Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review
Abstract
:1. Introduction
2. Plant Protein Sources—Legumes
- i.
- Lentils
- ii.
- Chickpea
- iii.
- Dry Pea
- iv.
- Black bean
- v.
- Mung bean
- vi.
- Soybean
3. PEF Technology
- a.
- Pulsed Electric Field-Assisted Extraction
- b.
- Pulsed Electric Field treatment on Pulses and Legumes
4. Long Term Challenges in PEF
5. Conclusions and Future Research Direction
- As only limited research is available on PEF-assisted protein extraction in legumes, further studies are highly encouraged to explore these protein sources in order to promote this research for large-scale processing.
- Dry legumes have a thick seed coat, which should be soaked in water before it is processed. Hence, process parameters should be carefully optimized to improve the extraction of valuable biological compounds, in a way that does not induce thermal effects in the product.
- In order to gain deeper insights into PEF-assisted protein extraction from legumes, structural and functional characteristics and the complex composition of each kind of legume should be studied for efficient PEF application to obtain desirable protein extraction levels.
- Research should also be executed by combining other green-processing techniques with PEF to obtain a higher yield.
- Research on electrolysis is at an amateur stage in extraction studies and can be further deepened to minimize the effects in the final byproducts.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castro, L.F.; Adu, Y.; Castro, M.; Palacios, C.; Sheikh, M.; Barrios, Y.; Bennett, K.; Prabhu, F. Investigating level of food security among patients with hypertension and diabetes at a student-run free clinic. Bayl. Univ. Med. Cent. Proc. 2024, 37, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.R.; Wang, R.; Case, S.; Jo, A.; Turner, K.; Ross, K.M. Association of food insecurity with overall and disease-specific mortality among cancer survivors in the US. Support. Care Cancer 2024, 32, 309. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.H.; Park, H.A.; Cho, Y.G.; Kim, K.W.; Kim, N.H. Different Associations of Socioeconomic Status on Protein Intake in the Korean Elderly Population: A Cross-Sectional Analysis of the Korea National Health and Nutrition Examination Survey. Nutrients 2019, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Lamberg-Allardt, C.; Bärebring, L.; Arnesen, E.K.; Nwaru, B.I.; Thorisdottir, B.; Ramel, A.; Söderlund, F.; Dierkes, J.; Åkesson, A. Animal versus plant-based protein and risk of cardiovascular disease and type 2 diabetes: A systematic review of randomized controlled trials and prospective cohort studies. Food Nutr. Res. 2023, 67, 1–21. [Google Scholar] [CrossRef]
- Mensink, M. Dietary protein, amino acids and type 2 diabetes mellitus: A short review. Front. Nutr. 2024, 11, 1445981. [Google Scholar] [CrossRef]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef]
- Institute of Medicine (IOM). Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Fatty Acids, Cholesterol, Proteins, and Amino Acids; The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- van de Rest, O.; van der Zwaluw, N.L.; de Groot, L.C.P.G.M. Chapter 71—Dietary Protein, Cognitive Decline, and Dementia. In Diet and Nutrition in Dementia and Cognitive Decline; Martin, C.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 773–783. [Google Scholar]
- Ayilara, M.S.; Abberton, M.; Oyatomi, O.A.; Odeyemi, O.; Babalola, O.O. Potentials of underutilized legumes in food security. Front. Soil Sci. 2022, 2, 1020193. [Google Scholar] [CrossRef]
- Yanni, A.E.; Iakovidi, S.; Vasilikopoulou, E.; Karathanos, V.T. Legumes: A Vehicle for Transition to Sustainability. Nutrients 2024, 16, 98. [Google Scholar] [CrossRef]
- Dell’Olmo, E.; Tiberini, A.; Sigillo, L. Leguminous Seedborne Pathogens: Seed Health and Sustainable Crop Management. Plants 2023, 12, 2040. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Krishnan, S.B.; Leong, S.S.J. Pulsed Electric Field Technology for Recovery of Proteins from Waste Plant Resources and Deformed Mushrooms: A Review. Processes 2024, 12, 342. [Google Scholar] [CrossRef]
- Singh, N. Pulses: An overview. J. Food Sci. Technol. 2017, 54, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Mudryj, A.N. Pulse Consumption: A Global Perspective. In Health Benefits of Pulses; Dahl, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 19–33. [Google Scholar]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Mitchell, S.; Sahye-Pudaruth, S.; Mejia, S.B.; Chiavaroli, L.; Mirrahimi, A.; Ireland, C.; Bashyam, B.; et al. Effect of Legumes as Part of a Low Glycemic Index Diet on Glycemic Control and Cardiovascular Risk Factors in Type 2 Diabetes Mellitus. Arch. Intern. Med. 2012, 172, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 22 September 2024).
- Wallace, T.C.; Murray, R.; Zelman, K.M. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients 2016, 8, 766. [Google Scholar] [CrossRef] [PubMed]
- Abebe, B. The Dietary Use of Pigeon Pea for Human and Animal Diets. Sci. World J. 2022, 2022, 4873008. [Google Scholar]
- Haji, A.; Teka, T.A.; Bereka, T.Y.; Andersa, K.N.; Nekera, K.D.; Abdi, G.C.; Abelti, A.L.; Urugo, M.M. Nutritional Composition, Bioactive Compounds, Food Applications, and Health Benefits of Pigeon Pea (Cajanus cajan L. Millsp.): A Review. Legume Sci. 2024, 6, e233. [Google Scholar] [CrossRef]
- Alexander, R.; Khaja, A.; Debiec, N.; Fazioli, A.; Torrance, M.; Razzaque, M.S. Health-promoting benefits of lentils: Anti-inflammatory and anti-microbial effects. Curr. Res. Physiol. 2024, 7, 100124. [Google Scholar] [CrossRef]
- Wu, D.T.; Li, W.X.; Wan, J.J.; Hu, Y.C.; Gan, R.Y.; Zou, L.A. Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Meenu, M.; Chen, P.; Mradula, M.; Chang, S.K.C.; Xu, B. New insights into chemical compositions and health-promoting effects of black beans (Phaseolus vulgaris L.). Food Front. 2023, 4, 1019–1038. [Google Scholar] [CrossRef]
- Adebo, J.A. A Review on the Potential Food Application of Lima Beans (Phaseolus lunatus L.), an Underutilized Crop. Appl. Sci. 2023, 13, 1996. [Google Scholar] [CrossRef]
- Câmara, C.R.S.; Urrea, C.A.; Schlegel, V. Pinto Beans (Phaseolus vulgaris L.) as a Functional Food: Implications on Human Health. Agriculture 2013, 3, 90–111. [Google Scholar] [CrossRef]
- Elam, E.; Feng, J.; Lv, Y.-M.; Ni, Z.-J.; Sun, P.; Thakur, K.; Zhang, J.-G.; Ma, Y.-L.; Wei, Z.-J. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. J. Funct. Foods 2021, 86, 104674. [Google Scholar] [CrossRef]
- Tetteh, J.; Wereko Brobbey, D.Y.; Osei, K.J.; Ayamah, A.; Laryea, M.K.; Darko, G.; Borquaye, L.S. Peptide Extract from Red Kidney Beans, Phaseolus vulgaris (Fabaceae), Shows Promising Antimicrobial, Antibiofilm, and Quorum Sensing Inhibitory Effects. Biochem. Res. Int. 2024, 2024, 4667379. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, J.; Hao, X.; Ji, X.; Zhu, Y.; Chen, X.; Yao, Y. A systematic review of black soybean (Glycine max (L.) Merr.): Nutritional composition, bioactive compounds, health benefits, and processing to application. Food Front. 2024, 5, 1188–1211. [Google Scholar] [CrossRef]
- Jeong, E.W.; Dhungana, S.K.; Yang, Y.S.; Baek, Y.; Seo, J.H.; Kang, B.K.; Jung, C.S.; Han, S.I.; Lee, H.G. Black and Yellow Soybean Consumption Prevents High-Fat Diet-Induced Obesity by Regulating Lipid Metabolism in C57BL/6 Mice. Evid. Based Complement. Altern. Med. 2023, 2023, 6139667. [Google Scholar] [CrossRef]
- Liberal, Â.; Fernandes, Â.; Ferreira, I.C.F.R.; Vivar-Quintana, A.M.; Barros, L. Effect of different physical pre-treatments on physicochemical and techno-functional properties, and on the antinutritional factors of lentils (Lens culinaris spp.). Food Chem. 2024, 450, 139293. [Google Scholar] [CrossRef]
- Myung-Ja, M.; Hyun-Jae, S. Chemical Composition and Nutritional Characteristics of Lentils (Lens culinaris), and Their Application in the Food Industry: A Review. Korean J. Food Sci. Technol. 2015, 47, 273–280. [Google Scholar]
- Dhull, S.B.; Kinabo, J.; Uebersax, M.A. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci. 2022, 5, e156. [Google Scholar] [CrossRef]
- Kaale, L.D.; Siddiq, M.; Hooper, S. Lentil (Lens culinaris Medik) as nutrient-rich and versatile food legume: A review. Legume Sci. 2022, 5, e169. [Google Scholar] [CrossRef]
- Salaria, S.; Boatwright, J.L.; Thavarajah, P.; Kumar, S.; Thavarajah, D. Protein Biofortification in Lentils (Lens culinaris Medik.) Toward Human Health. Front. Plant Sci. 2022, 13, 869713. [Google Scholar] [CrossRef]
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. Int. J. Food Sci. Technol. 2017, 53, 892–903. [Google Scholar] [CrossRef]
- Das, T.; Sen, A.; Mahapatra, S. Characterization of plant growth-promoting bacteria isolated from rhizosphere of lentil (Lens culinaris L.) grown in two different soil orders of eastern India. Braz. J. Microbiol. 2023, 54, 3101–3111. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.T.; Hussein, W.A. Improving the Growth and Production of Beets by Fertilizing with Fish Water and Spraying Lentil Extract. In Proceedings of the 4th International Conference of Modern Technologies in Agricultural Science, Najaf, Iraq, 20–21 September 2023; IOP Publishing: Bristol, UK, 2023; pp. 1–9. [Google Scholar]
- Sulieman, M.; Tinay, A.H.; Elkhalifa, A.E.O.; Babiker, E.E.; Elkhalil, E.A.I. Solubility as Influenced by pH and NaCl Concentration and Functional Properties of Lentil Proteins Isolate. Pak. J. Nutr. 2006, 5, 589–593. [Google Scholar]
- Caldeira, R.F.; Gouvêa, L.d.P.; Azevedo, T.d.L.; Conte, C.; Sá, D.d.G.C.F.d.; Galdeano, M.C.; Felberg, I.; Lima, J.R.; Mellinger, C.G. Processing parameters, techno-functional properties and potential food application of lentil protein concentrate as an ingredient for the plant-based market. Food Res. Int. 2024, 189, 114569. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Stone, A.K.; Jafarian, Z.; Liu, E.; Xu, C.; Bhagwat, A.; Lu, Y.; Gao, P.; Polley, B.; Bhowmik, P.; et al. Submerged fermentation of lentil protein isolate and its impact on protein functionality, nutrition, and volatile profiles. J. Food Sci. 2024, 89, 3412–3429. [Google Scholar] [CrossRef]
- Spotlight: Global Chickpea Exports Rise|USDA Foreign Agricultural Service. Available online: https://fas.usda.gov/data/spotlight-global-chickpea-exports-rise (accessed on 19 September 2024).
- Nadia, G.; Lynch, N.L.; Arendt, E.K.; O’Mahony, J.A. Chickpea protein ingredients: A review of composition, functionality and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 435–452. [Google Scholar]
- Merga, B.; Haji, J.; Yildiz, F. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, physico-chemical and functional characterization of a global chickpea collection. J. Food Compos. Anal. 2019, 84, 103306. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, S.; Isono, N.; Noda, T. Genotypic diversity in physico-chemical, pasting and gel textural properties of chickpea (Cicer arietinum L.). Food Chem. 2010, 122, 65–73. [Google Scholar] [CrossRef]
- Kou, X.; Gao, J.; Xue, Z.; Zhang, Z.; Wang, H.; Wang, X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT—Food Sci. Technol. 2013, 50, 591–598. [Google Scholar] [CrossRef]
- Hall, C.; Hillen, C.; Garden Robinson, J. Composition, nutritional value, and health benefits of pulses. Cereal Chem. 2017, 94, 11–31. [Google Scholar] [CrossRef]
- Han, I.H.; Swanson, B.G.; Baik, B.-K. Protein Digestibility of Selected Legumes Treated with Ultrasound and High Hydrostatic Pressure During Soaking. Cereal Chem. 2007, 84, 518–521. [Google Scholar] [CrossRef]
- Mesfin, N.; Belay, A.; Amare, E. Effect of germination, roasting, and variety on physicochemical, techno-functional, and antioxidant properties of chickpea (Cicer arietinum L.) protein isolate powder. Heliyon 2021, 7, e08081. [Google Scholar] [CrossRef]
- Windsor, N.; Boatwright, L.; Boyles, R.; Bridges, W.; Rubiales, D.; Thavarajah, D. Characterizing Dry Pea (Pisum sativum L.) for Improved Nutritional Traits and the Potential for Biofortification. Legume Sci. 2024, 6, e250. [Google Scholar] [CrossRef]
- Roy, F.; Boye, J.I.; Simpson, B.K. Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res. Int. 2010, 43, 432–442. [Google Scholar] [CrossRef]
- Thavarajah, D.; Lawrence, T.J.; Powers, S.E.; Kay, J.; Thavarajah, P.; Shipe, E.; McGee, R.; Kumar, S.; Boyles, R. Organic dry pea (Pisum sativum L.) biofortification for better human health. PLoS ONE 2022, 17, e0261109. [Google Scholar] [CrossRef]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Oliveira, M.B.P.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Feizollahi, E.; Roopesh, M.S.; Chen, L. Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innov. Food Sci. Emerg. Technol. 2021, 67, 102567. [Google Scholar] [CrossRef]
- Manthey, F.A. Starch: Sources and Processing. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 160–164. [Google Scholar]
- Ferreira, C.D.; Ziegler, V.; Lindemann, I.d.S.; Hoffmann, J.F.; Vanier, N.L.; de Oliveira, M. Quality of black beans as a function of long-term storage and moldy development: Chemical and functional properties of flour and isolated protein. Food Chem. 2018, 246, 473–480. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res. Int. 2014, 62, 595–601. [Google Scholar] [CrossRef]
- do Evangelho, J.A.; Vanier, N.L.; Pinto, V.Z.; De Berrios, J.J.; Dias, A.R.G.; da Rosa Zavareze, E. Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chem. 2017, 214, 460–467. [Google Scholar] [CrossRef]
- Aguilar, J.G.D.S.; Granato Cason, V.; de Castro, R.J.S. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. Int. J. Food Sci. Technol. 2019, 54, 34–41. [Google Scholar] [CrossRef]
- Hernandez-Velazquez, I.; Sanchez-Tapia, M.; Ordaz-Nava, G.; Torres, N.; Tovar, A.R.; Galvez, A. Correction: Black bean protein concentrate ameliorates hepatic steatosis by decreasing lipogenesis and increasing fatty acid oxidation in rats fed a high fat-sucrose diet. Food Funct. 2021, 12, 426. [Google Scholar] [CrossRef]
- Li, L.; Zhou, Y.; Teng, F.; Zhang, S.; Qi, B.; Wu, C.; Tian, T.; Wang, Z.; Li, Y. Application of ultrasound treatment for modulating the structural, functional and rheological properties of black bean protein isolates. Int. J. Food Sci. Technol. 2020, 55, 1637–1647. [Google Scholar] [CrossRef]
- Alfaro-Diaz, A.; Urías-Silvas, J.E.; Loarca-Piña, G.; Gaytan-Martínez, M.; Prado-Ramirez, R.; Mojica, L. Techno-functional properties of thermally treated black bean protein concentrate generated through ultrafiltration process. LWT 2021, 136, 110296. [Google Scholar] [CrossRef]
- Fonseca-Hernández, D.; Lugo-Cervantes, E.D.C.; Escobedo-Reyes, A.; Mojica, L. Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Molecules 2021, 26, 6716. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Tarahi, M. The Potential Application of Mung Bean (Vigna radiata L.) Protein in Plant-Based Food Analogs: A Review. Legume Sci. 2024, 6, e70011. [Google Scholar] [CrossRef]
- Yi-Shen, Z.; Shuai, S.; FitzGerald, R. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food Nutr. Res. 2018, 62, 1–11. [Google Scholar] [CrossRef]
- Sehrawat, N.; Yadav, M.; Kumar, S.; Devi, A.; Singh, R.; Sharma, V.; Dhama, K.; Lorenzo, J.M.; Sharma, A.K. Mung bean as a potent emerging functional food having anticancer therapeutic potential: Mechanistic insight and recent updates. Biotechnol. Appl. Biochem. 2023, 70, 2002–2016. [Google Scholar] [CrossRef]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Saari, N. Texturized mung bean protein as a sustainable food source: Effects of extrusion on its physical, textural and protein quality. Innov. Food Sci. Emerg. Technol. 2021, 67, 102591. [Google Scholar] [CrossRef]
- Li, S.; Feng, X.; Hao, X.; Zhu, Y.; Zou, L.; Chen, X.; Yao, Y. A comprehensive review of mung bean proteins: Extraction, characterization, biological potential, techno-functional properties, modifications, and applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 3292–3327. [Google Scholar] [CrossRef]
- Mehta, N.; Rao, P.; Saini, R. A review on metabolites and pharmaceutical potential of food legume crop mung bean (Vigna radiata L. Wilczek). BioTechnologia 2021, 102, 425–435. [Google Scholar] [CrossRef]
- Soybeans|USDA Foreign Agricultural Service. Available online: https://fas.usda.gov/data/production/commodity/2222000 (accessed on 19 September 2024).
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef]
- Huang, Z.; Qu, Y.; Hua, X.; Wang, F.; Jia, X.; Yin, L. Recent advances in soybean protein processing technologies: A review of preparation, alterations in the conformational and functional properties. Int. J. Biol. Macromol. 2023, 248, 125862. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Fahey, G.C. 9—Soybean Carbohydrates. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Champaign, IL, USA, 2008; pp. 269–296. [Google Scholar]
- Gerde, J.A.; White, P.J. 7—Lipids. In Soybeans; Johnson, L.A., White, P.J., Galloway, R., Eds.; AOCS Press: Champaign, IL, USA, 2008; pp. 193–227. [Google Scholar]
- Jeyamkondan, S.; Jayas, D.S.; Holley, R.A. Pulsed electric field processing of foods: A review. J. Food Prot. 1999, 62, 1088–1096. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.M.; Bekhit, A.E.-D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul Malek, Z.; Munir, A.; Ahmad, M.H.; Nawawi, Z.; Sidik, M.A.B.; Jumani, T.A.; Khan, I.; Alotabi, H.; Khan, A. An improved electroporator with continuous liquid flow and double-exponential waveform for liquid food pasteurization. IEEE Access 2021, 9, 147732–147742. [Google Scholar] [CrossRef]
- Demir, E.; Tappi, S.; Dymek, K.; Rocculi, P.; Galindo, F.G. Reversible electroporation caused by pulsed electric field—Opportunities and challenges for the food sector. Trends Food Sci. Technol. 2023, 139, 104120. [Google Scholar] [CrossRef]
- Bocker, R.; Silva, E.K. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem. X 2022, 15, 100398. [Google Scholar] [CrossRef]
- Naliyadhara, N.; Kumar, A.; Girisa, S.; Daimary, U.D.; Hegde, M.; Kunnumakkara, A.B. Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends Food Sci. Technol. 2022, 122, 238–255. [Google Scholar] [CrossRef]
- Xue, D.; Farid, M.F. Pulsed Electric Field Extraction of Valuable Compounds from White Button Mushroom (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2015, 29, 178–186. [Google Scholar] [CrossRef]
- Ghoshal, G. Comprehensive review on pulsed electric field in food preservation: Gaps in current studies for potential future research. Heliyon 2023, 9, e17532. [Google Scholar] [CrossRef]
- Buchmann, L.; Brändle, I.; Haberkorn, I.; Hiestand, M.; Mathys, A. Pulsed electric field based cyclic protein extraction of microalgae towards closed-loop biorefinery concepts. Bioresour. Technol. 2019, 291, 121870. [Google Scholar] [CrossRef]
- Coustets, M.; Joubert-Durigneux, V.; Hérault, J.; Schoefs, B.; Blanckaert, V.; Garnier, J.-P.; Teissié, J. Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 2015, 103, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Calleja-Gómez, M.; Castagnini, J.M.; Carbó, E.; Ferrer, E.; Berrada, H.; Barba, F.J. Evaluation of Pulsed Electric Field-Assisted Extraction on the Microstructure and Recovery of Nutrients and Bioactive Compounds from Mushroom (Agaricus bisporus). Separations 2022, 9, 302. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Boussetta, N.; Blouet, C.; Tessaro, I.C.; Marczak, L.D.F.; Vorobiev, E. Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innov. Food Sci. Emerg. Technol. 2015, 29, 170–177. [Google Scholar] [CrossRef]
- Parniakov, O.; Roselló-Soto, E.; Barba, F.J.; Grimi, N.; Lebovka, N.; Vorobiev, E. New approaches for the effective valorization of papaya seeds: Extraction of proteins, phenolic compounds, carbohydrates, and isothiocyanates assisted by pulsed electric energy. Food Res. Int. 2015, 77 Pt 4, 711–717. [Google Scholar] [CrossRef]
- Yu, X.; Bals, O.; Grimi, N.; Vorobiev, E. A new way for the oil plant biomass valorization: Polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Ind. Crops Prod. 2015, 74, 309–318. [Google Scholar] [CrossRef]
- Kamboj, A.; Chopra, R.; Singh, R.; Saxena, V.; Prassana Kumar, G.V. Effect of pulsed electric field parameters on the alkaline extraction of valuable compounds from perilla seed meal and optimization by central composite design approach. Appl. Food Res. 2022, 2, 100240. [Google Scholar] [CrossRef]
- Wouters, P.C.; Smelt, J.P. Inactivation of microorganisms with pulsed electric fields: Potential for food preservation. Food Biotechnol. 1997, 11, 193–229. [Google Scholar] [CrossRef]
- Qin, S.; Timoshkin, I.V.; Maclean, M.; Wilson, M.P.; Given, M.J.; Wang, T.; Anderson, J.G.; Macgregor, S.J. TiO2-Coated Electrodes for Pulsed Electric Field Treatment of Microorganisms. IEEE Trans. Plasma Sci. 2016, 44, 2121–2128. [Google Scholar] [CrossRef]
- Qin, B.L.; Zhang, Q.; Canovas, G.V.B. Inactivation of microorganisms by Pulsed Electric Fields of different voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 1047–1057. [Google Scholar]
- Qin, B.L.; Barbosa-Canovas, G.V.B.; Swanson, B.G.; Pedrow, P.D.; Olsen, R.G. Inactivating microorganisms using a Pulsed Electric Field continuous treatment system. IEEE Trans. Ind. Appl. 1998, 34, 43–50. [Google Scholar]
- Sale, A.J.H.; Hamilton, W.A. Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast. Biochim. Biophys. Acta 1967, 148, 781–788. [Google Scholar] [CrossRef]
- Li, X.; Farid, M. A review on recent development in non-conventional food sterilization technologies. J. Food Eng. 2016, 182, 33–45. [Google Scholar] [CrossRef]
- Gateau, H.; Blanckaert, V.; Veidl, B.; Burlet-Schiltz, O.; Pichereaux, C.; Gargaros, A.; Marchand, J.; Schoefs, B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 2021, 137, 107588. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, L.; Ju, H.; Bao, Z.; Zeng, X.-A.; Lin, S. Research advances and application of pulsed electric field on proteins and peptides in food. Food Res. Int. 2021, 139, 109914. [Google Scholar] [CrossRef]
- Ganeva, V.; Angelova, B.; Galutzov, B.; Goltsev, V.; Zhiponova, M. Extraction of Proteins and Other Intracellular Bioactive Compounds From Baker’s Yeasts by Pulsed Electric Field Treatment. Front. Bioeng. Biotechnol. 2020, 15, 552335. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Pappas, V.M.; Palaiogiannis, D.; Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Optimization of Pulsed Electric-Field-Based Total Polyphenols’ Extraction from Elaeagnus pungens ‘Limelight’ Leaves Using Hydroethanolic Mixtures. Oxygen 2022, 2, 537–546. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int. J. Mol. Sci. 2023, 24, 15914. [Google Scholar] [CrossRef]
- Einarsdóttir, R.; Þórarinsdóttir, K.A.; Aðalbjörnsson, B.V.; Guðmundsson, M.; Marteinsdóttir, G.; Kristbergsson, K. Extraction of bioactive compounds from Alaria esculenta with pulsed electric field. J Appl Phycol. 2022, 34, 597–608. [Google Scholar] [CrossRef]
- Han, S.F.; Jin, W.; Yang, Q.; Abomohra, A.E.F.; Zhou, X.; Tu, R.; Chen, C.; Xie, G.J.; Wang, Q. Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater. Renew. Energy 2019, 133, 233–239. [Google Scholar] [CrossRef]
- Zhang, R.; Gu, X.; Xu, G.; Fu, X. Improving the lipid extraction yield from Chlorella based on the controllable electroporation of cell membrane by pulsed electric field. Bioresour. Technol. 2021, 330, 124933. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Burritt, D.J.; Oey, I. Evaluation of the anthocyanin release and health-promoting properties of Pinot Noir grape juices after pulsed electric fields. Food Chem. 2016, 196, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Sani, I.K.; Mehrnoosh, F.; Rasul, N.H.; Hassani, B.; Mohammadi, H.; Gholizadeh, H.; Sattari, N.; Kaveh, M.; Khodaei, S.M.; Sani, M.A.; et al. Pulsed electric field-assisted extraction of natural colorants; principles and applications. Food Biosci. 2024, 61, 104746. [Google Scholar]
- Luengo, E.; Condón-Abanto, S.; Álvarez, I.; Raso, J. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J. Membr. Biol. 2014, 247, 1269–1277. [Google Scholar] [CrossRef]
- Roohinejad, S.; Oey, I.; David, E. Effect of pulsed electric field processing on carotenoid extractability of carrot purée. Int. J. Food Sci. Technol. 2014, 49, 2120–2127. [Google Scholar] [CrossRef]
- López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chem. 2021, 364, 130377. [Google Scholar] [CrossRef]
- Kim, H.S.; Ko, M.J.; Park, C.H.; Chung, M.S. Application of Pulsed Electric Field as a Pre-Treatment for Subcritical Water Extraction of Quercetin from Onion Skin. Foods 2022, 11, 1069. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Niu, D.; Wang, R.; Xu, F.Y.; Chen, B.R.; Lin, J.W.; Tang, Z.S.; Zeng, X.A. Efficient and green strategy based on pulsed electric field coupled with deep eutectic solvents for recovering flavonoids and preparing flavonoid aglycones from noni-processing wastes. J. Clean. Prod. 2022, 368, 133019. [Google Scholar] [CrossRef]
- Rahaman, A.; Siddeeg, A.; Manzoor, M.F.; Zeng, X.A.; Ali, S.; Baloch, Z.; Li, J.; Wen, Q.H. Impact of pulsed electric field treatment on drying kinetics, mass transfer, colour parameters and microstructure of plum. J. Food Sci. Technol. 2019, 56, 2670–2678. [Google Scholar] [CrossRef]
- Punthi, F.; Yudhistira, B.; Gavahian, M.; Chang, C.-K.; Cheng, K.-C.; Hou, C.-Y.; Hsieh, C.-W. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5109–5130. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Impact of pulsed electric fields on vacuum drying kinetics and physicochemical properties of carrot. Food Res. Int. 2020, 137, 109658. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Wang, J.; Jayaram, S.; Raghavan, V. Effects of Pulsed Electric Fields and Ultrasound Processing on Proteins and Enzymes: A Review. Processes 2021, 9, 722. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Postma, P.R.; Pataro, G.; Capitoli, M.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.; Olivieri, G.; Ferrari, G. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment. Bioresour. Technol. 2016, 203, 80–88. [Google Scholar] [CrossRef]
- Carullo, D.; Abera, B.D.; Casazza, A.A.; Donsì, F.; Perego, P.; Ferrari, G.; Pataro, G. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res. 2018, 31, 60–69. [Google Scholar] [CrossRef]
- Wang, L.; Boussetta, N.; Lebovka, N.; Vorobiev, E. Cell disintegration of apple peels induced by pulsed electric field and efficiency of bio-compound extraction. Food Bioprod. Process. 2020, 122, 13–21. [Google Scholar] [CrossRef]
- Saykova, I.; Iatcheva, I.; Stoylov, B. Pulsed electric field extraction of valuable compounds from grape seeds. J. Chem. Technol. Metall. 2022, 57, 1168–1174. [Google Scholar]
- Siddeeg, A.; Faisal Manzoor, M.; Haseeb Ahmad, M.; Ahmad, N.; Ahmed, Z.; Kashif Iqbal Khan, M.; Aslam Maan, A.; Mahr-Un-Nisa; Zeng, X.-A.; Ammar, A.-F. Pulsed Electric Field-Assisted Ethanolic Extraction of Date Palm Fruits: Bioactive Compounds, Antioxidant Activity and Physicochemical Properties. Processes 2019, 7, 585. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Redondo, D.; Venturini, M.E.; Luengo, E.; Raso, J.; Arias, E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov. Food Sci. Emerg. Technol. 2018, 45, 335–343. [Google Scholar] [CrossRef]
- Quagliariello, V.; Iaffaioli, R.V.; Falcone, M.; Ferrari, G.; Pataro, G.; Donsì, F. Effect of pulsed electric fields—Assisted extraction on anti-inflammatory and cytotoxic activity of brown rice bioactive compounds. Food Res. Int. 2016, 87, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Medina-Meza, I.G.; Cánovas, G.V.B. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. J. Food Eng. 2015, 166, 268–275. [Google Scholar] [CrossRef]
- Delsart, C.; Ghidossi, R.; Poupot, C.; Cholet, C.; Grimi, N.; Vorobiev, E.; Milisic, V.; Peuchot, M.M. Enhanced Extraction of Valuable Compounds from Merlot Grapes by Pulsed Electric Field. Am. J. Enol. Vitic. 2012, 63, 205–211. [Google Scholar] [CrossRef]
- Puértolas, E.; Cregenzán, O.; Luengo, E.; Álvarez, E.; Raso, J. Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem. 2013, 136, 1330–1336. [Google Scholar] [CrossRef]
- Gagneten, M.; Leiva, G.; Salvatori, D.; Schebor, C.; Olaiz, N. Optimization of Pulsed Electric Field Treatment for the Extraction of Bioactive Compounds from Blackcurrant. Food Bioprocess Technol. 2019, 12, 1102–1109. [Google Scholar] [CrossRef]
- Sharayei, P.; Gholampour, S.; Shooshtari, T. The effect of novel extraction methods (pulse-electric field and ultrasound) on the bioactive compounds of pomegranate peel. Technol. Med. Aromat. Plants Iran 2024, 5, 107–190. [Google Scholar]
- Shiekh, K.A.; Olatunde, O.O.; Zhang, B.; Huda, N.; Benjakul, S. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chem. 2021, 359, 129976. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Walsh, D.; Griffin, T.P.; Islam, N.; Lyng, J.G.; Brunton, N.P.; Rai, D.K. Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer’s spent grains. Innov. Food Sci. Emerg. Technol. 2019, 54, 200–210. [Google Scholar] [CrossRef]
- Devkota, L.; He, L.; Bittencourt, C.; Midgley, C.; Haritos, V.S. Thermal and pulsed electric field (PEF) assisted hydration of common beans. LWT 2022, 158, 113163. [Google Scholar] [CrossRef]
- Andreou, V.; Sigala, A.; Limnaios, A.; Dimopoulos, G.; Taoukis, P. Effect of pulsed electric field treatment on the kinetics of rehydration, textural properties and the extraction of intracellular compounds of dried chickpeas. J. Food Sci. 2021, 86, 2539–2552. [Google Scholar] [CrossRef] [PubMed]
- Baier, A.K.; Bußler, S.; Knorr, D. Potential of high isostatic pressure and pulsed electric fields to improve mass transport in pea tissue. Food Res. Int. 2015, 76, 66–73. [Google Scholar] [CrossRef]
- Minh, N.P. Total phenolic, isothiocyanate and radicle elongation determination of mung bean sprout during germination affected by different variables of pulsed electric field treatment. Plant Sci. Today 2022, 9, 504–508. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Mo, H. Effects of pulsed electric fields on physicochemical properties of soybean protein isolates. LWT—Food Sci. Technol. 2007, 40, 1167–1175. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chen, Q.; Liu, X.H.; Chen, Z.X. Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields. Food Chem. 2008, 109, 408–414. [Google Scholar] [CrossRef]
- Brito, P.S.; Canacsinh, H.; Mendes, J.P.; Redondo, L.M.; Pereira, M.T. Comparison between monopolar and bipolar microsecond range Pulsed Electric Fields in enhancement of apple juice extraction. IEEE Trans. Plasma Sci. 2012, 40, 2348–2354. [Google Scholar] [CrossRef]
- Morren, J.; Roodenburg, B.; de Haan, S.W.H. Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers. Innov. Food Sci. Emerg. Technol. 2003, 4, 285–295. [Google Scholar] [CrossRef]
- Pataro, G.; Barca, G.M.J.; Donsì, G.; Ferrari, G. On the modeling of electrochemical phenomena at the electrode-solution interface in a PEF treatment chamber: Methodological approach to describe the phenomenon of metal release. J. Food Eng. 2015, 165, 34–44. [Google Scholar] [CrossRef]
- Samaranayake, C.P.; Sastry, S.K.; Zhang, H. Pulsed Ohmic Heating–A Novel Technique for Minimization of Electrochemical Reactions During Processing. J. Food Sci. 2005, 70, e460–e465. [Google Scholar] [CrossRef]
- Taha, A.; Casanova, F.; Šimonis, P.; Stankevič, V.; Gomaa, M.A.E.; Stirke, A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods 2022, 11, 1556. [Google Scholar] [CrossRef] [PubMed]
- Góngora-Nieto, M.M.; Pedrow, P.D.; Swanson, B.G.; Barbosa-Cánovas, G.V. Impact of air bubbles in a dielectric liquid when subjected to high field strengths. Innov. Food Sci. Emerg. Technol. 2003, 4, 57–67. [Google Scholar] [CrossRef]
S.No. | Legume/Pulse | Nutritional Profile | Health Benefits | References |
---|---|---|---|---|
1. | Chickpea Cicer arietinum L. |
|
| [17] |
2. | Pigeon Pea Cajanus cajan L. |
|
| [18,19] |
3. | Lentils Lens culinaris |
|
| [20] |
4. | Dry Pea Pisum sativum L. |
|
| [21] |
5. | Cow Pea Vigna unguiculata L. |
|
| [22] |
6. | Black Bean Phaseolus vulgaris L. |
|
| [23] |
7. | Lima Bean Phaseolus lunatus L. |
|
| [24] |
8. | Pinto Bean Phaseolus vulgaris L. |
|
| [25,26] |
9. | Red Kidney Bean Phaseolus vulgaris L. |
|
| [27] |
10. | Soybean Glycine max Black (BS) & Yellow (YS) |
|
| [28,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramaswamy, R.; Bala Krishnan, S. Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review. Processes 2024, 12, 2667. https://doi.org/10.3390/pr12122667
Ramaswamy R, Bala Krishnan S. Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review. Processes. 2024; 12(12):2667. https://doi.org/10.3390/pr12122667
Chicago/Turabian StyleRamaswamy, Ramya, and Sivaneasan Bala Krishnan. 2024. "Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review" Processes 12, no. 12: 2667. https://doi.org/10.3390/pr12122667
APA StyleRamaswamy, R., & Bala Krishnan, S. (2024). Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review. Processes, 12(12), 2667. https://doi.org/10.3390/pr12122667