Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Mucilage from the Opuntia ficus-indica Palm
2.2. Manufacture of Cream Cheese
2.3. Physicochemical Characterization
2.4. Instrumental Measurements
2.4.1. Colorimetric Analysis
2.4.2. Texture Profile Analysis
2.4.3. Enumeration of Probiotic Microorganisms
2.4.4. Microbial Control
2.5. Gastrointestinal Digestion In Vitro
2.6. Sensory Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Mucilage
3.2. Physicochemical Characterization of Cream Cheese
3.3. Color Parameters
3.4. Microbiological Characterization
3.5. Gastrointestinal Digestion In Vitro
3.6. Texture Profile Analysis
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, S.; Yu, W.; Wilson, D.; Young, B.R. pH prediction for a semi-batch cream cheese fermentation using a grey-box model. Chem. Prod. Process Model. 2023, 18, 581–590. [Google Scholar] [CrossRef]
- Aggarwal, A.; Parmar, A.; Panigrahi, S.P.; Verma, T.; Dhyano, P.; Bajya, S.L.; Singh, M.K. Exploring the probiotic and prebiotic dynamics of cheese: An updated review. Ann. Phytomedicine 2024, 13, 360–369. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. Effect of homogenisation of cheese milk and high shear mixing of the curd during cream cheese manufacture. Int. J. Dairy Technol. 2018, 71, 417–431. [Google Scholar] [CrossRef]
- Pombo, A.F.W. Cream cheese: Historical, manufacturing, and physico-chemical aspects. Int. Dairy J. 2021, 117, 104948. [Google Scholar] [CrossRef]
- Brighenti, M.; Jaeggi, J.J.; Johnson, M.E.; Lucey, J.A. Effects of processing conditions on the texture and rheological properties of model acid gels and cream cheese. J. Dairy Sci. 2018, 101, 6762–6775. [Google Scholar] [CrossRef]
- Lučan, M.; Ranilović, J.; Slačanac, V.; Cvetković, T.; Primorac, L.; Gajari, D.; Obrdalj, H.T.; Jukić, M.; Čačić, J.L. Physico-chemical properties, spreadability and consumer acceptance of low-sodium cream cheese. Mljekarstvo 2020, 70, 13–27. [Google Scholar] [CrossRef]
- Kim, J.; Watkinson, P.; Lad, M.; Merino, L.M.; Smith, J.R.; Golding, M. Efect of Process and Formulation Variables on the Structural and Physical Properties in Cream Cheese using GDL Acidulant. Food Biophys. 2022, 17, 273–287. [Google Scholar] [CrossRef]
- Xu, K.; Guo, M.; Du, J.; Zhang, Z. Okra polysaccharide: Effect on the texture and microstructure of set yoghurt as a new natural stabilizer. Int. J. Biol. Macromol. 2019, 133, 117–126. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Brito-De La Fuente, E.; Torrestiana-Sanchez, B.; Katthain, R. Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocoll. 2000, 14, 417–424. [Google Scholar] [CrossRef]
- Contreras-Padilla, M.; Rodríguez-García, M.E.; Gutiérrez-Cortez, E.; Valderrama-Bravo, M.C.; Rojas-Molina, J.I.; Rivera-Muñoz, E.M. Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. Eur. Polym. J. 2016, 78, 226–234. [Google Scholar] [CrossRef]
- Reyes-Ocampo, I.; Córdova-Aguilar, M.S.; Guzmán, G.; Blancas-Cabrera, A.; Ascanio, G. Solvent-free mechanical extraction of Opuntia ficus-indica mucilage. J. Food Process Eng. 2019, 42, e12954. [Google Scholar] [CrossRef]
- Legesse, A.; Muluken, A.; Getasew, A. A survey on awareness of consumers about health problems of food additives in packaged foods and their attitude toward consumption of packaged foods: A case study at Jimma University. Int. Food Res. J. 2016, 23, 375–380. [Google Scholar]
- Ghendov-Moşanu, A.; Sturza, R.; Opriş, O.; Lung, I.; Popescu, L.; Popovici, V.; Soran, M.L.; Patraş, A. Effect of lipophilic sea buckthorn extract on cream cheese properties. J. Food Sci. Technol. 2020, 57, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Goksenm, G.; Demir, D.; Dhama, K.; Kumar, M.; Shao, P.; Xie, F.; Echegaray, N.; Lorenzo, J.M. Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. Int. J. Biol. Macromol. 2023, 230, 123146. [Google Scholar]
- Guedes, B.N.; Fatyhi, F.; Silva, A.M.; Santini, A.; Oliveira, M.B.P.P.; Souto, E.B. Biopharmaceutical applications of Opuntia fcus-indica: Bibliometric map, bioactivities and extraction techniques. Eur. Food Res. Technol. 2023, 249, 2457–2469. [Google Scholar] [CrossRef]
- León-Martínez, F.M.; Rodríguez-Ramírez, J.; Medina-Torres, L.L.; Méndez Lagunas, L.L.; Bernad-Bernad, M.J. Effects of drying conditions on the rheological properties of reconstituted mucilage solutions (Opuntia ficus-indica). Carbohydr. Polym. 2011, 84, 439–445. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bosquez-Molina, E.; Bautista-Baños, S.; Rivera-Cabrera, F. Cactus stem (Opuntia ficus-indica Mill): Anatomy, physiology and chemical composition with emphasis on its biofunctional properties. J. Sci. Food Agric. 2017, 97, 5065–5073. [Google Scholar] [CrossRef]
- Mannai, F.; Elhleli, H.; Yilmaz, M.; Khiari, R.; Belgacem, M.N.; Moussaoui, Y. Precipitation solvents effect on the extraction of mucilaginous polysaccharides from Opuntia ficus-indica (Cactaceae): Structural, functional and rheological properties. Ind. Crops Prod. 2023, 202, 117072. [Google Scholar] [CrossRef]
- Bayar, N.; Kriaa, M.; Kammoun, R. Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol. 2016, 92, 441–450. [Google Scholar] [CrossRef]
- Allegra, A.; Sortino, G.; Inglese, P.; Settanni, L.; Todaro, A.; Gallotta, A. The effectiveness of Opuntia ficus-indica mucilage edible coating on post-harvest maintenance of ‘Dottato’ fig (Ficus carica L.) fruit. Food Packag. 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Turco, V.L.; Potortì, A.G. Chemical characterization of Sicilian dried nopal (Opuntia ficus-indica (L.) Mill.). J. Food Compos. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Guarner, F.; Sanders, M.E.; Eliakim, R.; Fedorak, R.; Gangl, A.; Garisch, J.; Kaufmann, P.; Karakan, T.; Khan, A.G.; Kim, N.; et al. Diretrizes Mundiais da Organização Mundial de Gastroenterologia: Probióticos e Prebióticos; World Gastroenterology Organisation: Milwaukee, WI, USA, 2017. [Google Scholar]
- Pavli, F.; Kovaiou, I.; Apostolakopoulou, G.; Kapetanakou, A.; Skandamis, P.; Nychas, G.J.E.; Tassou, C.; Chorianopoulos, N. Alginate-based edible films delivering probiotic bacteria to sliced ham pretreated with high pressure processing. Int. J. Mol. Sci. 2017, 18, 1867. [Google Scholar] [CrossRef] [PubMed]
- Joshi, T.J.; Salini, S.V.; Mohan, L.; Nandagopal, P.; Arakal, J.J. Functional metabolites of probiotic lactic acid bacteria in fermented dairy products. Food Humanit. 2024, 3, 100341. [Google Scholar] [CrossRef]
- Soni, R.; Jain, N.K.; Shah, V.; Soni, J.; Suthar, D.; Gohel, P. Development of probiotic yogurt: Effect of strain combination on nutritional, rheological, organoleptic and probiotic properties. J. Food Sci. Technol. 2020, 57, 2038–2050. [Google Scholar] [CrossRef]
- Freitas, D.R.; Kaminura, E.S.; Mazalli, M.R. Artisanal Cream Cheese Fermented with Kefir Grains. Fermentation 2024, 10, 420. [Google Scholar] [CrossRef]
- Eelshewy, A.; Blando, F.; Bahlol, H.; El-Desouky, A.; Bellis, P.; Khalifa, I. Egyptian Opuntia ficus-indica (OFI) Residues: Recovery and Characterization of Fresh Mucilage from Cladodes. Horticulturae 2023, 9, 736. [Google Scholar] [CrossRef]
- Halmi, S.; Benlaksira, B.; Bechtarzi, K.; Berouel, K.; Serakta, M.; Riachi, F.; Djaalab, H.; Maameri, Z.; Djerrou, Z.; Hamdi, P.Y. Pharmaco-toxilogical study of Opuntia ficus-indica aqueous extract in experimental animals. Int. J. Med. Arom. Plants 2013, 3, 375–381. [Google Scholar]
- AOAC. Official Methods of Analysis; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Schanda, J. Colorimetry: Undestanding the CIE System; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Sordi, M.; Mourão, L.F.; Silva, L.B.C. Comportamento reológico e nomenclatura dos alimentos utilizados por fonoaudiólogos de serviços de disfagia. Rev. CEFAC 2012, 14, 925–932. [Google Scholar] [CrossRef]
- IDF. Milk: Definition and Evaluation of the Overall Accuracy of Indirect Methods of Milk Analysis Application to Calibration Procedure and Quality Control in the Dairy Laboratory; IDF: Brussels, Belgium, 1999. [Google Scholar]
- Vanderzant, C.; Splittstoesser, D. Enterobacteriaceae, Coliformes, and Escherichia coli as Quality and Safety Indicators, 50th ed.; Salfinger, Y., Tortorello, M.L., Eds.; Apha Press: Washington, DC, USA, 2015. [Google Scholar]
- Caldeira, L.A.; Valente, G.L.C.; Barbosa, C.D.; Braga, D.E.; Monção, F.P.; Fonseca, L.M.; Souza, M.R.; Glória, M.B.A. Profile of lactic acid bacteria (MALDI-TOF-MS) and physico-chemical and microbiological characteristics of the raw milk and fresh artisanal cheese from Serra Geral, Minas Gerais, Brazil. Food Res. Int. 2024, 176, 113831. [Google Scholar] [CrossRef]
- Correa, V.G.; Gonçalves, G.A.; Sá-Nakanishi, A.B.; Ferreira, I.C.F.R.; Barros, L.; Dias, M.I.; Koehnlein, E.A.; de Souza, C.G.M.; Bracht, A.; Peralta, R.M. Effects of in vitro digestion and in vitro colonic fermentation on stability and functional properties of yerba mate (Ilex paraguariensis A. St. Hil.) beverages. Food Chem. 2017, 237, 453–460. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Procacci, S.; Quintal, E.B.; Platamone, G.B.; Maccioni, O.; Vecchio, V.L.; Morreale, V.; Alisi, C.; Balducchi, R.; Bacchetta, L. Opuntia ficus-indica Pruning Waste Recycling: Recovery and Characterization of Mucilage from Cladodes. Nat. Resour. 2021, 12, 91–107. [Google Scholar]
- Zapien, E.A.L.; Zegbe, J.Á.; Velazquez, J.A.M.; Esquivel, J.C.C.; Martinez, T.K.M. Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation. Agronomy 2023, 13, 419. [Google Scholar] [CrossRef]
- Martinez, F.M.L.; Barrita, P.F.J.C. Cactus mucilage: A review of its rheological and physicochemical properties and use as bio-admixture in building materials. Int. J. Biol. Macromol.-Rev. 2024, 279, 135111. [Google Scholar]
- Barradas, O.G.; Cortina, A.E.; Lopez, M.R.M.; Basurtos, R.I.O.; Ramos, D.I.D.; Fernandez, M.J. Chemical modification of Opuntia ficus-indica mucilage: Characterization, physicochemical, and functional properties. Polym. Bull. 2023, 80, 8783–8798. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Bains, A.; Kaushik, R.; Dhull, S.B.; Chawla, P.; Janusz, M.W. A Comprehensive Review on Plant-Derived Mucilage: Characterization, Functional Properties, Applications, and Its Utilization for Nanocarrier Fabrication. Agronomy 2023, 13, 1066. [Google Scholar] [CrossRef]
- Garcia, M.Q.; Cortez, E.G.; Bah, M.; Molina, A.R.; Villegas, M.A.C.; Real, A.D.; Molina, I.R. Comparative Analysis of the Chemical Composition and Physicochemical Properties of the Mucilage Extracted from Fresh and Dehydrated Opuntia ficus indica Cladodes. Foods 2021, 10, 2137. [Google Scholar] [CrossRef]
- Toit, A.; Wit, M.; Arno, H. Cultivar and harvest month influence the nutrient content of Opuntia spp. cactus pear cladode mucilage extracts. Molecules 2018, 23, 916. [Google Scholar] [CrossRef]
- Santana, T.J.M.; Rodriguez, L.V.; Colin, C.A.N.; Garcia, G.G.; Caballero, V.P.; Gastelume, J.A.N.; Vazquez, C.G.; Nunez, J.R.R. Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: Chemical, morphological, structural and thermal characterization. J. Food Meas. Charact. 2019, 13, 1111–1119. [Google Scholar]
- Bacchetta, L.; Maccioni, O.; Martina, V.; Bojorquez-Quintal, E.; Persia, F.; Procacci, S.; Zaza, F. Quality by Design Approach to Optimize Cladodes Soluble Fiber Processing Extraction in Opuntia ficus-indica (L.) Miller. J. Food Sci. Technol. 2019, 56, 3627–3634. [Google Scholar]
- Macdougall, P.E.; Ong Palmer, L.M.V.; Gras, S.L. The microstructure and textural properties of Australian cream cheese with differing composition. Int. Dairy J. 2019, 99, 104548. [Google Scholar] [CrossRef]
- Coutouly, A.; Riaublanc Axelos, A.M.; Gaucher, I. Effect of heat treatment, final pH of acidification, and homogenization pressure on the texture properties of cream cheese. Dairy Sci. Technol. 2014, 94, 125–144. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. A tribological analysis of cream cheeses manufactured with different fat content. Int. Dairy J. 2017, 73, 155–165. [Google Scholar] [CrossRef]
- Lepesioti, S.; Zoidou, E.; Lioliou, D.; Moschopoulou, E.; Moatsou, G. Quark-Type Cheese: Effect of Fat Content, Homogenization, and Heat Treatment of Cheese Milk. Foods 2021, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- FAO; WHO. Codex Alimentarius: Standard for Cream Cheese; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 3 September 2024).
- MAPA/RIISPOA, Intrução Normativa no71, de 24 de Julho de 2020; MAPA/RIISPOA: Brasília, Brazil, 2020. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-71-de-24-de-julho-de-2020-269156245 (accessed on 3 September 2024).
- Vieira, E.A.; Cordeiro, A.M.M. Bioprospecting and potential of cactus mucilages: A bibliometric review. Food Chem. 2023, 401, 134121. [Google Scholar] [CrossRef]
- Quinzio, C.; Ayunta, C.; Alancay, M.; Mishima, B.L.; Iturriaga, L. Physicochemical rheological properties of mucilage extracted from Opuntia ficus indica, (L. Miller). Comparative study with guar gum and xanthan gum. Food Meas. 2018, 12, 459–470. [Google Scholar] [CrossRef]
- Kučka, M.; Ražná, K.; Harenčár, Ľ.; Kolarovičová, T. Plant seed mucilage—Great potential for sticky matter. Nutraceuticals 2022, 2, 253–269. [Google Scholar] [CrossRef]
- Kim, J.; Watkinson, P. Evaluation of formulation design on the physical and structural properties of commercial cream cheeses. Int. J. Food Sci. Technol. 2022, 57, 6422–6434. [Google Scholar] [CrossRef]
- Perveen, K.; Alabdulkarim, B.; Arzoo, S. Effect of temperature on shelf life, chemical and microbial properties of cream cheese. Afr. J. Biotechnol. 2011, 10, 16929–16936. [Google Scholar]
- Silva, K.K.P.; Galli, B.D.; Alban, M.; Baptista, D.P.; Nabeshima, E.H.; Marfil, P.H.M.; Gigante, M.L. Sensory profile of cream cheese and plant-based analogues: Anapproach through flash-profile, CATA and RATA tests. Int. J. Food Sci. Technol. 2024, 1365–2621. [Google Scholar] [CrossRef]
- Araujo, H.C.S.; Jesus, M.S.; Sandes, R.D.D.; Leite Neta, M.R.S.; Narain, N. Review—Functional Cheeses: Updates on Probiotic Preservation Methods. Fermentation 2024, 10, 8. [Google Scholar] [CrossRef]
- Fangmeier, M.; Kemerich, G.T.; Machado, B.L.; Maciel, M.J.; de Souza, C.F.V. Effects of cow, goat, and buffalo milk on the characteristics of cream cheese with whey retention. Food Sci. Technol. 2019, 39, 122–128. [Google Scholar] [CrossRef]
- Ziarno, M.; Brys, J.; Kowalska, E.; Cichoriska, P. Effect of metabolic activity of lactic acid bacteria and propionibacteria on cheese protein digestibility and fatty acid profle. Sci. Rep. 2023, 13, 15363. [Google Scholar] [CrossRef] [PubMed]
- Tologana, R.D.; Wikandari, R.; Rahayul, E.S.; Suroto, D.A.; Utami, T. Correlation between the chemical, microbiological and sensory characteristics of cream cheese using a mixed and single probiotic culture. J. Food Sci. Technol. 2023, 60, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.R.H.; Gamboa, G.; Urrea, J.J.T.C.; Cayela, T.G. Review—Exploring the potential of probiotic-enriched beer: Microorganisms, fermentation strategies, sensory attributes, and health implications. Food Res. Int. 2024, 175, 113717. [Google Scholar] [CrossRef]
- Silva, D.F.; Ferreira, S.B.S.; Bruschi, M.L.; Britten, M.; Matumoto-Pinto, P.T. Effect of commercial konjac glucomannan and konjac flours on textural, rheological and microstructural properties of low-fat processed cheese. Food Hidrocoll. 2016, 60, 308–316. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhanari, B.; Bansal, N.; Prakash, S. Texture and lubrication properties of unctional cream cheese: Effect of β-glucan and phytosterol. J. Texture Stud. 2018, 49, 11–22. [Google Scholar] [CrossRef]
- Speranza, B.; Campaniello, D.; Monacis, N.; Bevilacqua, A.; Sinigaglia, M.; Corbo, M.R. Functional cream cheese supplemented with Bifidobacterium animalis subsp. lactis DSM 10140 and Lactobacillus reuteri DSM 20016 and prebiotics. Food Microbiol. 2018, 72, 16–22. [Google Scholar] [CrossRef]
- Correia Peres Costa, J.C.; Floriano, B.; Bascón Villegas, I.M.; Rodríguez-Ruiz, J.P.; Posada-Izquierdo, G.D.; Zurera, G.; Pérez-Rodríguez, F. Study of the microbiological quality, prevalence of foodborne pathogens and product shelf-life of Gilthead sea bream (Sparus aurata) and Sea bass (Dicentrarchus labrax) from aquaculture in estuarine ecosystems of Andalusia (Spain). Food Microbiol. 2020, 90, 103498. [Google Scholar] [CrossRef]
- Metz, M.; Sheehan, J.; Feng, P.C.H. Use of indicator bacteria for monitoring sanitary quality of raw milk cheeses—A literature review. Food Microbiol. 2020, 85, 103283. [Google Scholar] [CrossRef]
- Smoot, L.M.; Pierson, M.D. Indicator Microorganisms and Microbiological Criteria. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Beuchat, L.R., Montville, T.J., Eds.; American Society for Microbiology: Washington, DC, USA, 1997; pp. 66–80. [Google Scholar]
- Lemes, A.C.; Pavón, Y.; Lazzaroni, S.; Rozycki, S.; Brandelli, A.; Kalil, S.J. A new milk-clotting enzyme produced by Bacillus sp. P45 applied in cream cheese development. LWT—Food Sci. Technol. 2016, 66, 217–224. [Google Scholar] [CrossRef]
- Correia, V.T.V.; D’Angelis, D.F.; Santos, A.N.; Roncheti, E.F.S.; Queiroz, V.A.V.; Figueiredo, J.E.F.; Silva, W.A.; Ferreira, A.A.; Fante, C.A. Tannin-sorghum flours in cream cheese: Physicochemical, antioxidant and sensory characterization. LWT 2022, 153, 112672. [Google Scholar] [CrossRef]
- Nejati, R.; Gheisari, H.R.; Hosseinzadeh, S.; Behbod, M. Viability of encapsulated Lactobacillus acidophilus (LA-5) in UF cheese and its survival under in vitro simulated gastrointestinal conditions. Int. J. Dairy Technol. 2017, 70, 77–83. [Google Scholar] [CrossRef]
- Qiao, Y.; Yin, B.; Zhou, W.; Wang, M.; Chang, Z.; Zhou, J.; Yue, M.; Chen, J.; Liu, F.; Feng, Z. Nutrient consumption patterns of Lactobacillus acidophilus. J. Sci. Food Agric. 2024, 104, 10. [Google Scholar] [CrossRef] [PubMed]
- Rolim, F.R.L.; Freitas-Neto, I.C.; Oliveira, M.E.G.; Oliveira, C.J.B.; Queiroga, R.C.R.E. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends Food Sci. Technol. 2020, 100, 138–154. [Google Scholar] [CrossRef]
- Aljewicz, M.; Cichosz, G.; Nalepa, B.; Bielecka, M. The effect of milk fat substitution with palm fat on lactic acid bacteria counts in cheese-like products. LWT—Food Sci. Technol. 2016, 66, 348–354. [Google Scholar] [CrossRef]
- Darwish, A. Using in vitro digestion method in assessing the viability of Lactobacillus spp. in white soft cheese-like products. J. Food Dairy Sci. 2021, 12, 65–71. [Google Scholar] [CrossRef]
- Shahraki, R.; Elhamirad, A.H.; Hesari, J.; Noghabi, M.S.; Nia, A.P. A low-fat synbiotic cream cheese containing herbal gums, Bifidobacterium adolescentis and Lactobacillus rhamnosus: Physicochemical, rheological, sensory, and microstructural characterization during storage. Food Sci. Nutr. 2023, 11, 8112–8120. [Google Scholar] [CrossRef]
- Sharafi, S.; Nateghi, L.; Eyvazzade, O.; Abadi, E.T. Optimization and evaluation of textural properties of ultra-filtrated low-fat cheese containing galactomannan and Novagel gum. Mljekarstvo 2019, 69, 239–250. [Google Scholar] [CrossRef]
- Vincová, A.; Santová, K.; Kurová, V.; Kratochvilová, A.; Halamková, V.; Suchanková, M.; Lorencová, E.; Sumczynski, D.; Salek, R.N. The Impact of Divergent Algal Hydrocolloids Addition on the Physicochemical, Viscoelastic, Textural, and Organoleptic Properties of Cream Cheese Products. Foods 2023, 12, 1602. [Google Scholar] [CrossRef]
- Portaghi, J.; Hesmati, A.; Taheri, M.; Ahmadi, E.; Khaneghah, A.M. Effect of basil seed and xanthan gum on physicochemical, textural, and sensory characteristics of low-fat cream cheese. Food Sci. Nutr. 2023, 11, 6060–6072. [Google Scholar] [CrossRef]
- Milani, J.M.; Khedmati, S.; Hasansarai, A.G.; Golkar, A. The effect of Tragacanth gum in physicochemical and textural properties of Lighvan cheese during ripening. J. Res. Innov. Food Sci. Technol. 2017, 6, 103–114. [Google Scholar]
- Vollmer, A.H.; Kieferle, I.; Youssef, N.N.; Kulozik, U. Mechanisms of structure formation underlying the creaming reaction in a processed cheese model system as revealed by light and transmission electron microscopy. J. Dairy Sci. 2021, 104, 9505–9520. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Xu, Z.; Liu, Y.; Corke, H.; Sui, Z. Investigation of food microstructure and texture usingatomic force microscopy: A review. Compr. Rev. Food Sci. Food Saf. 2019, 19, 2357–2379. [Google Scholar] [CrossRef] [PubMed]
Time (Days) | Formulations 1 | ||||
---|---|---|---|---|---|
C | F1 | F2 | F3 | ||
Protein (%) | 1 | 2.16 ± 0.26 a | 2.42 ± 0.83 a | 1.78 ± 0.34 a | 2.35 ± 0.81 a |
Lipids (%) | 1 | 29.98 ± 0.22 a | 30.01 ± 0.06 a | 30.59 ± 0.02 a | 30.88 ± 0.04 a |
Moisture (%) | 1 | 38.88 ± 0.15 a | 38.27 ± 0.54 a | 39.16 ± 0.03 a | 39.88 ± 0.10 a |
14 | 39.17 ± 0.37 a | 39.21 ± 0.15 a | 39.33 ± 0.24 a | 39.51 ± 0.15 a | |
28 | 38.96 ± 0.40 a | 41.63 ± 0.27 a | 40.07 ± 0.41 a | 39.98 ± 0.29 a | |
Ash (%) | 1 | 1.63 ± 0.22 a | 1.62 ± 0.24 a | 1.50 ± 0.07 a | 1.25 ± 0.02 a |
pH | 1 | 5.48 ± 0.01 a | 5.10 ± 0.01 a | 5.25 ± 0.03 a | 5.25 ± 0.04 a |
Acidity | 1 | 0.15 ± 0.01 a | 0.15 ± 0.01 a | 0.15 ± 0.01 a | 0.15 ± 0.01 a |
Time (Days) | Formulations 1 | ||||
---|---|---|---|---|---|
C | F1 | F2 | F3 | ||
L* | 7 | 90.97 ± 0.34 a | 90.39 ± 0.22 a | 90.64 ± 0.59 a | 91.15 ± 0.31 a |
14 | 90.15 ± 0.20 a | 90.59 ± 0.10 a | 90.57 ± 0.52 a | 90.91 ± 0.31 a | |
a* | 7 | −0.52 ± 0.03 a | −0.54 ± 0.02 a | −0.54 ± 0.06 a | −0.53 ± 0.08 a |
14 | 0.11 ± 0.03 a | 0.09 ± 0.02 a | 0.08 ± 0.04 a | 0.09 ± 0.05 a | |
b* | 7 | 18.02 ± 0.01 a | 18.28 ± 0.17 a | 17.94 ± 0.36 a | 18.23 ± 0.15 a |
14 | 18.34 ± 0.03 a | 17.90 ± 0.11 a | 18.09 ± 0.17 a | 18.24 ± 0.16 a | |
H° | 7 | −88.34 a | −88.58 a | −88.27 a | −89.12 a |
14 | 89.65 b | 89.71 b | 89.74 b | 89.71 b |
Days | Counts of the Probiotic Lactobacillus acidophilus (CFU/g) | |||
---|---|---|---|---|
C | F1 | F2 | F3 | |
1 | 8.19 × 108 ± 0.04 aA | 7.87 × 107 ± 0.07 bA | 8.00 × 107 ± 0.01 bA | 9.20 × 109 ± 0.01 aA |
7 | 7.05 × 108 ± 0.01 aA | 7.44 × 107 ± 0.04 bA | 7.20 × 107 ± 0.08 bB | 9.01 × 108 ± 0.10 aA |
14 | 8.00 × 107 ± 0.04 bB | 6.55 × 107 ± 0.12 cB | 7.80 × 107 ± 0.01 bB | 8.98 × 108 ± 0.07 aA |
21 | 7.18 × 107 ± 0.02 aB | 4.59 × 107 ± 0.01 bC | 6.98 × 107 ± 0.02 aB | 7.94 × 107 ± 0.03 aB |
28 | 8.03 × 107 ± 0.02 aB | 4.19 × 107 ± 0.01 cC | 3.23 × 107 ± 0.02 cC | 6.95 × 107 ± 0.02 bB |
Microorganisms | Time (Days) | Formulations 1 | |||
---|---|---|---|---|---|
C | F1 | F2 | F3 | ||
Total coliforms (MPN 2/g) | 14 28 | 1 1 | 1 2 | 1 2 | 3 2 |
Fecal coliforms (MPN/g) | 14 28 | - <2 | - - | <1 <2 | <2 <2 |
Molds and yeasts (CFU 3/g) | 14 28 | <1 × 101 <1 × 101 | <1 × 101 <1 × 101 | <1 × 101 <1 × 102 | <1 × 101 <1 × 102 |
Formulations 1 | ||||
---|---|---|---|---|
C | F1 | F2 | F3 | |
Firmness (g) | 1819.21 ± 459.29 a | 1722.73 ± 197.69 a | 1485.33 ± 960.93 a | 1357.86 ± 123.14 a |
Hardness (g) | 2151.94 ± 874.97 a | 2071.71 ± 575.36 a | 1945.16 ± 671.83 a | 1354.15 ± 34.76 a |
Cohesiveness | 0.46 ± 0.11 a | 0.45 ± 0.03 a | 0.41 ± 0.08 a | 0.39 ± 0.04 a |
Springiness (m) | 0.82 ± 0.17 a | 0.87 ± 0.20 a | 0.96 ± 0.03 a | 0.87 ± 0.03 a |
Gumminess (g) | 933.04 ± 170.06 a | 826.73 ± 181.50 a | 766.56 ± 267.00 a | 608.87 ± 39.33 a |
Samples 1 | EMD 2 | ||
---|---|---|---|
C | F3 | ||
Appearance | 7.85 a | 7.55 a | 0.34 |
Aroma | 7.07 a | 7.11 a | 0.40 |
Flavor | 7.55 a | 7.37 a | 0.40 |
Texture | 7.09 a | 8.67 b | 0.33 |
Overall impression | 7.67 a | 7.52 a | 0.31 |
Purchase intention | 1.97 a | 2.19 a | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, P.D.; Fernandes, I.d.A.A.; de Marins, A.R.; Feihrmann, A.C.; Gomes, R.G. Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese. Processes 2024, 12, 2289. https://doi.org/10.3390/pr12102289
Rodrigues PD, Fernandes IdAA, de Marins AR, Feihrmann AC, Gomes RG. Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese. Processes. 2024; 12(10):2289. https://doi.org/10.3390/pr12102289
Chicago/Turabian StyleRodrigues, Pamela Dutra, Isabela de Andrade Arruda Fernandes, Annecler Rech de Marins, Andresa Carla Feihrmann, and Raquel Guttierres Gomes. 2024. "Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese" Processes 12, no. 10: 2289. https://doi.org/10.3390/pr12102289
APA StyleRodrigues, P. D., Fernandes, I. d. A. A., de Marins, A. R., Feihrmann, A. C., & Gomes, R. G. (2024). Use of Mucilage from Opuntia ficus-indica in the Manufacture of Probiotic Cream Cheese. Processes, 12(10), 2289. https://doi.org/10.3390/pr12102289