 137–167. [Google Scholar] [CrossRef]
- Maiwald, V. Frameworks of Sustainability and Sustainable Development in a Spaceflight Context: A systematic review and critical analysis. Acta Astronaut. 2023, 204, 455–465. [Google Scholar] [CrossRef]
- Maiwald, V.; Bauerfeind, M.; Fälker, S.; Westphal, B.; Bach, C. About Feasibility of SpaceX’s Human Exploration Mars Mission Scenario with Starship. Sci. Rep. 2024, 14, 11804. [Google Scholar] [CrossRef]
- Blue Origin. New Glenn. Blue Origin. 2024. Available online: https://www.blueorigin.com/new-glenn (accessed on 24 July 2024).
- ESA. Space Debris Mitigation. European Space Agency. 2023. Available online: https://www.esa.int/Safety_Security/Space_Debris (accessed on 23 July 2024).
- GIS Geography. Map of Nauru (Formerly Pleasant Island). Available online: https://gisgeography.com/nauru-map/ (accessed on 10 August 2023).
- GIS Geography. Map of Saint Helena. Available online: https://gisgeography.com/saint-helena-map/ (accessed on 10 August 2023).
- GIS Geography. Map of Chile. Available online: https://gisgeography.com/chile-map/ (accessed on 10 August 2023).
- GIS Geography. Pitcairn Island Map. Available online: https://gisgeography.com/pitcairn-island-map/ (accessed on 10 August 2023).
- Pakandam, B. Why Easter Island Collapsed: An Answer for an Enduring Question; Department of Economic History, London School of Economics and Political Science: London, UK, 2009. [Google Scholar]
- Pitcairn Islands. In Wikipedia. 26 May 2001. Available online: https://en.wikipedia.org/wiki/Pitcairn_Islands (accessed on 11 August 2023).
- Minority Rights Group International, World Directory of Minorities and Indigenous Peoples, 2007. Pitcairn Islands, 2007. Available online: https://www.refworld.org/docid/4954ce2b23.html (accessed on 20 August 2023).
- Tristan da Cunha. In Wikipedia. 20 December 2001. Available online: https://en.wikipedia.org/wiki/Tristan_da_Cunha (accessed on 21 August 2023).
- Eichler, A.; Hadland, N.; Pickett, D.; Masaitis, D.; Handy, D.; Perez, A.; Batcheldor, D.; Wheeler, B.; Palmer, A. Challenging the Agricultural Viability of Martian Regolith Simulants. Icarus 2021, 354, 114022. [Google Scholar] [CrossRef]
- Rapp, D. Human Missions to Mars Enabling Technologies for Exploring the Red Planet, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- UNCTAD. Remoteness. Overcoming the Tyranny of Distance to Achieve Sustainable Development. Available online: https://sdgpulse.unctad.org/remoteness/ (accessed on 20 August 2023).
- Olbers, D. The Earth System. Earth 2012. Available online: https://www.fe-lexikon.info/material/texte/olbers_earth_system.pdf (accessed on 18 February 2023).
- Bignami, G.; Sommariva, A. Human Space Exploration in the “Deep Space Proving Grounds”. In The Future of Human Space Exploration; Palgrave Macmillan: London, UK, 2016; pp. 39–79. ISBN 978-1-137-52657-1. [Google Scholar] [CrossRef]
- Paravano, A.; Locatelli, G.; Trucco, P. What is value in the New Space Economy? The end-users’ perspective on satellite data and solutions. Acta Astronaut. 2023, 210, 554–563. [Google Scholar] [CrossRef]
- Dallas, J.A.; Raval, S.; Gaitan, J.A.; Saydam, S.; Dempster, A.G. Mining Beyond Earth for Sustainable Development: Will Humanity Benefit from Resource Extraction in Outer Space? Acta Astronaut. 2020, 167, 181–188. [Google Scholar] [CrossRef]
- Sacco, E.; Moon, S.K. Additive Manufacturing for Space: Status and Promises. Int. J. Adv. Manuf. Technol. 2019, 105, 4123–4146. [Google Scholar] [CrossRef]
- Linne, D.L.; Sanders, G.B.; Starr, S.O.; Eisenman, D.J.; Suzuki, N.H.; Anderson, M.S.; Araghi, K.R. Overview of NASA technology development for in-situ resource utilization (ISRU). In Proceedings of the International Astronautical Congress (No. GRC-E-DAA-TN46532), Adelaide, Australia, 25–29 September 2017. [Google Scholar]
- Heidenheimer, A.J.; Heclo, H.; Teich Adams, C. Comparative Public Policy; St. Martin’s Press: New York, NY, USA, 1983. [Google Scholar]
- Deacon, B. Social Policy and Socialism; Pluto Press: Chicago, IL, USA, 1983. [Google Scholar]
- Kane, H.; Lewis, M.A.; Williams, P.A.; Kahwati, L.C. Using Qualitative Comparative Analysis to Understand and Quantify Translation and Implementation. Transl. Behav. Med. 2014, 4, 201–208. [Google Scholar] [CrossRef]
- Eden ISS. Ground Demonstration of Plant Cultivation Technologies for Safe Food Production in Space. Available online: https://eden-iss.net/ (accessed on 10 June 2024).
- Ho, K.; De Weck, O.L.; Hoffman, J.A.; Guo, R. Dynamic Modeling and Optimization for Space Logistics using Time-Expanded Networks. Acta Astronaut. 2014, 105, 428–443. [Google Scholar] [CrossRef]
- Massachusetts Institute of Technology. Interplanetary Supply Chain Network for Space Exploration. MIT Space Logistics Project Interplanetary Supply Chain Management and Logistics Architecture. 19 March 2007. Available online: http://strategic.mit.edu/spacelogistics/ (accessed on 10 June 2024).
- Sawik, B. Space Mission Risk, Sustainability and Supply Chain: Review, Multi-Objective Optimization Model and Practical Approach. Sustainability 2023, 15, 11002. [Google Scholar] [CrossRef]
- NASA. Venus Emissivity, Radio Science, InSAR, Topography, And Spectroscopy VERITAS. Jet Propulsion Laboratory. California Institute of Technology. Available online: https://www.jpl.nasa.gov/missions/veritas (accessed on 10 June 2024).
- Blossey, G.A. Stochastic Modeling Approach for Interplanetary Supply Chain Planning. Space Sci. Technol. 2023, 3, 14. [Google Scholar] [CrossRef]
- Tang, J.; Wu, X.A. Quality Assessment Network for Failure Detection in 3D Printing for Future Space-Based Manufacturing. Sensors 2023, 23, 4689. [Google Scholar] [CrossRef]
- Burgess, A.J.; Pranggono, R.; Escribà-Gelonch, M.; Hessel, V. Biofortification for Space Farming: Maximising Nutrients Using Lettuce as a Model Plant. Future Foods 2024, 9, 100317. [Google Scholar] [CrossRef]
- Nguyen, M.T.P.; Knowling, M.; Tran, N.N.; Burgess, A.; Fisk, I.; Watt, M.; Escribà-Gelonch, M.; This, H.; Culton, J.; Hessel, V. Space Farming: Horticulture Systems on Spacecraft and Outlook to Planetary Space Exploration. Plant Physiol. Biochem 2023, 194, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Yau, A.; Landolina, M.; Snow, M.A.; Mesci, P.; Williams, B.; Hoying, J.; Duflo, D.; Wu, H.; Stoudemire, J.; Hernandez, R.; et al. In-Space Fabrication of Janus Base Nano-Matrix for Improved Assembly and Bioactivities. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kringer, M.; Titz, A.; Maier, P.; Schill, F.; Pimpi, J.; Hoffman, L.; Lafont, U.; Reiss, P.; Pietras, M. Effects of Microgravity and Reduced Atmospheric Pressure on Manufacturing Photopolymer Specimens. Acta Astronaut. 2024, 218, 314–325. [Google Scholar] [CrossRef]
- Strada, G.; Sasanelli, N. Growing the Space Economy: The Downstream Segment as a Driver. 2018. Available online: https://sasic.sa.gov.au/wp-content/uploads/2020/10/gianluca-m-strada-2018_growing-the-space-economy_the-downstream-segment-as-a-driver_sasic.pdf (accessed on 6 August 2023).
- Department for Business and Trade (UK). Pitcairn Islands. Trade and Investments Factsheet. 19 October 2023. Available online: https://assets.publishing.service.gov.uk/media/652d5285d86b1b00143a5063/pitcairn-islands-trade-and-investment-factsheet-2023-10-19.pdf (accessed on 20 August 2023).
- Duffy, H.J.; Letessier, T.B.; Koldewey, H.J.; Dawson, T.P.; Irving, R.A. Ensuring the Sustainability of Coastal Small-Scale Fisheries at Pitcairn Island (South Pacific) within a Large Scale No-Take MPA. Front. Mar. Sci. 2021, 8, 647685. [Google Scholar] [CrossRef]
- Asia Regional Integration Center. Nauru. Available online: https://aric.adb.org/nauru (accessed on 18 August 2023).
- Brander, J.A.; Taylor, M.S. The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use. Am. Econ. Rev. 1998, 88, 119–138. Available online: http://www.jstor.org/stable/116821 (accessed on 17 August 2023).
- KPMG. A Prosperous Future: Space Industry Opportunities for Australia and the United States. 2023. Available online: https://assets.kpmg.com/content/dam/kpmg/au/pdf/2023/prosperous-future-report-space.pdf (accessed on 21 August 2023).
- OECD. OECD Handbook on Measuring the Space Economy; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Aerospace America. A Not So Giant Leap: The Trillion-Dollar Space Economy. September 2023. Available online: https://aerospaceamerica.aiaa.org/departments/a-not-so-giant-leap-the-trillion-dollar-space-economy/ (accessed on 18 August 2023).
- NASA. National Aeronautics and Space Administration Economic Impact Report. October 2022. Available online: https://www.nasa.gov/wp-content/uploads/2022/10/nasa_fy21_economic_impact_report_brochure.pdf (accessed on 20 November 2023).
- Utrilla, C.M.E. Asteroid-COTS: Developing the Cislunar Economy with Private-Public Partnerships. Space Policy 2017, 39, 14–19. [Google Scholar] [CrossRef]
- Rapp, D. Lunar ISRU. In Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars; Springer Praxis Books; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Haskin, L.; Warren, P. Lunar chemistry. In Lunar Sourcebook, A User’s Guide to the Moon; Cambridge University Press: Cambridge, UK, 1991; pp. 357–474. [Google Scholar]
- Schmitt, H.H. Lunar Hydrogen and Helium Resource Development. In Proceedings of the ASCEND 2020, Online, 16–18 November 2020; p. 4001. [Google Scholar]
- Sun, T. Hydrogen Ice within Lunar Polar Craters. Int. J. Hydrogen Energy 2022, 47, 34825–34830. [Google Scholar] [CrossRef]
- Baasch, J.; Windisch, L.; Koch, F.; Linke, S.; Stoll, E.; Schilde, C. Regolith as Substitute Mold Material for Aluminum Casting on the Moon. Acta Astronaut. 2021, 182, 1–12. [Google Scholar] [CrossRef]
- Just, G.H. Investigation and Development of Regolith Excavation and Handling Mechanisms for Lunar In-Situ Resource Utilisation; The University of Manchester: Manchester, UK, 2021. [Google Scholar]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. The Lunar Regolith. In Lunar Sourcebook: A User’s Guide to the Moon; Cambridge University Press: Cambridge, UK, 1991; Volume 567, pp. 285–356. [Google Scholar]
- Sarantos, M.; Killen, R.M.; Glenar, D.A.; Benna, M.; Stubbs, T.J. Metallic Species, Oxygen and Silicon in the Lunar Exosphere: Upper Limits and Prospects for LADEE Measurements. J. Geophys. Res. Space Phys. 2012, 117, A0310. [Google Scholar] [CrossRef]
- Papike, J.J.; Simon, S.B.; Laul, J.C. The Lunar Regolith: Chemistry, Mineralogy, and Petrology. Rev. Geophys. 1982, 20, 761–826. [Google Scholar] [CrossRef]
- Wurz, P.U.; Rohner, J.A.; Whitby, C.; Kolb, H.; Lammer, H.; Dobnikar, P.; Martín-Fernández, J.A. The Lunar Exosphere: The Sputtering Contribution. Icarus 2007, 191, 486–496. [Google Scholar] [CrossRef]
- McFadden, L.A.; Johnson, T.; Weissman, P. (Eds.) Encyclopedia of the Solar System; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Schlüter, L.; Cowley, A. Review of Techniques for In-Situ Oxygen Extraction on the Moon. Planet. Space Sci. 2020, 181, 104753. [Google Scholar] [CrossRef]
- Reiss, P.; Grill, L.; Barber, S.J. Thermal Extraction of Volatiles from the Lunar Regolith Simulant NU-LHT-2M: Preparations for In-Situ Analyses on the Moon. Planet. Space Sci. 2019, 175, 41–51. [Google Scholar] [CrossRef]
- Brisset, J.; Miletich, T.; Metzger, P. Thermal Extraction of Water Ice from the Lunar Surface—A 3D Numerical Model. Planet. Space Sci. 2020, 193, 105082. [Google Scholar] [CrossRef]
- Barkó, G.; Kalácska, G.; Keresztes, R.; Zsidai, L.; Shegawu, H.; Kalácska, Á. Abrasion Evaluation of Moon and Mars Simulants on Rotating Shaft/Sealing Materials: Simulants and Structural Materials Review and Selection. Lubricants 2023, 11, 334. [Google Scholar] [CrossRef]
- McKenna, S.A.; Butler, D.J.; Wheatley, A. Rapid Biodiversity Assessment of Republic of Nauru; SPREP: Apia, Samoa, 2015. [Google Scholar]
- Academic Accelerator. Pitcairn Islands. Available online: https://academic-accelerator.com/encyclopedia/pitcairn-islands (accessed on 15 August 2023).
- Tristan da Cunha Fishing. Background to Tristan da Cunha’s Fishing Industry. Available online: https://www.tristandc.com/economyfishing.php (accessed on 14 August 2023).
- International Monetary Fund. Asia and Pacific Dept, 7 February 2022. Republic of Nauru: 2021 Article IV Consultation-Press Release; Staff Report; and Statement by the Executive Director for the Republic of Nauru. Available online: https://www.elibrary.imf.org/view/journals/002/2022/028/article-A001-en.xml#A001app04 (accessed on 14 August 2023).
- Ricci, L.A. A Ricardian Model of New Trade and Location Theory. J. Econ. Integr. 1997, 12, 47–61. [Google Scholar] [CrossRef]
- Anderson, S.L.; Sansom, E.K.; Shober, P.M.; Hartig, B.A.; Devillepoix, H.A.; Towner, M.C. The Proposed Silicate-Sulfuric Acid Process: Mineral Processing for In Situ Resource Utilization (ISRU). Acta Astronaut. 2021, 188, 57–63. [Google Scholar] [CrossRef]
- Harrell, M.J.; Schroeder, G.S.; Daire, S.A. Lunar Environment, Overview. In Handbook of Life Support Systems for Spacecraft and Extraterrestrial Habitats; Springer: Cham, Switzerland, 2021; pp. 1–23. [Google Scholar]
- Ellery, A. Sustainable In-Situ Resource Utilization on the Moon. Planet. Space Sci. 2020, 184, 104870. [Google Scholar] [CrossRef]
- Jayathilake, B.A.C.S.; Ilankoon, I.M.S.K.; Dushyantha, M.N.P. Assessment of Significant Geotechnical Parameters for Lunar Regolith Excavations. Acta Astronaut. 2022, 196, 107–122. [Google Scholar] [CrossRef]
- Peslier, A.H.; De Sanctis, M.C. Water in Differentiated Planets, the Moon, and Asteroids. Elem. Int. Mag. Mineral. Geochem. Petrol. 2022, 18, 167–182. [Google Scholar] [CrossRef]
- Kuhn, L.; Schingler, J.K.; Hubbard, K.M. Res Lunae: Characterizing Diverse Lunar Resource Systems Using the Social-Ecological System Framework. New Space 2022, 102, 155–165. [Google Scholar] [CrossRef]
- Spudis, P.; Lavoie, A. Using the Resources of the Moon to Create a Permanent, Cislunar Space Fairing System. In Proceedings of the AIAA Space 2011 Conference & Exposition 2011, Long Beach, CA, USA, 27–29 September 2011; p. 7185. [Google Scholar]
- Kasiviswanathan, P.; Swanner, E.D.; Halverson, L.J.; Vijayapalani, P. Farming on Mars: Treatment of Basaltic Regolith Soil and Briny Water Simulants Sustains Plant Growth. PLoS ONE 2022, 17, e0272209. [Google Scholar] [CrossRef] [PubMed]
- Seiferlin, K.; Ehrenfreund, P.; Garry, J.; Gunderson, K.; Hütter, E.; Kargl, G.; Merrison, J.P. Simulating Martian Regolith in the Laboratory. Planet. Space Sci. 2008, 56, 2009–2025. [Google Scholar] [CrossRef]
- Steele, L.J.; Balme, M.R.; Lewis, S.R. Regolith-Atmosphere Exchange of Water in Mars’ Recent Past. Icarus 2017, 284, 233–248. [Google Scholar] [CrossRef]
- Davila, A.F.; Willson, D.; Coates, J.D.; McKay, C.P. Perchlorate on Mars: A Chemical Hazard and a Resource for Humans. Int. J. Astrobiol. 2013, 12, 321–325. [Google Scholar] [CrossRef]
- Nababan, D.C.; Shaw, M.G.; Humbert, M.S.; Mukhlis, R.Z.; Rhamdhani, M.A. Metals Extraction on Mars through Carbothermic Reduction. Acta Astronaut. 2022, 198, 564–576. [Google Scholar] [CrossRef]
- PyramidGames. Water Extraction on Mars. 23 April 2020. Available online: https://www.moddb.com/news/water-extraction-on-Mars (accessed on 14 August 2023).
- Liu, J.; Li, H.; Sun, L.; Guo, Z.; Harvey, J.; Tang, Q.; Lu, H.; Jia, M. In-Situ Resources for Infrastructure Construction on Mars: A Review. Int. J. Transp. Sci. Technol. 2022, 11, 1–16. [Google Scholar] [CrossRef]
- Coffey, J.; What is the Atmosphere Like on Mars?—Universe Today. 19 December 2008. Available online: https://www.universetoday.com/22587/atmosphere-of-Mars/ (accessed on 18 August 2023).
- Koren, M.; Just Like That, We’re Making Oxygen on Mars—The Atlantic. 13 September 2022. Available online: https://www.theatlantic.com/science/archive/2022/09/Mars-life-moxie-experiment-oxygen-perseverance-rover/671391/ (accessed on 18 August 2023).
- Santomartino, R.; Zea, L.; Cockell, C.S. The Smallest Space Miners: Principles of Space Biomining. Extremophiles 2022, 26, 7. [Google Scholar] [CrossRef]
- Volger, R.; Pettersson, G.M.; Brouns, S.J.; Rothschild, L.J.; Cowley, A.; Lehner, B.A. Mining Moon & Mars with Microbes: Biological Approaches to Extract Iron from Lunar and Martian Regolith. Planet. Space Sci. 2020, 184, 104850. [Google Scholar]
- Mari, N.; Groemer, G.; Sejkora, N. Potential Futures in Human Habitation of Martian Lava Tubes. In Mars: A Volcanic World; Springer: Berlin/Heidelberg, Germany, 2021; pp. 279–307. [Google Scholar]
- Guerrero-Gonzalez, F.J.; Zabel, P. System Analysis of an ISRU Production Plant: Extraction of Metals and Oxygen from Lunar Regolith. Acta Astronaut. 2023, 203, 187–201. [Google Scholar] [CrossRef]
- Song, H.; Zhang, J.; Sun, Y.; Li, Y.; Zhang, X.; Ma, K.J. Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite. Minerals 2021, 11, 319. [Google Scholar] [CrossRef]
- Space Moss. Can Moss Grow on Martian Soil? Available online: https://2015.igem.org/Team:UNIK_Copenhagen/Soil (accessed on 14 August 2023).
- Colvin, T.J.; Crane, K.; Lindbergh, R.; Lal, B. Demand Drivers of the Lunar and Cislunar Economy; IDA Document D-13219; IDS Science & Technology Policy Institute: Washington, DC, USA, 2020. [Google Scholar]
- European Space Agency. Lunar Economy Applications. Available online: https://business.esa.int/funding/intended-tender/lunar-economy-applications (accessed on 14 August 2023).
- Clinton, R.G. Don’t Take It–Make It on the Moon: Manufacturing, Construction, and Outfitting on the Lunar Surface. In Additive World: Excellence in Space Seminar. 20 April 2022. Available online: https://ntrs.nasa.gov/api/citations/20220005590/downloads/UK_ADDITIVE%20WORLD_4.20.2022%20%20FINAL.pdf (accessed on 3 June 2023).
- Crowley, J. World’s Most Remote Inhabited Archipelago Becomes Model of Sustainability. Marine Stewardship Council. 17 December 2020. Available online: https://www.msc.org/media-centre/news-opinion/news/2020/12/18/tristan-da-cunha-lobster-remote-model-sustainable-fishing (accessed on 10 August 2023).
- Tristan da Cunha Fishing. Tristan’s Marine Stewardship Council Award. Available online: https://www.tristandc.com/newsfishingmsc.php (accessed on 18 August 2023).
- Economy of Nauru. 25 May 2001. In Wikipedia. Available online: https://en.wikipedia.org/wiki/Economy_of_Nauru (accessed on 18 August 2023).
- PWC. Lunar Market Assessment: Market Trends and Challenges in the Development of a Lunar Economy. 2021. Available online: https://www.pwc.com.au/industry/space-industry/lunar-market-assessment-2021.pdf (accessed on 16 February 2023).
- Rhimbassen, M. An Introduction to Space Antitrust. Open Lunar Foundation. 6 June 2021. Available online: https://www.openlunar.org/library/an-introduction-to-space-antitrust (accessed on 15 August 2023).
- Mahieu, F. Which Economic Value is in the Lunar Economy? Professional Master Thesis in the Program Advanced Master in Technology Innovation Management. 2022. Available online: https://chaire-sirius.eu/documents/c00127-mahieu---2022---which-economic-value-is-in-the-lunar-economy.pdf (accessed on 15 August 2023).
- Zhao, L.; Chen, S. Lunar Permanently Shaded Areas. In Encyclopedia of Lunar Science; Cudnik, B., Ed.; Springer: Cham, Switzerland, 2020; Available online: https://link.springer.com/referenceworkentry/10.1007/978-3-319-05546-6_53-1 (accessed on 12 June 2023).
- Kleinhenz, J.E.; Paz, A. Case Studies for Lunar ISRU Systems Utilizing Polar Water. In Proceedings of the ASCEND 2020, Online, 16–18 November 2020; p. 4042. [Google Scholar]
- Linne, D.L.; Schuler, J.M.; Sibille, L.; Kleinhenz, J.E.; Colozza, A.J.; Fincannon, H.; Moore, L. Lunar Production System for Extracting Oxygen from Regolith. J. Aerosp. Eng. 2021, 34, 04021043. [Google Scholar] [CrossRef]
- Barnatt, C. Helium-3 Power Generation. A Guide to the Future by Cristopher Barnatt. Available online: https://www.explainingthefuture.com/helium3.html (accessed on 15 February 2023).
- Sanchez, J.P.; McInnes, C.R. Assessment on the Feasibility of Future Shepherding of Asteroid Resources. Acta Astronaut. 2012, 73, 49–66. [Google Scholar] [CrossRef]
- Nallapu, R.T.; Thoesen, A.; Garvie, L.; Asphaug, L.L.; Thangavelautham, J. Optimized Bucket Wheel Design for Asteroid Excavation. arXiv 2017, arXiv:1701.07547. [Google Scholar]
- Starr, S.O.; Muscatello, A.C. Mars In Situ Resource Utilization: A Review. Planet. Space Sci. 2020, 182, 104824. [Google Scholar] [CrossRef]
- Lotto, M.A.; Klaus, D.M.; Hynek, B.M. Operational Conditions and In Situ Resources for Mars Surface Exploration. New Space 2018, 6, 320–334. [Google Scholar] [CrossRef]
- Chen, H.; du Jonchay, T.S.; Hou, L.; Ho, K. Integrated In-Situ Resource Utilization System Design and Logistics for Mars Exploration. Acta Astronaut. 2020, 170, 80–92. [Google Scholar] [CrossRef]
- Hinterman, E.; Carroll, K.; Nikicio, A.; de Weck, O.; Hoffman, J. Multi-Objective System Optimization of a Mars Atmospheric ISRU Plant for Oxygen Production. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–12. [Google Scholar]
- Finn, J.E.; Sridhar, K.R. Mining the Mars Atmosphere. In Proceedings of the In Situ Resource Utilization (ISRU) Technical Interchange Meeting, Houston, TX, USA, 4–5 February 1997; Volume 7. [Google Scholar]
- Hoffman, J.A.; Hecht, M.H.; Rapp, D.; Hartvigsen, J.J.; SooHoo, J.G.; Aboobaker, A.M.; Eisenman, D.J. Mars Oxygen ISRU Experiment (MOXIE)—Preparing for human Mars exploration. Sci. Adv. 2022, 8, eabp8636. [Google Scholar] [CrossRef]
- Vakkada, R.A.; Zorzano, M.P.; Martín, T.J. Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars. Sensors 2021, 21, 7421. [Google Scholar] [CrossRef]
- van Susante, P.J.; Zacny, K.; Johnson, G.; Zerbel, S.M. Melting Ice under Martian and Other Environmental Conditions for ISRU. In Proceedings of the ASCEND 2021, Online, 15–17 November 2021; p. 4036. [Google Scholar]
- International Space Exploration Coordination Group. In-Situ Resource Utilization Gap. Assessment Report. 2021. Available online: https://www.globalspaceexploration.org/wordpress/wp-content/uploads/2021/04/ISECG-ISRU-Technology-Gap-Assessment-Report-Apr-2021.pdf (accessed on 14 February 2023).
- Sowers, G.F.; Dreyer, C.B. Ice Mining in Lunar Permanently Shadowed Regions. New Space 2019, 7, 235–244. [Google Scholar] [CrossRef]
- Purrington, C.; Sowers, G.; Dreyer, C. Thermal Mining of volatiles in lunar regolith simulant. Planet. Space Sci. 2022, 222, 105550. [Google Scholar] [CrossRef]
- Dreyer, C.B. Mining Lunar Polar Ice for LO2/LH2 Propellant. In Proceedings of the ASCEND 2021, Online, 15–17 November 2021; p. 4235. [Google Scholar]
- Imagina Rapa Nui Easter Island. Easter Island Money and Prices. Available online: https://imaginarapanui.com/en/easter-island-money/#google_vignette (accessed on 17 January 2024).
- TristanDaCunha.org. Economy of Tristan da Cunha. Available online: https://www.tristandacunha.org/economy-of-tristan-da-cunha/ (accessed on 11 August 2023).
- Brandt, G.; Merico, A. The Slow Demise of Easter Island: Insights from a Modeling Investigation. Front. Ecol. Evol. 2015, 3, 13. [Google Scholar] [CrossRef]
- UNESCO. Global Education Monitoring Report. Nauru. Inclusion. Available online: https://education-profiles.org/oceania/nauru/~inclusion (accessed on 11 August 2023).
- Abiodu, A.A. Space Education. Adv. Space Res. 1997, 20, 1341–1349. [Google Scholar] [CrossRef]
- Haubold, H.J.; Mathai, A.M.; Pyenson, L. Space Science and Technology Education, Teaching, Research. Space Policy 2020, 53, 101384. [Google Scholar] [CrossRef]
- Lima, M.; Gayo, E.M.; Latorre, C.; Santoro, C.M.; Estay, S.A.; Cañellas-Boltà, N.; Margalef, O.; Giralt, S.; Sáez, A.; Pla-Rabes, S.; et al. Ecology of the Collapse of Rapa Nui society. Proc. R. Soc. B 2020, 287, 20200662. [Google Scholar] [CrossRef]
- De la Croix, D.; Dottori, D. Easter Island’s Collapse: A Tale of a Population Race. J. Econ. Growth 2008, 13, 27–55. [Google Scholar] [CrossRef]
- Malthus, T.R. An Essay on the Theory of Population; Oxford University Press: Oxford, UK, 1998; p. 179. [Google Scholar]
- Ricardo, D. Principles of Political Economy and Taxation; Reprinted; Dent: London, UK, 1817. [Google Scholar]
- Scott, G. The Economic Theory of a Common-Property Resource: The Fishery. J. Political Econ. 1954, 62, 124–142. [Google Scholar]
- Schaefer, M.B. Some Considerations of Population Dynamics and Economics in Relation to the Management of Marine Fisheries. J. Fish. Res. Board Can. 1957, 14, 669–681. [Google Scholar] [CrossRef]
- Clark, C.W. Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd ed.; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Brander, J.; Scott, T. International Trade and Open Access Renewable Resources: The Small Open Economy Case. Can. J. Econom. 1977, 30, 526–552. [Google Scholar] [CrossRef]
- Scott, A.D.; Southey, C. The Problem of Achieving Efficient Regulation of a Fishery. In The Economics of Fishery Management: A Symposium; Scott, A.D., Ed.; Institute of Animal Resource Ecology, University of British Columbia: Vancouver, BC, Canada, 1969; pp. 47–59. [Google Scholar]
- Weiss, H.; Courty, M.A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The Genesis and Collapse of Third Millennium North Mesopotamian Civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, A. How the Akkadian Empire Was Hung Out to Dry. Science 1993, 261, 985. [Google Scholar] [CrossRef] [PubMed]
- Tainter, J. The Collapse of Complex Societies; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Adams, R.M. Heartland of Cities: Surveys of Ancient Settlement and Land Use on the Central Floodplain of the Euphrates; University of Chicago Press: Chicago, IL, USA, 1981. [Google Scholar]
- Zhang, Y.; Fan, J.; Wang, S. Assessment of Ecological Carrying Capacity and Ecological Security in China’s Typical Eco-Engineering Areas. Sustainability 2020, 12, 3923. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Chiclana, F.; Yu, S. Consensus Efficiency in Group Decision Making: A Comprehensive Comparative study and its Optimal Design. Eur. J. Oper. Res. 2019, 275, 580–598. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Earl, P.E.; Potts, J. A Nobel Prize for Governance and Institutions: Oliver Williamson and Elinor Ostrom. Rev. Political Econ. 2011, 23, 1–24. [Google Scholar] [CrossRef]
- Wilson, D.S.; Ostrom, E.; Cox, M.E. Generalizing the Core Design Principles for the Efficacy of Groups. J. Econ. Behav. Organ. 2013, 90, S21–S32. [Google Scholar] [CrossRef]
- DiNapoli, R.J.; Lipo, C.P.; Hunt, T.L. Triumph of the commons: Sustainable community practices on Rapa Nui (Easter Island). Sustainability 2021, 13, 12118. [Google Scholar] [CrossRef]
- Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies. 1967. Available online: https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html (accessed on 12 June 2023).
- de Zwart, M. The Impact of the Artemis Accords on Resource Extraction. In In-Space Manufacturing and Resources: Earth and Planetary Exploration Applications; Wiley: Hoboken, NJ, USA, 2022; pp. 351–368. [Google Scholar]
- Osburg, J.; Lee, M. Governance in Space: Mining the Moon and Beyond. The Rand Blog. Rand Corporation. 18 November 2022. Available online: https://www.rand.org/pubs/commentary/2022/11/governance-in-space-mining-the-moon-and-beyond.html (accessed on 6 August 2023).
- Salas, E.; Tannenbaum, S.I.; Kozlowski, S.W.; Miller, C.A.; Mathieu, J.E.; Vessey, W.B. Teams in Space Exploration: A new Frontier for the Science of Team Effectiveness. Curr. Dir. Psychol. Sci. 2015, 24, 200–207. [Google Scholar] [CrossRef]
- Sanders, G.B. Advancing In Situ resource utilization capabilities to achieve a new paradigm in space exploration. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 17–19 September 2018; p. 5124. [Google Scholar]
- Ho, K. Dynamic Network Modeling for Spaceflight Logistics with Time-Expanded Networks. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. [Google Scholar]
- Amoamo, M. The Mitigation of Vulnerability: Mutiny, Resilience, and Reconstitution. A Case study of Pitcairn Island. Shima Int. J. Res. Into Isl. Cult. 2011, 5, 69–93. [Google Scholar]
- Brander, J.A. Sustainability: Malthus Revisited? Can. J. Econ./Rev. Can. D’économique 2007, 40, 1–38. [Google Scholar]
- Tristan da Cunha MS Oliva Shipwreck. News of MS Oliva’s Impact on Tristan’s Fishing Industry. 30 March 2011. Available online: https://www.tristandc.com/newsmsolivafishing.php#:~:text=The%20Tristan%20da%20Cunha%20fishing,the%20factory%2C%20fishing%20and%20processing (accessed on 15 August 2023).
- RSPB. News, Features and Updates. Available online: https://www.rspb.org.uk/whats-happening/news (accessed on 16 August 2023).
- Pitcairn islands Philatelic Bureau. Pitcairn Island Honey Bees. Available online: http://www.stamps.gov.pn/honeyBees.html?i=1 (accessed on 12 August 2023).
- Anderton, R.; Posselt, B.; Komorowski, M.; Hodkinson, P. Medical Considerations for a Return to the Moon. Occup. Med. 2019, 69, 311–313. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. Health Nutrition and Population Statistics. Available online: https://databank.worldbank.org/source/health-nutrition-and-population-statistics/Series/SH.MED.PHYS.ZS (accessed on 11 August 2023).
- Houser, K.; Space Manufacturing Startup Plans to Build First Off-World Factory. 5 August 2021. Available online: https://www.freethink.com/space/space-manufacturing. (accessed on 11 August 2023).
- Law Insider. Good Mining Practice Definition. Available online: https://www.lawinsider.com/dictionary/good-mining-practice#:~:text=Good%20Mining%20Practice%20means%2C%20in,or%20approved%20by%20a%20person (accessed on 13 August 2023).
- Mining Technology. Quality Control, Testing, and Analysis for the Mining Industry. Available online: https://www.mining-technology.com/buyers-guide/quality-control-testing-analysis/ (accessed on 15 August 2023).
- UK Government. The Pitcairn Islands Marine Protected Area Management Plan 2021 to 2026. October 2021. Available online: http://www.pitcairn.pn/3783%20Pitcairn%20MPAMP_WEB.pdf (accessed on 11 August 2023).
- Setlow, R.B. The Hazards of Space Travel: Before sending out astronauts on an interplanetary mission, we need to investigate how the conditions in space affect human health. The International Space Station is therefore of huge importance to ensure the health of a spaceship crew travelling to other planets. EMBO Rep. 2003, 4, 1013–1016. [Google Scholar]
- Asian Development Bank. Asian Development Bank Member Fact Sheet Nauru. Available online: https://www.adb.org/sites/default/files/publication/27748/nau-2023.pdf (accessed on 6 August 2023).
- Liu, Y.; Shen, T.; Lv, X.; Zhang, G.; Wang, C.; Gu, J.; Zhang, X.; Wang, Q.; Chen, X.; Quan, X.; et al. Investigation on a Lunar Energy Storage and Conversion System Based on the In-Situ Resources Utilization. Energy 2023, 268, 126681. [Google Scholar] [CrossRef]
- Iberdrola. Energy Storage: The Key to a Decarbonised Future. Available online: https://www.iberdrola.com/sustainability/efficient-energy-storage (accessed on 13 August 2023).
- Capper, D. What Should We Do with Our Moon? Ethics and Policy for Establishing International Multiuse Lunar Land Reserves. Space Policy 2022, 59, 101462. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, J.; Cui, N. Space Logistics Development and Future Trend. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 11–12 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2399–2403. [Google Scholar]
- Grogan, P.; Yue, H.; De Weck, O. Space Logistics Modeling and Simulation Analysis using SpaceNet: Four Application Cases. In Proceedings of the AIAA Space 2011 Conference & Exposition 2011, Long Beach, CA, USA, 27–29 September 2011; p. 7346. [Google Scholar]
- Tomek, D.; Arney, D.; Mulvaney, J.; Williams, C.; McGuire, J.; Roberts, B.; Stockdale, C. The Space Superhighway: Space Infrastructure for the 21st Century. In Proceedings of the 73rd International Astronautical Congress (IAC 2022), Paris, France, 18–22 September 2022. No. IAC-22-D3. 1.2. x73702. [Google Scholar]
- Hessel, V.; Escribà-Gelonch, M.; Sojitra, M.K.; Pranggono, R.; Kinasz, D.; Zhuang, C.; Davey, K.; McLaughlin, M.; Tran, N.N. Circular Bioprocess for Phosphorus Nutrient Recovery to Grow Lettuce in Lunar Space. Green Chem. 2023, 25, 755–770. [Google Scholar] [CrossRef]
- Pitcairn Islands Tourism. Pitcairn Islands Marine Reserve. Available online: https://www.visitpitcairn.pn/pitcairn-islands-marine-reserve (accessed on 12 August 2023).
- Schrunk, D.; Sharpe, B.; Cooper, B.L.; Thangavelu, M. The Moon: Resources, Future Development and Settlement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Scouting and Guiding in the Pitcairn Islands. 17 October 2016. In Wikipedia. Available online: https://en.wikipedia.org/wiki/Scouting_and_Guiding_in_the_Pitcairn_Islands#:~:text=Pitcairn%20Island%20does%20not%20have,the%20unique%20Pitcairn%20Island%20wheelbarrow (accessed on 12 August 2023).
- Ishimatsu, T.; de Weck, O.L.; Hoffman, J.A.; Ohkami, Y.; Shishko, R. Generalized Multicommodity Network Flow Model for the Earth–Moon–Mars Logistics System. J. Spacecr. Rockets 2016, 53, 25–38. [Google Scholar] [CrossRef]
- Chen, H.; Ho, K.; Gardner, B.; Grogan, P. Built-in Flexibility for Space Logistics Mission Planning and Spacecraft Design. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition 2017, Orlando, FL, USA, 12–14 September 2017; p. 5348. [Google Scholar]
- Ishimatsu, T.; De Weck, O.; Hoffman, J.; Ohkami, Y. A Proposal for Graph-Theoretic Modeling Approach to Resource-Economy in Spaceflight Campaign Logistics. In Proceedings of the AIAA SPACE 2011 Conference & Exposition 2011, Long Beach, CA, USA, 27–29 September 2011; p. 7347. [Google Scholar]
- Fayez, M.; Cope, D.; Kaylani, A.; Callinan, M.; Zapata, E.; Mollaghasemi, M. Earth to Orbit Logistics and Supply Chain Modeling and Simulation for NASA Exploration Systems. In Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006; pp. 1462–1469. [Google Scholar]
- Owens, A.; De Weck, O. Systems Analysis of In-Space Manufacturing Applications for the International Space Station and the Evolvable Mars Campaign. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September 2016; p. 5394. [Google Scholar]
- Panagiotarakou, E. Agonal Conflict and Space Exploration. In The Ethics of Space Exploration. Space and Society; Schwartz, J., Milligan, T., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Garzaniti, N.; Tekic, Z.; Kukolj, D.; Golkar, A. Review of Technology Trends in New Space Missions Using a Patent Analytics Approach. Prog. Aerosp. Sci. 2021, 125, 100727. [Google Scholar] [CrossRef]
- Shull, S.A. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- Chen, H.; Ho, K. Integrated superhighway mission planning and spacecraft design with mixed-integer nonlinear programming. J. Spacecr. Rocket. 2018, 55, 365–381. [Google Scholar] [CrossRef]
- Baraniecka, A. Space Logistics-Current Status and Perspectives. Transp. Econ. Logist. 2019, 82, 67–78. [Google Scholar] [CrossRef]
- Chen, H. Interdisciplinary Space Logistics Optimization Framework for Large-Scale Space Exploration. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2021. [Google Scholar]
- Jagannatha, B.B.; Ho, K. Optimization of In-Space Supply Chain Design Using High-Thrust and Low-Thrust Propulsion Technologies. J. Spacecr. Rocket. 2018, 55, 648–659. [Google Scholar] [CrossRef]
- Kleinhenz, J.; Sanders, G. Lunar In-Situ Resource Utilization Concept to Reality. In Proceedings of the Pre-Conference Short Course: Engineering and Construction on the Moon, ASCE Earth and Space Conference, Virtual, 19 April 2021. [Google Scholar]
- Green, R.D.; Kleinhenz, J.E. In-Situ Resource Utilization (ISRU) Living off the Land on the Moon and Mars. In Proceedings of the American Chemical Society National Meeting & Exposition, Orlando, FL, USA, 31 March–4 April 2019. No. GRC-E-DAA-TN67217. [Google Scholar]
- Metzger, P.T. Space Development and Space Science Together, an Historic Opportunity. Space Policy 2016, 37, 77–91. [Google Scholar] [CrossRef]
- Arney, D.C.; Jones, C.A.; Klovstad, J.; Komar, D.R.; Earle, K.; Moses, R.; Bushnell, D.; Shyface, H. Sustaining Human Presence on Mars Using ISRU and a Reusable Lander. In Proceedings of the AIAA Space 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; p. 4479. [Google Scholar]
- Spohn, T.; Sohl, F.; Breuer, D. Mars. Astron. Astrophys. Rev. 1998, 8, 181–235. [Google Scholar] [CrossRef]
- Crawford, I.A.; Joy, K.H.; Anand, M. Lunar Exploration. In Encyclopedia of the Solar System; Elsevier: Amsterdam, The Netherlands, 2014; pp. 555–579. [Google Scholar]
- Rapp, D. The value of ISRU. In Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–29. [Google Scholar]
- Pelech, T.; Yao, L.; Saydam, S. Planning Lunar In-Situ Resource Utilisation with a Reinforcement Learning Agent. Acta Astronaut. 2022, 201, 401–419. [Google Scholar] [CrossRef]
- Gralla, E.; Shull, S.; de Weck, O. A Modeling Framework for Interplanetary Supply Chains. In Proceedings of the Space 2006, San Jose, CA, USA, 21 September 2006; p. 7229. [Google Scholar]
- Mueller, R.P.; Sibille, L.; Mantovani, J.; Sanders, G.B.; Jones, C.A. Opportunities and Strategies for Testing and Infusion of ISRU in the Evolvable Mars Campaign. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Dallas TX, USA, 22–26 June 2015; p. 4459. [Google Scholar]
- Carpenter, J.; Fisackerly, R.; Houdou, B. Establishing Lunar Resource Viability. Space Policy 2016, 37, 52–57. [Google Scholar] [CrossRef]
- Hoyos, M.V.; Cook, N.J.; Hessel, V. Moon Resources and a Proposition for Supply Chains. In Human Uses of Outer Space: Return to the Moon; Springer Nature: Singapore, 2023; pp. 79–107. [Google Scholar]
- Sanders, G.B.; Larson, W.E. Progress Made in Lunar In-Situ Resource Utilization under NASA’s Exploration Technology and Development Program. J. Aerosp. Eng. 2013, 26, 5–17. [Google Scholar] [CrossRef]
- David, L. Moon Dust Could Be a Problem for Future Lunar Explorers. 21 October 2019. Available online: https://www.space.com/moon-dust-problem-lunar-exploration.html (accessed on 16 February 2023).
- Schrunk, D.; Thangavelu, M.; Cooper, B.; Sharpe, B. Physical transportation on the Moon: The lunar railroad. In Proceedings of the Space 98, Albuquerque, NM, USA, 26–30 April 1998; pp. 347–353. [Google Scholar]
Supply Chain Parts | Definition | Components of Each Part |
---|---|---|
Processes | Description of activities that take place in the supply chain. | Planning, execution, and enabling processes. |
Performance measures | Tools for measuring and assessment of supply chain performance. | Key performance indicators and metrics. |
Material flow | Movement of materials from upstream to downstream of the supply chain | All the materials, the transitions, and the flows involved. |
Information and information flow | Definition of the aspects required for planning, executing, and enabling the supply chain. | Information is necessary for the performance and the different flows. |
Information and process interdependencies | Relations between different processes and supply chain actors. | Interdependencies regarding information and processes. |
Objects flow | Explanation about objects and their interactions. | Objects, their transitions, flows, and relations across the supply chain. |
Information resources and application systems | Determination of all the information sources and enterprise application systems throughout the supply chain. | Information, data structure, and information resources interactions. |
Decisions | Planning, execution, and management aspects of the supply chain. | Decisions, information required for decisions, and decision-making processes. |
Complex interactions | Description of relations taking place at all levels of the supply chain. | Interactions between partners, processes, material, information, decisions, etc. |
Best practices | Identification and definition of activities, interdependences, and prerequisites of practices. | Best techniques, operational procedures, business models, or technology. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varon Hoyos, M.; Hessel, V.; Salas, E.; Culton, J.; Robertson, K.; Laybourn, A.; Escribà-Gelonch, M.; Cook, N.; de Zwart, M. Supply Chain Sustainability in Outer Space: Lessons to Be Learnt from Remote Sites on Earth. Processes 2024, 12, 2105. https://doi.org/10.3390/pr12102105
Varon Hoyos M, Hessel V, Salas E, Culton J, Robertson K, Laybourn A, Escribà-Gelonch M, Cook N, de Zwart M. Supply Chain Sustainability in Outer Space: Lessons to Be Learnt from Remote Sites on Earth. Processes. 2024; 12(10):2105. https://doi.org/10.3390/pr12102105
Chicago/Turabian StyleVaron Hoyos, Manuel, Volker Hessel, Eduardo Salas, John Culton, Karen Robertson, Andrea Laybourn, Marc Escribà-Gelonch, Nigel Cook, and Melissa de Zwart. 2024. "Supply Chain Sustainability in Outer Space: Lessons to Be Learnt from Remote Sites on Earth" Processes 12, no. 10: 2105. https://doi.org/10.3390/pr12102105
APA StyleVaron Hoyos, M., Hessel, V., Salas, E., Culton, J., Robertson, K., Laybourn, A., Escribà-Gelonch, M., Cook, N., & de Zwart, M. (2024). Supply Chain Sustainability in Outer Space: Lessons to Be Learnt from Remote Sites on Earth. Processes, 12(10), 2105. https://doi.org/10.3390/pr12102105