Flow Profiling Analysis of a Refractured Tight Oil Well Using Distributed Temperature Sensing
Abstract
:1. Introduction
2. Methodology
3. Field Application
3.1. Initial Fracturing Design
3.2. Refracturing Design
3.3. DTS Measurements
3.4. DTS Interpretation
3.5. Comparison of Oil Production between Old and New Fractures
3.6. Comparison of Oil Production with and without CO2 Injection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Economides, M.J.; Nolte, K.G. Reservoir Stimulation, 3rd ed.; Wiley: Chichester, UK, 2000. [Google Scholar]
- Shah, M.; Shah, S.; Sircar, A. A Comprehensive Overview on Recent Developments in Refracturing Technique For Shale Gas Reservoirs. J. Nat. Gas Sci. Eng. 2017, 46, 350–364. [Google Scholar] [CrossRef]
- Melcher, J.; Persac, S.; Whitsett, A. Restimulation Design Considerations and Case Studies of Haynesville Shale. In Paper SPE 174819, Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015; SPE: Houston, TX, USA, 2015. [Google Scholar]
- Tavassoli, S.; Yu, W.; Javadpour, F.; Sepehrnoori, K. Selection of Candidate Horizontal Wells and Determination of the Optimal Time of Refracturing in Barnett Shale (Johnson County). In Paper SPE 167137, Proceedings of the SPE Unconventional Resources Conference-Canada, Calgary, AB, Canada, 5–7 November 2013; SPE: Calgary, AB, Canada, 2013. [Google Scholar]
- Indras, P.; Blankenship, C. A Commercial Evaluation of Refracturing Horizontal Shale Wells. In Paper SPE 174951, Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015; SPE: Houston, TX, USA, 2015. [Google Scholar]
- Garza, M.; Baumbach, J.; Prosser, J.; Pettigrew, S.; Elvig, K. An Eagle Ford Case Study: Improving an Infill Well Completion Through Optimized Refracturing Treatment of the Offset Parent Wells. In Paper SPE194374, Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 5–7 February 2019; SPE: The Woodlands, TX, USA, 2019. [Google Scholar]
- Quirein, J.A.; Kessler, C.; Trela, J.M.; Zannoni, S.; Cornish, B.; Brewer, R.J.; Gordy, D.; Pettitt, W.S.; Walker, C.B.; Laney, J.; et al. Microseismic Monitoring of a Restimulation Treatment to a Permian Basin San Andres Dolomite Horizontal Well. In Paper SPE 110333, Proceedings of the SPE Annual Technical Conference and Exhibition, Anaheim, CA, USA, 11–14 November 2007; SPE: Anaheim, CA, USA, 2007. [Google Scholar]
- Ren, J.; Chen, J.; Lu, H.; Bai, X.; Yu, W. Optimizing Refracturing Models in Tight Oil Reservoirs: An Integrated Workflow of Geology and Engineering Based on Seepage-Stress Real-Time Cross-Coupling Strategy. SPE J. 2024, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Li, B.; Li, D.; Gu, M.; Tang, P.; Zhang, H.; Liu, Y.; Li, Y.; Wang, J. The Application of Refracturing Technique in Horizontal Wells of Daqing Oilfield. In Paper SPE 192787, Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 12–15 November 2018; SPE: Abu Dhabi, United Arab Emirates, 2018. [Google Scholar]
- Rahim, Z.; Al-Anazi, H.; Waspada, D.; Al-Kanaan, A. Comprehensive Reservoir Assessment and Refracturing Improve Saudi Arabian Gas Well Deliverability. In Paper SPE 164453, Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 10–13 March 2013; SPE: Manama, Bahrain, 2013. [Google Scholar]
- Borisenko, A.; Parkhonyuk, S.; Zotov, K.; Korkin, R.; Kiselev, N.V.; Laptev, A.; Rapeyko, V.T. Advanced Pressure Monitoring Technique—New Horizons of Workover in Russia. In Paper SPE 202070, Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 12–14 October 2020; SPE: Moscow, Russia, 2020. [Google Scholar]
- Valiullin, A.; Makienko, V.; Yudin, A.; Overin, A.; Gromovenko, A. Channel Fracturing Technique Helps to Revitalize Brown Fields in Langepas Area. In Paper SPE 178131, Proceedings of the SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 24–26 November 2015; SPE: Mumbai, India, 2015. [Google Scholar]
- Urban-Rascon, E.; Virues, C.; Aguilera, R. 3D Geomechanical Modeling in the Complex Fracture Network of the Horn River Shale Using a Fully-Coupled Hybrid Hydraulic Fracture HHF Model: Permeability Evolution and Depletion. In Paper SPE 189795, Proceedings of the SPE Canada Unconventional Resources Conference, Calgary, AB, Canada, 13–14 March 2018; SPE: Calgary, AB, Canada, 2018. [Google Scholar]
- Hlidek, B.; MacDonald, D.; Gee, C.; Makowecki, B. Slimhole Refracturing Case Studies and Experience Utilizing Mechanical Isolation for Effective Refracture Treatments. In Paper SPE 180236, Proceedings of the SPE Low Perm Symposium, Denver, CO, USA, 5–6 May 2016; SPE: Denver, CO, USA, 2016. [Google Scholar]
- Urban-Rascon, E.; Aguilera, R. Hydraulic Fracturing Modeling, Fracture Network, and Microseismic Monitoring. In Paper SPE 199976, Proceedings of the SPE Canada Unconventional Resources Conference, Calgary, AB, Canada, 18–19 March 2020; SPE: Calgary, AB, Canada, 2020. [Google Scholar]
- Kurison, C. Impediments to Refracturing Success in Shale Reservoirs. In Paper SPE 204799, Proceedings of the SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain, 28 November–1 December 2021; SPE: Manama, Bahrain, 2021. [Google Scholar]
- Dalkhaa, C.; Azzolina, N.A.; Chakhmakhchev, A.; Kurz, B.A.; Sorensen, J.A.; Gorecki, C.D.; Harju, J.A. Refracturing in the Bakken—An Analysis of Data from Across North Dakota. In Paper URTeC 3723732, Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022; URTeC: Houston, TX, USA, 2022. [Google Scholar]
- Bryan, E.; Richard, R.; Holasek, C.; Hosseinpour-Zonoozi, N.; Ilk, D.; Melvin, C.; Eichinger, K.; Rankosky, B.; Ingalls, B.; French, S.; et al. Integrated Well Performance Analysis Methodology to Understand Production Performance and Identify Refracturing Candidates in Barnett Shale. In Paper URTeC 3869654, Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 13–15 June 2023; URTeC: Denver, CO, USA, 2023. [Google Scholar]
- Barba, R.; Villarreal, M. The Economics of Refracturing in the Haynesville. In Paper SPE 212371, Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 31 January–2 February 2023; SPE: The Woodlands, TX, USA, 2023. [Google Scholar]
- Brinkley, K.; Thompson, C.; Haffener, J.; White, S.; Ketter, C.; Borell, J.; Comisky, J.; Hart, E.; Haustveit, K.; Herrin, M.; et al. Redefining Recoverable Reserves in the Eagle Ford: Refracs and InfillDevelopment Lessons Learned from the Hydraulic Fracturing Test Site 1(HFTS) Phase 3. In Paper SPE 212340, Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 31 January–2 February 2023; SPE: The Woodlands, TX, USA, 2023. [Google Scholar]
- Pehlke, T.; Simpson, G.; Maxwell, T.; Bourgeois, C.; Stibbs, J.; Littleford, T. On Track for Refrac: Targeting Under-Stimulated Stages and Assessing Casing Integrity Defects with High-Resolution Acoustic Imaging. In Paper SPE 217768, Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 6–8 February 2024; SPE: The Woodlands, TX, USA, 2024. [Google Scholar]
- Goodwin, A.; Nguyen, A. Where Are Refracs Going, and Can We Make Them a Sure Thing? J. Pet. Technol. 2024, 76, 10–12. [Google Scholar]
- Asala, H.I.; Ahmadi, M.; Taleghani, A.D. Why Re-Fracturing Works and Under What Conditions. In Paper SPE181516, Proceedings of the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016; SPE: Dubai, United Arab Emirates, 2016. [Google Scholar]
- Kiselica, K.; Jennings, T. Re-Fracturing the Appalachian Basin: An Economic Analysis. In Paper SPE 196602, Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 15–17 October 2019; SPE: Charleston, WV, USA, 2019. [Google Scholar]
- Jie, B.; Leopoldo, S.; Vladimir, M. Recompletion with Consideration of Depletion Effect in Naturally Fractured Unconventional Reservoirs. In Paper ARMA 19–321, Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019; ARMA: New York, NY, USA, 2019. [Google Scholar]
- Janiczek, P.; Makar, I.; Reilly, B.; Lahman, M.; Kolasa, B.; Day, R. Selecting a Horizontal Well Candidate in the Black Sea for Refracturing with Flow Diverting Technology. In Paper SPE 190839, Proceedings of the 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 11–14 June 2018; SPE: Copenhagen, Denmark, 2018. [Google Scholar]
- Rassenfoss, S. Who’s Right? Imaging of Fractures Often Delivers Conflicting Measures. J. Pet. Technol. 2023, 75, 22–28. [Google Scholar] [CrossRef]
- Fayzullin, M.; Janiczek, P.; Contreras, D.; Makar, I.; Gonzalez, J.; Day, R. Redevelopment of an Unconventional Oil Reservoir: Finding Unstimulated and Bypassed Reservoir Volume. In Paper SPE 188647, Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 13–16 November 2017; SPE: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Wu, K.; Liu, Y.; Jin, G.; Srinivasan, A. Hydraulic Fracture Geometry Characterization based on Distributed Fiber Optic Strain Measurements; Elsevier: Cambridge, MA, USA, 2024; ISBN 9780323953627. [Google Scholar]
- Wu, K.; Liu, Y.; Jin, G.; Moridis, G. Fracture hits and hydraulic-fracture geometry characterization using low-frequency distributed acoustic sensing strain data. J. Pet. Technol. 2021, 73, 39–42. [Google Scholar] [CrossRef]
- Dawson, P.; Jimenez, E.; Mahue, V.; Kitchen, J.; Mehrok, M.; Zinselmeyer, R.; Wygal, B.; Chuckry, T. Repeat DAS and DTS Logging for Production and Cluster Efficiency Evaluation on a Gas Condensate Producer in the Montney Formation. In Papper URTeC 4054931, Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 17–19 June 2024; URTeC: Houston, TX, USA, 2024. [Google Scholar]
- Lu, C.; Chen, Y.; Wang, Z. Principles and Applications of Distributed Temperature Sensing in Oil and Gas Industry. Pet. Sci. 2016, 13, 345–357. [Google Scholar]
- Brown, K.; Smith, J.; Johnson, L. Application of Distributed Temperature Sensing in Barnett Shale. J. Pet. Technol. 2012, 64, 92–99. [Google Scholar]
- Kabir, C.S.; Izgec, B.; Hasan, A.R.; Wang, X.; Lee, J. Real-Time Estimation of Total Flow Rate and Flow Profiling in DTS-Instrumented Wells. In Paper IPTC 12343, Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 3–5 December 2008; IPTC: Kuala Lumpur, Malaysia, 2008. [Google Scholar]
- Guo, Y.; Li, H.; Zhang, X. Integrated Model for DTS Data Interpretation in Shale Reservoirs. Energy Fuels 2018, 32, 4321–4334. [Google Scholar]
- Sun, H.; Yu, W.; Sepehrnoori, K. Integrated Fracture Characterization and Flow Profiling with Distributed Temperature Sensing. In Paper SPE 201619, Proceedings of the SPE Annual Technical Conference & Exhibition, Denver, CO, USA, 5–7 October 2020; SPE: Denver, CO, USA, 2020. [Google Scholar]
- Luo, H.; Li, Y.; Li, H.; Cui, X.; Chen, Z. Simulated Annealing Algorithm-Based Inversion Model to Interpret Flow Rate Profiles and Fracture Parameters for Horizontal Wells in Unconventional Gas Reservoirs. SPE J. 2021, 26, 1679–1699. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.; Chang, C.; Liu, S.; Li, N.; Yu, W.; Sepehrnoori, K. A Novel Workflow to Characterize Production Profiles of Shale Gas Horizontal Wells Using Distributed Temperature Sensing Data. In Paper URTeC 4044221, Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 17–19 June 2024; URTeC: Houston, TX, USA, 2024. [Google Scholar]
- Mao, Y.; Godefroy, C.; Gysen, A. Case Studies: Integrated Production Profiling Analyses from Distributed Temperature and Acoustic Data. In Paper URTeC 4027567, Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 17–19 June 2024; URTeC: Houston, TX, USA, 2024. [Google Scholar]
- Middleton, R.S.; Carey, J.W.; Currier, R.P.; Hyman, J.D.; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, M.; Viswanathan, H. Shale Gas and Non-aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2. Appl. Energy 2015, 147, 500–509. [Google Scholar] [CrossRef]
- Li, L.; Su, Y.; Chen, Z.; Fan, L.; Tang, M.; Tu, J. Experimental Investigation on EOR and Flowback Rate of Using Supercritical CO2 as Pre-Fracturing Fluid in Tight Oil Reservoir. In Paper SPE 202279, Proceedings of the SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia, 20–22 October 2020; SPE: Perth, Australia, 2020. [Google Scholar]
- Zou, Y.; Zhang, S.; Ma, X.; Li, S. Improving Fracture Complexity and Conductivity in Shale Formation with Calcite-Filled Natural Fractures by a Novel CO2-Assisted Fracturing: An Experimental Study. SPE J. 2022, 27, 2109–2125. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Wang, B.; Dang, K.; Shi, M.; Zhang, Y.; Liu, M.; Wu, Y. The Effect of SCCO2 Treatments on the Petrophysical Properties of Continental Shale with Different Mineral Compositions. In Paper ARMA 23–467, Proceedings of the 57th US Rock Mechanics/Geomechanics Symposium, Atlanta, GA, USA, 25–28 June 2023; ARMA: Atlanta, GA, USA, 2023. [Google Scholar]
- Han, X.; Song, Z.; Deng, S.; Li, B.; Li, P.; Zhang, L.; Song, Y. Experimental and Numerical Study on the Phase Behavior and Distribution Characteristics of Oil-CO2-Water Three-Phase Fluid During Pre-CO2 Energized Fracturing in Shale Reservoirs. In Paper IPTC 24393, Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12–14 February 2024; IPTC: Dhahran, Saudi Arabia, 2024. [Google Scholar]
- Tang, W.; Zhou, F.; Hu, L.; Huang, G.; Li, L. Permeability Variation During CO2 Pre-Fracturing in Shale Reservoir: A Case Study of Junggar Basin. In Paper URTeC 4035176, Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 17–19 June 2024; URTeC: Houston, TX, USA, 2024. [Google Scholar]
- Johnson, D.; Sierra, J.; Kaura, J.; Guatieri, D. Successful Flow Profiling of Gas Wells Using Distributed Temperature Sensing Data. In Paper SPE 103097, Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 24–27 September 2006; SPE: San Antonio, TX, USA, 2006. [Google Scholar]
- Cadotte, R.J.; Elbel, B.; Modeland, N. Unconventional Multiplay Evaluation of Casing-in-Casing Refracturing Treatments. In Paper SPE 191451, Proceedings of the SPE International Hydraulic Fracturing Technology Conference and Exhibition, Muscat, Oman, 16–18 October 2018; SPE: Muscat, Oman, 2018. [Google Scholar]
Stage Number | Cluster Perforation Location (m) | Sand Volume (m3) | Fluid Volume (m3) |
---|---|---|---|
1 | 3576.7, 3591.8 | 35 | 258.7 |
2 | 3484.0, 3499.1 | 30 | 225.4 |
3 | 3391.9, 3407.0 | 25 | 226.6 |
4 | 2891.9, 2907.0 | 25 | 219.4 |
5 | 2820.3, 2835.4 | 30 | 212.1 |
6 | 2737.3, 2752.4 | 35 | 234.6 |
7 | 2654.6, 2669.7 | 35 | 258.0 |
8 | 2564.7, 2579.8 | 35 | 236.3 |
9 | 2478.6, 2493.6 | 40 | 264.8 |
10 | 2386.9, 2402.4 | 35 | 238.9 |
11 | 2297.8, 2313.2 | 40 | 266.6 |
12 | 2229.2, 2244.7 | 35 | 241.4 |
13 | 2147.4, 2162.9 | 40 | 289.6 |
Stage Number | Cluster Perforation Location (m) | Sand Volume (m3) | Fluid Volume (m3) | New or Old Stages | CO2 Injection Volume (m3) |
---|---|---|---|---|---|
1 | 3545.5, 3535.5, 3525.5 | 12.0 | 1600.0 | New Stage | / |
2 | 3503.0, 3492.0, 3479.0 | 12.0 | 1400.0 | Old Stage | 200 |
3 | 3456.0, 3446.0, 3432.0 | 12.0 | 1600.0 | New Stage | / |
4 | 3400.0, 3386.0 | 12.0 | 1300.0 | Old Stage | 200 |
5 | 3366.0, 3354.0 | 12.0 | 1500.0 | New Stage | / |
6 | 3284.0, 3274.0 | 12.0 | 1300.0 | New Stage | 200 |
7 | 3244.0, 3230.0, 3216.0 | 12.0 | 1600.0 | New Stage | / |
8 | 3170.0, 3160.0, 3150.0 | 12.0 | 1400.0 | New Stage | 200 |
9 | 3128.0, 3118.0, 3110.0 | 12.0 | 1600.0 | New Stage | / |
10 | 3085.0, 3074.0, 3060.0 | 12.0 | 1400.0 | New Stage | 200 |
11 | 3034.0, 3022.0, 3012.0, 3000.0 | 12.0 | 1700.0 | New Stage | / |
12 | 2899.0, 2886.0 2875.0, 2868.0 | 12.0 | 1591.0 | Old Stage | 200 |
13 | 2840.0, 2825.0 2815.0, 2805.0 | 12.0 | 1506.0 | Old Stage | / |
14 | 2782.0, 2768.0, 2757.0 | 12.0 | 1550.0 | New Stage | 200 |
15 | 2732.0, 2722.0, 2712.0 | 12.0 | 1600.0 | New Stage | / |
16 | 2686.0, 2675.0, 2660.0, 2650.0 | 12.0 | 1591.0 | Old Stage | 200 |
17 | 2626.0, 2616.0, 2604.0 | 12.0 | 1600.0 | New Stage | / |
18 | 2569.0, 2558.0, 2548.0, 2540.0 | 12.0 | 1591.0 | Old Stage | 200 |
19 | 2320.0, 2306.0, 2294.0, 2284.0 | 12.0 | 1591.0 | Old Stage | / |
20 | 2206.0, 2196.0, 2186.0 | 12.0 | 1600.0 | New Stage | 200 |
Choke Size (mm) | DTS Measurement Time (h) | Note |
---|---|---|
0 | 12 | Well temporarily shut-in |
5 | 4 | The liquid flowback volume is excessive |
4 | 4 | The liquid flowback volume is excessive |
2 | 12 | / |
0 | 35 | Well temporarily shut-in |
4 | 12 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Ren, J.; Shi, Q.; Li, X.; Bai, Y.; Yu, W. Flow Profiling Analysis of a Refractured Tight Oil Well Using Distributed Temperature Sensing. Processes 2024, 12, 2106. https://doi.org/10.3390/pr12102106
Yan C, Ren J, Shi Q, Li X, Bai Y, Yu W. Flow Profiling Analysis of a Refractured Tight Oil Well Using Distributed Temperature Sensing. Processes. 2024; 12(10):2106. https://doi.org/10.3390/pr12102106
Chicago/Turabian StyleYan, Changhao, Jiawei Ren, Qiong Shi, Xiangping Li, Yuen Bai, and Wei Yu. 2024. "Flow Profiling Analysis of a Refractured Tight Oil Well Using Distributed Temperature Sensing" Processes 12, no. 10: 2106. https://doi.org/10.3390/pr12102106
APA StyleYan, C., Ren, J., Shi, Q., Li, X., Bai, Y., & Yu, W. (2024). Flow Profiling Analysis of a Refractured Tight Oil Well Using Distributed Temperature Sensing. Processes, 12(10), 2106. https://doi.org/10.3390/pr12102106