A Multi-Scale and Multi-Stage Human Pose Recognition Method Based on Convolutional Neural Networks for Non-Wearable Ergonomic Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Proposed Framework
2.2. High-Precision Lightweight LSCD-Pose Module Based on Shared Convolution
2.3. The Spatial Pyramid Pooling-Fast (SPPF) Module Based on the MSCA Attention Mechanism
2.4. EMSPC Module Based on Grouped Convolution and Point-by-Point Convolution
2.5. RULA-Based Ergonomics Assessment Module
3. Experiments Details
3.1. Comparative Analysis of Models Based on Publicly Available Datasets
3.1.1. Datasets
3.1.2. Criteria for Evaluation
3.2. Accuracy and Reliability Analysis of Posture Recognition Based on Inertial Capture
4. Results
4.1. Comparative Analysis of MMARM-CNN with Other Models
4.2. Accuracy Analysis of Posture Recognition
4.3. Reliability Analysis of Postural Assessment
4.4. Accuracy Analysis of “Blocked”
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadikon, Y.; Rahman, M.N.A. Manual material handling risk assessment tool for assessing exposure to risk factor of work-related musculoskeletal disorders: A review. J. Eng. Appl. Sci. 2016, 100, 2226–2232. [Google Scholar]
- Bevan, S. Economic impact of musculoskeletal disorders (MSDs) on work in Europe. Best Pract. Res. Clin. Rheumatol. 2015, 29, 356–373. [Google Scholar] [CrossRef] [PubMed]
- Mody, G.M.; Brooks, P.M. Improving musculoskeletal health: Global issues. Best Pract. Res. Clin. Rheumatol. 2012, 26, 237–249. [Google Scholar] [CrossRef]
- Mekonnen, T.H. The magnitude and factors associated with work-related back and lower extremity musculoskeletal disorders among barbers in Gondar town, Northwest Ethiopia, 2017: A cross-sectional study. PLoS ONE 2019, 14, e0220035. [Google Scholar] [CrossRef]
- World Health Organization. Musculoskeletal Conditions. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed on 18 July 2022).
- McAtamney, L.; Corlett, E.N. RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 1993, 24, 91–99. [Google Scholar] [CrossRef]
- Hignett, S.; McAtamney, L. Rapid Entire Body Assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef]
- Karhu, O.; Kansi, P.; Kuorinka, I. Correcting working postures in industry: A practical method for analysis. Appl. Ergon. 1977, 8, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Berti, N.; Finco, S.; Battaïa, O.; Delorme, X. Aging workforce effects in Dual Resource Constrained job shop scheduling. Int. J. Prod. Econ. 2021, 237, 108151. [Google Scholar] [CrossRef]
- Mangesh, J.; Vishwas, D. Study of association between OWAS, REBA and RULA with perceived exertion rating for establishing applicability. Theor. Issues Ergon. Sci. 2022, 23, 313–332. [Google Scholar]
- Finco, S.; Calzavara, M.; Sgarbossa, F.; Zennaro, I. Including rest allowance in mixed-model assembly lines. Int. J. Prod. Res. 2021, 59, 7468–7490. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Gül, M.; Al-Hussein, M. Automated post-3D visualization ergonomic analysis system for rapid workplace design in modular construction. Autom. Constr. 2019, 98, 160–174. [Google Scholar] [CrossRef]
- Huang, C.; Kim, W.; Zhang, Y.; Xiong, S. Development and Validation of a Wearable Inertial Sensors-Based Automated System for Assessing Work-Related Musculoskeletal Disorders in the Workspace. Int. J. Environ. Res. Public Health 2020, 17, 6050. [Google Scholar] [CrossRef] [PubMed]
- Daria, B.; Martina, C.; Alessandro, P.; Fabio, S.; Valentina, V.; Zennaro, I. Integrating mocap system and immersive reality for efficient human-centered workstation design. IFAC PapersOnLine 2018, 51, 188–193. [Google Scholar] [CrossRef]
- Murugan, A.S.; Noh, G.; Jung, H.; Kim, E.; Kim, K.; You, H.; Boufama, B. Optimizing computer vision-based ergonomic assessments: Sensitivity to camera position and monocular 3D pose model. Ergonomics 2024, 11–18. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, C.; Guo, Z.; Zhou, Q.; Song, D.; Hao, A. A real-time posture assessment system based on motion capture data for manual maintenance and assembly processes. Int. J. Adv. Manuf. Technol. 2024, 131, 1397–1411. [Google Scholar] [CrossRef]
- Simon, S.; Dully, J.; Dindorf, C.; Bartaguiz, E.; Walle, O.; Roschlock-Sachs, I.; Fröhlich, M. Inertial Motion Capturing in Ergonomic Workplace Analysis: Assessing the Correlation between RULA, Upper-Body Posture Deviations and Musculoskeletal Discomfort. Safety 2024, 10, 16. [Google Scholar] [CrossRef]
- Cai, L.; Ma, Y.; Xiong, S.; Zhang, Y. Validity and reliability of upper limb functional assessment using the Microsoft Kinect V2 sensor. Appl. Bionics Biomech. 2019, 2019, 7175240. [Google Scholar] [CrossRef]
- Clark, R.A.; Mentiplay, B.F.; Hough, E.; Pua, Y.H. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Gait Posture 2019, 68, 193–200. [Google Scholar] [CrossRef]
- Diego-Mas, J.-A.; Poveda-Bautista, R.; Garzon-Leal, D.-C. Influences on the use of observational methods by practitioners when identifying risk factors in physical work. Ergonomics 2015, 58, 1660–1670. [Google Scholar] [CrossRef]
- Diego-Mas, J.A.; Alcaide-Marzal, J. Using KinectTM sensor in observational methods for assessing postures at work. Appl. Ergon. 2014, 45, 976–985. [Google Scholar] [CrossRef]
- Manghisi, V.M.; Uva, A.E.; Fiorentino, M.; Bevilacqua, V.; Trotta, G.F.; Monno, G. Real-time RULA assessment using Kinect v2 sensor. Appl. Ergon. 2017, 65, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Plantard, P.; Shum, H.P.H.; Multon, F.; Shum, H.P.H.; Plantard, P. Usability of corrected Kinect measurement for ergonomic evaluation in a constrained environment. Int. J. Hum. Factors Model Simulat. 2017, 5, 338. [Google Scholar] [CrossRef]
- Wei, T.; Lee, B.; Qiao, Y.; Kitsikidis, A.; Dimitropoulos, K.; Grammalidis, N. Experimental Study of Skeleton Tracking Abilities from Microsoft Kinect Non-Frontal Views. In Proceedings of the 2015 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTV-CON), Lisbon, Portugal, 8–10 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep High-Resolution Representation Learning for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, C.; Li, M.; He, C.; Lu, C. DEKR: End-to-End Decoupled Keypoint Regression for Multi-Person Pose Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 19–25 June 2021. [Google Scholar]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable Bag-Of-Freebies Sets New State-Of-The-Art for Real-Time Object Detectors. arXiv 2022, arXiv:2207:02696. [Google Scholar]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 561–578. [Google Scholar]
- Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.-P.; Xu, W.; Casas, D.; Theobalt, C. VNect: Real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. 2017, 36, 1–14. [Google Scholar] [CrossRef]
- Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Seidel, H.-P.; Rhodin, H.; Pons-Moll, G.; Theobalt, C. XNect: Real-time multi-person 3D human pose estimation with a single RGB camera. ACM Trans. Graph. 2020, 39, 82:1–82:17. [Google Scholar] [CrossRef]
- Kim, W.; Sung, J.; Saakes, D. Ergonomic postural assessment using a new open-source human pose estimation technology (OpenPose). Int. J. Ind. Ergon. 2021, 84, 103163. [Google Scholar] [CrossRef]
- Barberi, E.; Chillemi, M.; Cucinotta, F.; Sfravara, F. Fast Three-Dimensional PostureRecon-construction of MotorcyclistsUsing OpenPose and a CustomMATLAB Script. Sensors 2023, 23, 7415. [Google Scholar] [CrossRef]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D markerless motion capture accuracy using OpenPose with multiple video cameras. Front. Sports Act. Living 2020, 2, 50. [Google Scholar] [CrossRef]
- Dong, C.; Du, G. An enhanced real-time human pose estimation method based on a modified YOLOv8 framework. Sci. Rep. 2024, 14, 8012. [Google Scholar] [CrossRef]
- Boudlal, H.; Serrhini, M.; Tahiri, A. A novel approach for simultaneous human activity recognition and pose estimation via skeleton-based leveraging WiFi CSI with YOLOv8 and media pipe frameworks. Signal Image Video Process. 2024, 18, 3673–3689. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Ma, F.; Li, J.; Huang, Y. Single-Stage Pose Estimation and Joint Angle Extraction Method for Moving Human Body. Electronics 2023, 12, 4644. [Google Scholar] [CrossRef]
- Wu, Y.; He, K. Group normalization. In Proceedings of the European conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- García-Luna, M.A.; Ruiz-Fernández, D.; Tortosa-Martínez, J.; Manchado, C.; García-Jaén, M.; Cortell-Tormo, J.M. Transparency as a Means to Analyse the Impact of Inertial Sensors on Users during the Occupational Ergonomic Assessment: A Systematic Review. Sensors 2024, 24, 298. [Google Scholar] [CrossRef]
- Jiao, J.; Tang, Y.M.; Lin, K.Y.; Gao, Y.; Ma, A.J.; Wang, Y.; Zheng, W.S. Dilateformer: Multi-scale dilated transformer for visual recognition. IEEE Trans. Multimed. 2023, 25, 8906–8919. [Google Scholar] [CrossRef]
- Wen, G.; Li, M.; Luo, Y.; Shi, C.; Tan, Y. The improved YOLOv8 algorithm base xfewrga cd on EMSPConv and SPE-head modules. Multimed. Tools Appl. 2024, 83, 61007–61023. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:170404861. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- ISO 11226:2000; Ergonomics—Evaluation of Static Working Postures. ISO: Geneva, Switzerland, 2000.
- Jamshaida, H.; Mishrab, R.K.; Ahamadc, N.; Chandanb, V.; Nadeema, M.; Kolářb, V.; Jirkůb, P.; Müllerb, M.; Akshatd, T.; Nazari, S.; et al. Impact of construction parameters on ergonomic and thermo-physiological comfort performance of knitted occupational compression stocking materials. Heliyon 2024, 10, e26704. [Google Scholar] [CrossRef]
Model | [email protected] | [email protected] | FLOPs/G | Params/M |
---|---|---|---|---|
Hourglass | 81.65 | 56.86 | 170 | 277.8 |
HRNet-W32 | 84.32 | 63.48 | 32.8 | 28.5 |
DEKR | 86.93 | 65.32 | 40.9 | 29.6 |
YoloV7 | 84 | 57 | 28 | 10.5 |
YoloV8 | 85.3 | 58.6 | 30.4 | 11.6 |
MMARM-CNN | 87.5 | 61.4 | 26.5 | 9.4 |
Item | Result |
---|---|
R2 | 0.831 |
Pearson’s product-moment correlation coefficient | 0.865 |
Spearman correlation coefficient | 0.847 |
Average error | 2.53° |
Maximum error | 7.29° |
Minimum error | 0.03° |
Item | Pearson’s Correlation Coefficient | Kendall’s Tau Correlation Coefficient | p-Value | Accuracy |
---|---|---|---|---|
Result | 0.867 | 0.858 | <0.01 | 88.50% |
Body Part | Abducted (Y/N) | Raised (Y/N) | Angle (Y/N) | Twisted (Y/N) | Total Accuracy |
---|---|---|---|---|---|
Upper arm | 172/28 | 178/22 | 183/17 | / | 91.50% |
Lower arm | / | / | 179/21 | / | 89.50% |
Wrist | / | / | 153/47 | 149/51 | 78.75% |
Neck | / | / | 182/18 | / | 91.00% |
Trunk | / | / | 186/14 | / | 93.00% |
Leg | / | / | 194/6 | / | 97.00% |
Item | Correct/Incorrect | Accuracy | Pearson’s Chi-Square | Fisher’s Precision Probability |
---|---|---|---|---|
Blocked | 76/32 | 70.37% | 0.001 | 0.001 |
Not Blocked | 102/12 | 89.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Wang, L.; Li, Y.; Liu, X.; Zhang, Y.; Yan, B.; Li, H. A Multi-Scale and Multi-Stage Human Pose Recognition Method Based on Convolutional Neural Networks for Non-Wearable Ergonomic Evaluation. Processes 2024, 12, 2419. https://doi.org/10.3390/pr12112419
Zhao W, Wang L, Li Y, Liu X, Zhang Y, Yan B, Li H. A Multi-Scale and Multi-Stage Human Pose Recognition Method Based on Convolutional Neural Networks for Non-Wearable Ergonomic Evaluation. Processes. 2024; 12(11):2419. https://doi.org/10.3390/pr12112419
Chicago/Turabian StyleZhao, Wei, Lei Wang, Yuanzhe Li, Xin Liu, Yiwen Zhang, Bingchen Yan, and Hanze Li. 2024. "A Multi-Scale and Multi-Stage Human Pose Recognition Method Based on Convolutional Neural Networks for Non-Wearable Ergonomic Evaluation" Processes 12, no. 11: 2419. https://doi.org/10.3390/pr12112419
APA StyleZhao, W., Wang, L., Li, Y., Liu, X., Zhang, Y., Yan, B., & Li, H. (2024). A Multi-Scale and Multi-Stage Human Pose Recognition Method Based on Convolutional Neural Networks for Non-Wearable Ergonomic Evaluation. Processes, 12(11), 2419. https://doi.org/10.3390/pr12112419