Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Structure
3.2. Surface Roughness and Surface Energy
3.3. Hardness
3.4. Magnetic Domain Behavior and χac Analysis
3.5. Electricity Properties
3.6. Optical Property
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reohr, W.; Honigschmid, H.; Robertazzi, R.; Gogl, D.; Pesavento, F.; Lammers, S.; Lewis, K.; Arndt, C.; Lu, Y.; Viehmann, H.; et al. Memories of tomorrow. IEEE Circuits Devices Mag. 2002, 18, 17–27. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, T.; Wang, J.; Zhao, R.; Ma, Y.; Wang, F.; Xu, X. Influence of Ce-Mn co-doping on the structure and magnetic properties of cobalt ferrites. J. Alloy. Compd. 2022, 929, 167256. [Google Scholar] [CrossRef]
- Basavad, M.; Shokrollahi, H.; Ahmadvand, H.; Arab, S. Structural, magnetic and magneto-optical properties of the bulk and thin film synthesized cerium- and praseodymium-doped yttrium iron garnet. Ceram. Int. 2020, 46, 12015–12022. [Google Scholar] [CrossRef]
- Bethencourt, M.; Botana, F.; Calvino, J.; Marcos, M.; Rodríguez-Chacón, M. Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: A review. Corros. Sci. 1998, 40, 1803–1819. [Google Scholar] [CrossRef]
- Niu, Y.; Fu, G.; Gesmundo, F. The corrosion of a Co–15 wt% Ce alloy in mixed oxidizing-sulfidizing gases at 600–800 °C. Corros. Sci. 1999, 41, 1791–1815. [Google Scholar] [CrossRef]
- Niu, Y.; Fu, G.Y.; Wu, W.T.; Gesmuindo, F. The oxidation of a Co-15 wt% Ce alloy under low Oxygen pressures at 600–800 °C. Corros. Sci. 1998, 40, 1215–1228. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Hashemi, S.H.; Ashrafi, A.; Razavi, R.S.; Mirsaeed, S.M.G. Characterization and corrosion behavior of Al–Co–rare earth (Ce–La) amorphous alloy. J. Rare Earths 2023, 41, 771–779. [Google Scholar] [CrossRef]
- Goldman, M.E.; Ünlü, N.; Shiflet, G.J.; Scully, J.R. Selected corrosion properties of a novel amorphous Al-Co-Ce alloy system. Electrochem. Solid-State Lett. 2005, 8, B1. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.-C.; Min, H.-G. Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. J. Appl. Phys. 1998, 83, 5313–5320. [Google Scholar] [CrossRef]
- Basumatary, R.; Behera, P.; Basumatary, B.; Brahma, B.; Ravi, S.; Brahma, R.; Srivastava, S. Influence of surface roughness on magnetic properties of CoTbNi ternary alloy films. Micro Nanostructures 2022, 174, 207491. [Google Scholar] [CrossRef]
- Kharmouche, A.; Chérif, S.-M.; Bourzami, A.; Layadi, A.; Schmerber, G. Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films. J. Phys. D Appl. Phys. 2004, 37, 2583–2587. [Google Scholar] [CrossRef]
- Liu, W.-J.; Chang, Y.-H.; Chiang, C.-C.; Chen, Y.-T.; Liu, Y.-C.; Ou, S.-L.; Li, S.-Y.; Chi, P.-W. Co40Fe40Y20 Nanofilms’ Structural, Magnetic, Electrical, and Nanomechanical Characteristics as a Function of Annealing Temperature and Thickness. Coatings 2023, 13, 137. [Google Scholar] [CrossRef]
- Liu, W.-J.; Chang, Y.-H.; Fern, C.-L.; Chen, Y.-T.; Jhou, T.-Y.; Chiu, P.-C.; Lin, S.-H.; Lin, K.-W.; Wu, T.-H. Annealing Effect on the Contact Angle, Surface Energy, Electric Property, and Nanomechanical Characteristics of Co40Fe40W20 Thin Films. Coatings 2021, 11, 1268. [Google Scholar] [CrossRef]
- Liu, W.-J.; Chang, Y.-H.; Chiang, C.-C.; Hsu, S.-T.; Fern, C.-L.; Chen, Y.-T.; Ma, S.-S.; Wang, W.-K.; Lin, S.-H. Influence of surface roughness and annealing on the structural, optical, electrical, and magnetic properties of Co40Fe40Dy20 thin films deposited on glass substrate. Ceram. Int. 2024, 50, 40678–40689. [Google Scholar] [CrossRef]
- Kim, E.S.; Haftlang, F.; Ahn, S.Y.; Gu, G.H.; Kim, H.S. Effects of processing parameters and heat treatment on the microstructure and magnetic properties of the in-situ synthesized Fe-Ni permalloy produced using direct energy deposition. J. Alloys Compd. 2022, 907, 164415. [Google Scholar] [CrossRef]
- Ikeda, H.; Iwai, M.; Nakajima, D.; Kikuchi, T.; Natsui, S.; Sakaguchi, N.; Suzuki, R.O. Nanostructural characterization of ordered gold particle arrays fabricated via aluminum anodizing, sputter coating, and dewetting. Appl. Surf. Sci. 2019, 465, 747–753. [Google Scholar] [CrossRef]
- Yamazaki, T.; Ikeda, N.; Tawara, H.; Sato, M. Investigation of composition uniformity of MoSix sputtering films based on measurement of angular distribution of sputtered atoms. Thin Solid Films 1993, 235, 71–75. [Google Scholar] [CrossRef]
- Ma, K.; Chung, T.S.; Good, R.J. Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. J. Polym. Sci. 1998, 36, 2327–2337. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kaelble, D.H.; Uy, K.C. A Reinterpretation of Organic Liquid-Polytetrafluoroethylene Surface Interactions. J. Adhes. 1970, 2, 50–60. [Google Scholar] [CrossRef]
- Kube, S.A.; Xing, W.; Kalidindi, A.; Sohn, S.; Datye, A.; Amram, D.; Schuh, C.A.; Schroers, J. Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Mater. 2020, 188, 40–48. [Google Scholar] [CrossRef]
- Peng, H.; Huang, L.; Liu, F. A thermo-kinetic correlation for grain growth in nanocrystalline alloys. Mater. Lett. 2018, 219, 276–279. [Google Scholar] [CrossRef]
- Sharmila, B.; Singha, M.K.; Dwivedi, P. Impact of annealing on structural and optical properties of ZnO thin films. Microelectron. J. 2023, 135, 105759. [Google Scholar] [CrossRef]
- Reddy, A.S.; Figueiredo, N.; Cho, H.; Lee, K.; Cavaleiro, A. Effect of annealing temperature on the properties of pulsed magnetron sputtered nanocrystalline Ag:SnO2 films. Mater. Chem. Phys. 2012, 133, 1024–1028. [Google Scholar] [CrossRef]
- Bøttiger, J.; Chechenin, N.; Karpe, N.; Krog, J. Diffusion in thin-film amorphous metallic alloys. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 1994, 85, 206–215. [Google Scholar] [CrossRef]
- Andrade, E.; Miki-Yoshida, M. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 1999, 350, 192–202. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, V.; Som, S.; Yousif, A.; Singh, N.; Ntwaeaborwa, O.; Kapoor, A.; Swart, H. Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating. J. Colloid Interface Sci. 2014, 428, 8–15. [Google Scholar] [CrossRef]
- Raj, P.D.; Gupta, S.; Sridharan, M. Influence of the crystalline nature of growing surface on the properties of vanadium pentoxide thin films. Ceram. Int. 2017, 43, 9401–9407. [Google Scholar] [CrossRef]
- Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Ponon, N.K.; Appleby, D.J.; Arac, E.; King, P.; Ganti, S.; Kwa, K.S.; O’Neill, A. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films 2015, 578, 31–37. [Google Scholar] [CrossRef]
- Liu, X.; Ma, G.; Sun, G.; Duan, Y.; Liu, S. Effect of deposition and annealing temperature on mechanical properties of TaN film. Appl. Surf. Sci. 2011, 258, 1033–1037. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Wang, Y.; Sun, J.; Han, J.; Sun, K.; Fang, L. Nanoindentation and deformation behaviors of silicon covered with amorphous SiO2: A molecular dynamic study. RSC Adv. 2018, 8, 12597–12607. [Google Scholar] [CrossRef] [PubMed]
- Boldin, M.; Popov, A.; Nokhrin, A.; Murashov, A.; Shotin, S.; Chuvil’Deev, V.; Tabachkova, N.Y.; Smetanina, K. Effect of grain boundary state and grain size on the microstructure and mechanical properties of alumina obtained by SPS: A case of the amorphous layer on particle surface. Ceram. Int. 2022, 48, 25723–25740. [Google Scholar] [CrossRef]
- Rodríguez, M.; Molina-Aldareguía, J.; González, C.; Llorca, J. Determination of the mechanical properties of amorphous materials through instrumented nanoindentation. Acta Mater. 2012, 60, 3953–3964. [Google Scholar] [CrossRef]
- Lv, J.; Yin, D.; Wang, F.; Yang, Y.; Ma, M.; Zhang, X. Influence of sub-Tg annealing on microstructure and crystallization behavior of TiZr-based bulk metallic glass. J. Non-Crystalline Solids 2021, 565, 120855. [Google Scholar] [CrossRef]
- Tang, D.; Zhao, L.; Wang, H.; Li, D.; Peng, Y.; Wu, P. The role of rough surface in the size-dependent behavior upon nano-indentation. Mech. Mater. 2021, 157, 103836. [Google Scholar] [CrossRef]
- Campbell, A.C.; Buršíková, V.; Martinek, J.; Klapetek, P. Modeling the influence of roughness on nanoindentation data using finite element analysis. Int. J. Mech. Sci. 2019, 161–162, 105015. [Google Scholar] [CrossRef]
- Kunwar, S.; Chelvane, J.A.; Raja, M.M. Structural, magnetic and Magnetic-Microstructural properties of sputtered FeCoNi thin films. J. Magn. Magn. Mater. 2023, 572, 170597. [Google Scholar] [CrossRef]
- Nisticò, R.; Cesano, F.; Garello, F. Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Appli-cation in the Materials Science and Biomedicine. Inorganics 2020, 8, 6. [Google Scholar] [CrossRef]
- Chen, Y.T.; Chang, Z.G. Low-frequency alternative-current magnetic susceptibility of amorphous and nanocrystalline Co60Fe20B20 films. J. Magn. Magn. Mater. 2012, 324, 2224–2226. [Google Scholar] [CrossRef]
- Viegas, A.D.C.; Corrêa, M.A.; Santi, L.; da Silva, R.B.; Bohn, F.; Carara, M.; Sommer, R.L. Thickness dependence of the high-frequency magnetic permeability in amorphous Fe73.5Cu1Nb3Si13.5B9 thin films. J. Appl. Phys. 2007, 101, 033908. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Different annealing treatments for improvement of magnetic and electrical properties of soft magnetic composites. J. Magn. Magn. Mater. 2007, 317, 61–67. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, Y.; Yang, M.; Jia, X.; Liu, Z.; Lu, H.; Zhang, H.; He, A.; Li, J. Effect of annealing process on microstructure and magnetic properties of FeSiBPCNbCu nanocrystalline soft magnetic powder cores. Metals 2022, 12, 845. [Google Scholar] [CrossRef]
- Nie, H.; Xu, S.; Wang, S.; You, L.; Yang, Z.; Ong, C.; Li, J.; Liew, T. Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering. Appl. Phys. A 2001, 73, 229–236. [Google Scholar] [CrossRef]
- Javed, A.; Khan, N.; Bashir, S.; Ahmad, M.; Bashir, M. Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater. Chem. Phys. 2020, 246, 122831. [Google Scholar] [CrossRef]
- Kearney, B.; Jugdersuren, B.; Culbertson, J.; Desario, P.; Liu, X. Substrate and annealing temperature dependent electrical resistivity of sputtered titanium nitride thin films. Thin Solid Films 2018, 661, 78–83. [Google Scholar] [CrossRef]
- Wang, S.; Komvopoulos, K. Structure evolution during deposition and thermal annealing of amorphous carbon ultrathin films investigated by molecular dynamics simulations. Sci. Rep. 2020, 10, 8089. [Google Scholar] [CrossRef]
- Marom, H.; Eizenberg, M. The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phys. 2006, 99, 123705. [Google Scholar] [CrossRef]
- Sun, T.; Yao, B.; Warren, A.P.; Barmak, K.; Toney, M.F.; Peale, R.E.; Coffey, K.R. Surface and grain-boundary scattering in nanometric Cu films. Phys. Rev. B 2010, 81, 155454. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, P.; Peng, W.; Dong, H.; Li, L. The effect of thickness on the optical and electrical properties of Hf doped indium oxide thin films. Vacuum 2023, 216, 112426. [Google Scholar] [CrossRef]
- Schröder, S.; Trost, M.; Garrick, M.; Duparré, A.; Cheng, X.; Zhang, J.; Wang, Z. Origins of light scattering from thin film coatings. Thin Solid Films 2015, 592, 248–255. [Google Scholar] [CrossRef]
- Ciambriello, L.; Cavaliere, E.; Gavioli, L. Influence of roughness, porosity and grain morphology on the optical properties of ultrathin Ag films. Appl. Surf. Sci. 2022, 576, 151885. [Google Scholar] [CrossRef]
- Abdallah, B.; Zetoun, W.; Tello, A. Deposition of ZnO thin films with different powers using RF magnetron sputtering method: Structural, electrical and optical study. Heliyon 2024, 10, e27606. [Google Scholar] [CrossRef] [PubMed]
- Aspnes, D. Optical properties of thin films. Thin Solid Films 1982, 89, 249–262. [Google Scholar] [CrossRef]
- Wang, S.G.; Zhang, Q.; Yoon, S.F.; Ahn, J.; Wang, Q.; Yang, D.J.; Zhou, Q.; Yue, N.N. Optical properties of nano-crystalline diamond films deposited by MPECVD. Opt. Mater. 2003, 24, 509–514. [Google Scholar] [CrossRef]
- Potočnik, J.; Nenadović, M.; Bundaleski, N.; Popović, M.; Rakočević, Z. Effect of thickness on optical properties of nickel vertical posts deposited by GLAD technique. Opt. Mater. 2016, 62, 146–151. [Google Scholar] [CrossRef]
- Larena, A.; Millán, F.; Pérez, G.; Pinto, G. Effect of surface roughness on the optical properties of multilayer polymer films. Appl. Surf. Sci. 2002, 187, 339–346. [Google Scholar] [CrossRef]
- Kubinyi, M.; Benkö, N.; Grofcsik, A.; Jones, W. Determination of the thickness and optical constants of thin films from transmission spectra. Thin Solid Films 1996, 286, 164–169. [Google Scholar] [CrossRef]
- Zeranska-Chudek, K.; Lapinska, A.; Wroblewska, A.; Judek, J.; Duzynska, A.; Pawlowski, M.; Witowski, A.M.; Zdrojek, M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018, 8, 9132. [Google Scholar] [CrossRef]
Materials | Structure | Ra (nm) at 50 nm | Maximum χac (a.u.) | Resistivity (Ω·cm) |
---|---|---|---|---|
Glass/Co40Fe40Dy20 [14] 10–50 nm at RT and annealed conditions | Amorphous | 2.41–2.87 | 0.07–0.41 | 8 × 10−3–6 × 10−3 |
Glass/Co90Ce10 10–50 nm at RT and annealed conditions (current research) | Amorphous | 1.03–1.19 | 0.06–0.90 | 2.2 × 10−5–0.5 × 10−5 |
Substrate | Co wt.% | Ce wt.% | Co at.% | Ce at.% |
---|---|---|---|---|
Si(100) | 80.65 ± 2.96 | 19.35 ± 1.21 | 90.83 ± 3.01 | 9.17 ± 1.03 |
Glass | 80.14 ± 1.71 | 19.86 ± 1.15 | 90.56 ± 1.56 | 9.44 ± 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-H.; Chang, Y.-H.; Huang, Y.-J.; Chen, Y.-T.; Dong, S.-H. Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates. Processes 2024, 12, 2806. https://doi.org/10.3390/pr12122806
Lin S-H, Chang Y-H, Huang Y-J, Chen Y-T, Dong S-H. Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates. Processes. 2024; 12(12):2806. https://doi.org/10.3390/pr12122806
Chicago/Turabian StyleLin, Shih-Hung, Yung-Huang Chang, Yu-Jie Huang, Yuan-Tsung Chen, and Shu-Huan Dong. 2024. "Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates" Processes 12, no. 12: 2806. https://doi.org/10.3390/pr12122806
APA StyleLin, S.-H., Chang, Y.-H., Huang, Y.-J., Chen, Y.-T., & Dong, S.-H. (2024). Annealing Temperature Effect on the Properties of CoCe Thin Films Prepared by Magnetron Sputtering at Si(100) and Glass Substrates. Processes, 12(12), 2806. https://doi.org/10.3390/pr12122806