Advances in Biomass and Microbial Lipids Production: Trends and Prospects
Abstract
:1. Introduction
2. Microbial Biomass Production
2.1. Bacterial Biomass
2.2. Fungi Biomass
2.3. Yeast Biomass
2.4. Microalgae Biomass
3. Microbial Lipids Production
3.1. Impact of Microbial Lipids
Aspect | Traditional Lipids | Microbial Lipids | Ref. |
---|---|---|---|
Production Efficiency | Seasonal and climate-dependent. | Independent of seasons or climate | [144] |
Long production cycles (e.g., months to years). | Short production cycles (e.g., days to weeks). | ||
Environmental impact | High land and water usage for crops or livestock. | Minimal land use; can utilize non-arable areas. | [145,146] |
Associated with deforestation and biodiversity loss. | Lower ecological footprint; utilizes waste substrates. | ||
Raw material | Edible feedstocks (e.g., soy, palm, animals). | Can use waste or non-edible feedstocks (e.g., glycerol, lignocellulose). | [144] |
Cost-effectiveness | Relatively lower cost for established production methods. | Currently higher production costs due to scalability and process optimization challenges. | [147] |
Vulnerable to market fluctuations (e.g., crop yields, feed costs). | Potential for cost reduction with technological advances. | [148] | |
Scalability | Well-established and large-scale industrial infrastructure. | Emerging technology; scalability still a challenge. | [100] |
Limitations | Environmental degradation and limited resource availability. | Requires further development to achieve economic parity. | [148,149] |
Ethical concerns with animal fat production. | Public acceptance of microbial-derived products. | [6] |
3.2. Integrated Metabolic Pathway
3.3. Conditions and Optimization Processes
4. Lipids Extraction Process
4.1. Chemical Process of Lipid Extraction
4.2. Physical and Mechanical Process of Lipid Extraction
4.3. Enzymatic Process of Lipid Extraction
5. Bioproducts from Microbial Lipids
6. Challenges for Industrial Production Scaling Up
7. Patent: History and Innovation
7.1. Current Prospects for Innovation
7.1.1. Biomass and Lipids
7.1.2. Bio-Oil Used in the Animal and Human Food Industry
7.1.3. Bio-Oil Used in the Biofuel Industry
7.1.4. Bio-Oil Used in Pharmaceutical and Cosmetic Industries
7.1.5. Bio-Oil Extraction Methods
8. Global Trends in the Microbial Biomass and Lipids and Its Derivates
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lenaz, G. The Role of Lipids in the Structure and Function of Membranes. In Subcellular Biochemistry; Roodyn, D.B., Ed.; Springer: New York, NY, USA, 1979; Volume 6, pp. 233–343. ISBN 978-1-4615-7945-8. [Google Scholar]
- Li-Beisson, Y.; Nakamura, Y.; Hardwood, J. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications. In Lipids in Plant and Algae Development; Nakamura, Y., Li-Beisson, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 1–18. ISBN 978-3-319-25977-2. [Google Scholar]
- Serventi, L.; Yang, K.; Liu, C.; Tanyitiku, M.; Mohajer, M. Lipids. In Sustainable Food Innovation; Serventi, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; Volume 1, pp. 59–71. [Google Scholar]
- Grand View Research. Biodiesel Market Size, Share & Trends Analysis Report by Feedstock (Vegetable Oils, Animal Fats), by Application (Fuel, Power Generation), by Region (Europe, APAC), And Segment Forecasts, 2022–2030. 2024. Available online: https://www.grandviewresearch.com/press-release/global-biodiesel-market#:~:text=Biodiesel%20Market%20Worth%20%2473.05%20Billion%20By%202030%20%7C%20CAGR%3A%2010.0%25&text=The%20global%20biodiesel%20market%20size,by%20Grand%20View%20Research%2C%20Inc (accessed on 29 September 2024).
- Brandenburg, J.; Blomqvist, J.; Shapaval, V.; Kohler, A.; Sampels, S.; Sandgren, M.; Passoth, V. Oleaginous Yeasts Respond Differently to Carbon Sources Present in Lignocellulose Hydrolysate. Biotechnol. Biofuels 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Yang, W.; Mohamed, H.; Zhang, Y.; Song, Y. Microbes: A Hidden Treasure of Polyunsaturated Fatty Acids. Front. Nutr. 2022, 9, 827837. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; Marangoni, A.G. Microbial Lipids for Foods. Trends Food Sci. Technol. 2022, 119, 593–607. [Google Scholar] [CrossRef]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal Proteins: Production Strategies and Nutritional and Functional Properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef]
- Abramova, I.M.; Soloviev, A.O.; Turshatov, M.V.; Krivchenko, V.A.; Kononenko, V.V. Protein Feedstuff Production Based on Microbial Biomass. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Krasnoyarsk, Russia, 18–20 June 2020; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 548. [Google Scholar] [CrossRef]
- Keita, V.M.; Lee, Y.Q.; Lakshmanan, M.; Ow, D.S.W.; Staniland, P.; Staniland, J.; Savill, I.; Tee, K.L.; Wong, T.S.; Lee, D.Y. Evaluating Oleaginous Yeasts for Enhanced Microbial Lipid Production Using Sweetwater as a Sustainable Feedstock. Microb. Cell Fact. 2024, 23, 63. [Google Scholar] [CrossRef]
- Merchant, R.E.; Andre, C.A. A Review of Recent Clinical Trials of the Nutritional Supplement Chlorella pyrenoidosa in the Treatment of Fibromyalgia, Hypertension, and Ulcerative Colitis. Altern. Ther. 2001, 7, 79. [Google Scholar]
- Karkos, P.D.; Leong, S.C.; Karkos, C.D.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in Clinical Practice: Evidence-Based Human Applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef]
- Global Market Insights Single Cell Protein Market—By Source (Bacteria, Yeast, Algae {Chlorella, Spirulina, Haematococcus}, Fungi), by Application (Food And Beverages {Meat Analogs, Bakery, Dairy Alternatives, Cereals & Snacks, Beverages} Animal Feed, Dietary Supplements), & Forecast, 2023–2032. Available online: https://www.gminsights.com/industry-analysis/single-cell-protein-market (accessed on 29 September 2024).
- Lakhawat, S.S.; Malik, N.; Kumar, V.; Kumar, S.; Sharma, P.K. Implications of CRISPR-Cas9 in Developing Next Generation Biofuel: A Mini-Review. Curr. Protein Pept. Sci. 2022, 23, 574–584. [Google Scholar] [CrossRef]
- Li, Z.; Waghmare, P.R.; Dijkhuizen, L.; Meng, X.; Liu, W. Research Advances on the Consolidated Bioprocessing of Lignocellulosic Biomass. Eng. Microbiol. 2024, 4, 100139. [Google Scholar] [CrossRef]
- Rafiq, S.; Bhat, M.I.; Sofi, S.A.; Muzzafar, K.; Majid, D.; Dar, B.N.; Makroo, H.A. Bioconversion of Agri-Food Waste and by-Products into Microbial Lipids: Mechanism, Cultivation Strategies and Potential in Food Applications. Trends Food Sci. Technol. 2023, 139, 104118. [Google Scholar] [CrossRef]
- Khoo, K.S.; Ahmad, I.; Chew, K.W.; Iwamoto, K.; Bhatnagar, A.; Show, P.L. Enhanced Microalgal Lipid Production for Biofuel Using Different Strategies Including Genetic Modification of Microalgae: A Review. Prog. Energy Combust. Sci. 2023, 96, 101071. [Google Scholar] [CrossRef]
- Buiatti, M.; Christou, P.; Pastore, G. The Application of GMOs in Agriculture and in Food Production for a Better Nutrition: Two Different Scientific Points of View. Genes Nutr. 2013, 8, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Gangola, S.; Joshi, S.; Bhandari, G.; Bhatt, P.; Kumar, S.; Pandey, S.C. Omics Approaches to Pesticide Biodegradation for Sustainable Environment. In Advanced Microbial Techniques in Agriculture, Environment, and Health Management; Academic Press: Cambridge, MA, USA, 2023; pp. 191–203. [Google Scholar] [CrossRef]
- Taran, M.; Asadi, N. A Novel Approach for Environmentally Friendly Production of Single Cell Protein from Petrochemical Wastewater Using a Halophilic Microorganism in Different Conditions. Pet. Sci. Technol. 2014, 32, 625–630. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Pikaar, I.; Verstraete, W. Microbial Protein: Future Sustainable Food Supply Route with Low Environmental Footprint. Microb. Biotechnol. 2016, 9, 568–575. [Google Scholar] [CrossRef]
- Dong, T.; Knoshaug, E.P.; Pienkos, P.T.; Laurens, L.M.L. Lipid Recovery from Wet Oleaginous Microbial Biomass for Biofuel Production: A Critical Review. Appl. Energy 2016, 177, 879–895. [Google Scholar] [CrossRef]
- Koreti, D.; Kosre, A.; Jadhav, S.K.; Chandrawanshi, N.K. A Comprehensive Review on Oleaginous Bacteria: An Alternative Source for Biodiesel Production. Bioresour. Bioprocess. 2022, 9, 47. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef]
- Shields-Menard, S.A.; Amirsadeghi, M.; French, W.T.; Boopathy, R. A Review on Microbial Lipids as a Potential Biofuel. Bioresour. Technol. 2018, 259, 451–460. [Google Scholar] [CrossRef]
- Mahan, K.M.; Le, R.K.; Yuan, J.; Ragauskas, A.J. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus. J. Biotechnol. Biomater. 2017, 7. [Google Scholar] [CrossRef]
- Dourou, M.; Aggeli, D.; Papanikolaou, S.; Aggelis, G. Critical Steps in Carbon Metabolism Affecting Lipid Accumulation and Their Regulation in Oleaginous Microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 2509–2523. [Google Scholar] [CrossRef] [PubMed]
- Cortes, M.A.L.R.M.; de Carvalho, C.C.C.R. Effect of Carbon Sources on Lipid Accumulation in Rhodococcus Cells. Biochem. Eng. J. 2015, 94, 100–105. [Google Scholar] [CrossRef]
- Janßen, H.J.; Ibrahim, M.H.A.; Bröker, D.; Steinbüchel, A. Optimization of Macroelement Concentrations, PH and Osmolarity for Triacylglycerol Accumulation in Rhodococcus Opacus Strain PD630. AMB Express 2013, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, Z.; Singh, L. Rhodococcus opacus High-Cell-Density Batch Cultivation with a Bagasse Hydrolysate for Possible Triacylglycerol Synthesis. Biomed. Biotechnol. Res. J. 2023, 7, 209. [Google Scholar] [CrossRef]
- Mondala, A.; Hernandez, R.; French, T.; Green, M.; McFarland, L.; Ingram, L. Enhanced Microbial Oil Production by Activated Sludge Microorganisms from Sugarcane Bagasse Hydrolyzate. Renew. Energy 2015, 78, 114–118. [Google Scholar] [CrossRef]
- Behera, B.; Unpaprom, Y.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Paramasivan, B. Integrated Biomolecular and Bioprocess Engineering Strategies for Enhancing the Lipid Yield from Microalgae. Renew. Sustain. Energy Rev. 2021, 148, 111270. [Google Scholar] [CrossRef]
- Thanapimmetha, A.; Suwaleerat, T.; Saisriyoot, M.; Chisti, Y.; Srinophakun, P. Production of Carotenoids and Lipids by Rhodococcus opacus PD630 in Batch and Fed-Batch Culture. Bioprocess. Biosyst. Eng. 2017, 40, 133–143. [Google Scholar] [CrossRef]
- Penia Kresnowati, M.T.A.; Chen, X.D. Continuous Operation. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 527–535. [Google Scholar]
- Gupta, N.; Manikandan, N.A.; Pakshirajan, K. Real-time lipid production and dairy wastewater treatment using Rhodococcus opacus in a bioreactor under fed-batch, continuous and continuous cell recycling modes for potential biodiesel application. Biofuels 2018, 9, 239–245. [Google Scholar] [CrossRef]
- Menegol, T.; Diprat, A.B.; Rodrigues, E.; Rech, R. Effect of Temperature and Nitrogen Concentration on Biomass Composition of Heterochlorella Luteoviridis. Food Sci. Technol. 2017, 37, 28–37. [Google Scholar] [CrossRef]
- Tigini, V.; Prigione, V.; Donelli, I.; Freddi, G.; Varese, G.C. Influence of Culture Medium on Fungal Biomass Composition and Biosorption Effectiveness. Curr. Microbiol. 2012, 64, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Mondala, A. Solid-State Direct Fungal Bioconversion of Biomass to Fuels and Chemicals: The Next Frontier in Sustainable. Austin Chem. Eng. 2014, 1, 1007. [Google Scholar]
- Kam, S.; Kenari, A.A.; Younesi, H. Production of Single Cell Protein in Stickwater by Lactobacillus acidophilus and Aspergillus niger. J. Aquat. Food Product. Technol. 2012, 21, 403–417. [Google Scholar] [CrossRef]
- Isaza-Pérez, F.; Ramírez-Carmona, M.; Rendón-Castrillón, L.; Ocampo-López, C. Potential of Residual Fungal Biomass: A Review. Environ. Sci. Pollut. Res. 2020, 27, 13019–13031. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Mohamed, H.; Fazili, A.B.A.; Yang, W.; Song, Y. Investigating the Effect of Alcohol Dehydrogenase Gene Knockout on Lipid Accumulation in Mucor Circinelloides WJ11. J. Fungi 2022, 8, 917. [Google Scholar] [CrossRef]
- Youssef, G.A.; Elrefaey, A.M.; El-Aassar, S. Evaluating Oleaginous Fungi for Sustainable Biodiesel Production: Screening, Identification and Optimization of Lipid Production. Egypt. J. Bot. 2021, 61, 693–708. [Google Scholar] [CrossRef]
- Youssef, G.; Elrefaey, A.; El-Assar, S. Potential Assessment of Oleaginous Fungi for Sustainable Biodiesel Production: Screening, Identication and Lipid Production Optimization. Egypt. J. Bot. 2021. [Google Scholar] [CrossRef]
- Li, D.D.; Wang, Y.; Kim, E.L.; Hong, J.; Jung, J.H. A New Fungal Triterpene from the Fungus Aspergillus flavus Stimulates Glucose Uptake without Fat Accumulation. Mar. Drugs 2022, 20, 203. [Google Scholar] [CrossRef]
- Aidemark, M.; Tjellström, H.; Sandelius, A.S.; Stålbrand, H.; Andreasson, E.; Rasmusson, A.G.; Widell, S. Trichoderma Viride Cellulase Induces Resistance to the Antibiotic Pore-Forming Peptide Alamethicin Associated with Changes in the Plasma Membrane Lipid Composition of Tobacco BY-2 Cells. BMC Plant Biol. 2010, 10, 274. [Google Scholar] [CrossRef]
- Serrano-Carreon, L.; Hathout, Y.; Bensoussan, M.; Belin, J.-M. Lipid Accumulation in Trichoderma Species. FEMS Microbiol. Lett. 1992, 93, 181–187. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, B.; Huang, B.C.; Wang, F.B.; Zhang, Y.Q.; Zhao, S.G.; Li, M.; Wang, H.Y.; Yu, X.J.; Liu, X.Y.; et al. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front. Nutr. 2022, 9, 873657. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, S.I.; Ezeokoli, O.T.; Roopnarain, A.; Ndaba, B.; Sekoai, P.T.; Habimana, O.; Pohl, C.H. The Potential of Single-Cell Oils Derived From Filamentous Fungi as Alternative Feedstock Sources for Biodiesel Production. Front. Microbiol. 2021, 12, 637381. [Google Scholar] [CrossRef] [PubMed]
- Dzurendova, S.; Zimmermann, B.; Tafintseva, V.; Kohler, A.; Horn, S.J.; Shapaval, V. Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor Circinelloides. J. Fungi 2020, 6, 260. [Google Scholar] [CrossRef] [PubMed]
- van Aarle, I.M.; Olsson, P.A. Fungal Lipid Accumulation and Development of Mycelial Structures by Two Arbuscular Mycorrhizal Fungi. Appl. Environ. Microbiol. 2003, 69, 6762–6767. [Google Scholar] [CrossRef] [PubMed]
- Nosheen, S.; Naz, T.; Yang, J.; Hussain, S.A.; Fazili, A.B.A.; Nazir, Y.; Li, S.; Mohamed, H.; Yang, W.; Mustafa, K.; et al. Role of Snf-β in Lipid Accumulation in the High Lipid-producing Fungus Mucor Circinelloides WJ11. Microb. Cell Fact. 2021, 20. [Google Scholar] [CrossRef]
- Patriarca, E.J.; Kobayashi, G.S.; Maresca, B. Mitochondrial Activity and Heat-Shock Response during Morphogenesis in the Pathogenic Fungus Histoplasma capsulatum. Biochem. Cell Biol. 1992, 70, 207. [Google Scholar] [CrossRef]
- Gao, D.; Zeng, J.; Yu, X.; Dong, T.; Chen, S. Improved Lipid Accumulation by Morphology Engineering of Oleaginous Fungus Mortierella Isabellina. Biotechnol. Bioeng. 2014, 111, 1758–1766. [Google Scholar] [CrossRef]
- Vasconcelos, B.; Teixeira, J.C.; Dragone, G.; Teixeira, J.A. Oleaginous Yeasts for Sustainable Lipid Production-from Biodiesel to Surf Boards, a Wide Range of “Green” Applications. Appl. Microbiol. Biotechnol. 2019, 103, 3651–3667. [Google Scholar] [CrossRef]
- Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A. Lipids from Yeasts and Fungi: Tomorrow’s Source of Biodiesel? Biofuels Bioprod. Biorefin. 2013, 7, 512–524. [Google Scholar] [CrossRef]
- Ali, H.; Zulkali, M.D. Design Aspects of Bioreactors for Solid-State Fermentation: A Review. Chem. Biochem. Eng. 2011, 25, 255–266. [Google Scholar] [CrossRef]
- Subramaniam, R.; Thirumal, V.; Chistoserdov, A.; Bajpai, R.; Bader, J.; Popovic, M. High-Density Cultivation in the Production of Microbial Products. Chem. Biochem. Eng. Q. 2018, 32, 451–464. [Google Scholar] [CrossRef]
- Téllez-Téllez, M.; Fernández, F.J.; Montiel-González, A.; Sánchez, C.; Díaz-Godínez, G. Growth and Laccase Production by Pleurotus ostreatus in Submerged and Solid-State Fermentation. Appl. Microbiol. Biotechnol. 2008, 81, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Cerda, A.; Artola, A.; Barrena, R.; Font, X.; Gea, T.; Sánchez, A. Innovative Production of Bioproducts From Organic Waste Through Solid-State Fermentation. Front. Sustain. Food Syst. 2019, 3, 63. [Google Scholar] [CrossRef]
- Khot, M.B. Solid-State Fermentation: An Alternative Approach to Produce Fungal Lipids as Biodiesel Feedstock. In Status and Future Challenges for Non-Conventional Energy Sources; Joshi, J., Sen, R., Sharma, A., Salam, P.A., Eds.; Springer: Singapore, 2022; Volume 2, pp. 123–137. ISBN 978-981-16-4509-9. [Google Scholar]
- de Mello, A.F.M.; de Souza Vandenberghe, L.P.; Herrmann, L.W.; Letti, L.A.J.; Burgos, W.J.M.; Scapini, T.; Manzoki, M.C.; de Oliveira, P.Z.; Soccol, C.R. Strategies and Engineering Aspects on the Scale-up of Bioreactors for Different Bioprocesses. Syst. Microbiol. Biomanuf. 2024, 4, 365–385. [Google Scholar] [CrossRef]
- Li, Y.; Peng, X.; Chen, H. Comparative Characterization of Proteins Secreted by Neurospora sitophila in Solid-State and Submerged Fermentation. J. Biosci. Bioeng. 2013, 116, 493–498. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R. Fungi in Fermentation and Biotransformation Systems. In Biology of Microfungi; De-Wei, L., Ed.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 525–541. ISBN 978-3-319-29137-6. [Google Scholar]
- Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Villa, T.G. Oily Yeasts as Oleaginous Cell Factories. Appl. Microbiol. Biotechnol. 2011, 90, 1219–1227. [Google Scholar] [CrossRef]
- Sargeant, L.A.; Chuck, C.J.; Donnelly, J.; Bannister, C.D.; Scott, R.J. Optimizing the Lipid Profile, to Produce Either a Palm Oil or Biodiesel Substitute, by Manipulation of the Culture Conditions for Rhodotorula glutinis. Biofuels 2014, 5, 33–43. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Zong, M.H.; Wu, H. Efficient Lipid Production with Trichosporonfermentans and Its Use for Biodiesel Preparation. Bioresour. Technol. 2008, 99, 7881–7885. [Google Scholar] [CrossRef]
- Caporusso, A.; Capece, A.; De Bari, I. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Ferment 2021, 7, 50. [Google Scholar] [CrossRef]
- Cui, W.; Wang, Q.; Zhang, F.; Zhang, S.C.; Chi, Z.M.; Madzak, C. Direct Conversion of Inulin into Single Cell Protein by the Engineered Yarrowia lipolytica Carrying Inulinase Gene. Process Biochem. 2011, 46, 1442–1448. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D.; Liu, Y. Production of Single Cell Protein from Soy Molasses Using Candida tropicalis. Ann. Microbiol. 2012, 62, 1165–1172. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Maiti, M.K. Lipid Production by Oleaginous Yeasts. Adv. Appl. Microbiol. 2021, 116, 1–98. [Google Scholar] [CrossRef] [PubMed]
- Chopra, J.; Sen, R. Process Optimization Involving Critical Evaluation of Oxygen Transfer, Oxygen Uptake and Nitrogen Limitation for Enhanced Biomass and Lipid Production by Oleaginous Yeast for Biofuel Application. Bioprocess. Biosyst. Eng. 2018, 41, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Abeln, F.; Chuck, C.J. The History, State of the Art and Future Prospects for Oleaginous Yeast Research. Microb. Cell Fact. 2021, 20, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Lopes, H.J.S.; Bonturi, N.; Kerkhoven, E.J.; Miranda, E.A.; Lahtvee, P.J. C/N Ratio and Carbon Source-Dependent Lipid Production Profiling in Rhodotorula toruloides. Appl. Microbiol. Biotechnol. 2020, 104, 2639–2649. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Sun, C.; Zhang, C.; Liu, H.; Cui, Q.; Song, X.; Wang, S. A Phospholipid:Diacylglycerol Acyltransferase Is Involved in the Regulation of Phospholipids Homeostasis in Oleaginous Aurantiochytrium sp. Biotechnol. Biofuels Bioprod. 2023, 16. [Google Scholar] [CrossRef]
- Beopoulos, A.; Nicaud, J.M.; Gaillardin, C. An Overview of Lipid Metabolism in Yeasts and Its Impact on Biotechnological Processes. Appl. Microbiol. Biotechnol. 2011, 90, 1193–1206. [Google Scholar] [CrossRef]
- Takaku, H.; Matsuzawa, T.; Yaoi, K.; Yamazaki, H. Lipid Metabolism of the Oleaginous Yeast Lipomyces starkeyi. Appl. Microbiol. Biotechnol. 2020, 104, 6141–6148. [Google Scholar] [CrossRef]
- Klug, L.; Daum, G. Yeast Lipid Metabolism at a Glance. FEMS Yeast Res. 2014, 14, 369–388. [Google Scholar] [CrossRef]
- Naveira-Pazos, C.; Robles-Iglesias, R.; Fernández-Blanco, C.; Veiga, M.C.; Kennes, C. State-of-the-Art in the Accumulation of Lipids and Other Bioproducts from Sustainable Sources by Yarrowia Lipolytica. Rev. Environ. Sci. Biotechnol. 2023, 22, 1131–1158. [Google Scholar] [CrossRef]
- Davies, R.J.; Holdsworth, J.E.; Reader, S.L. Microbiology Biotechnology The Effect of Low Oxygen Uptake Rate on the Fatty Acid Profile of the Oleaginous Yeast Apiotrichum Curvature; Springer: Cham, Switzerland, 1990; Volume 33. [Google Scholar]
- Hu, M.; Qiu, L.; Wang, Y. The PHO Pathway Involved in Phosphate Metabolism in Yeast for Efficient Phosphorus Removal. In Proceedings of the E3S Web of Conferences, Guilin, China, 10–12 August 2018; EDP Sciences: Les Ulis, France, 2018; Volume 53. [Google Scholar]
- De Oliva-Neto, P.; Dorta, C.; Flavia, A.; Carvalho, A.; Gomes De Lima, V.M. The Brazilian Technology of Fuel Ethanol Fermentation-Yeast Inhibition Factors and New Perspectives to Improve the Technology. Mater. Process. Energy Commun. Curr. Res. Technol. Dev. 2013, 1, 371–379. [Google Scholar]
- Almuhayawi, M.S.; Hassan, E.A.; Almasaudi, S.; Zabermawi, N.; Azhar, E.I.; Najjar, A.; Alkuwaity, K.; Abujamel, T.S.; Alamri, T.; Harakeh, S. Biodiesel Production through Rhodotorula toruloides Lipids and Utilization of De-Oiled Biomass for Congo Red Removal. Sustainability 2023, 15, 13412. [Google Scholar] [CrossRef]
- Fickers, P.; Cheng, H.; Lin, C.S.K. Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We? Microorganisms 2020, 8, 574. [Google Scholar] [CrossRef] [PubMed]
- Calvey, C.H.; Su, Y.K.; Willis, L.B.; McGee, M.; Jeffries, T.W. Nitrogen Limitation, Oxygen Limitation, and Lipid Accumulation in Lipomyces starkeyi. Bioresour. Technol. 2016, 200, 780–788. [Google Scholar] [CrossRef]
- Xu, X.H.; Liu, Z.X.; Shi, X.Y.; Miao, C.; Sheng, S.; Xu, Y.; Wu, F.A.; Wang, J. Fed-Batch Fermentation of Yarrowia lipolytica Using Defatted Silkworm Pupae Hydrolysate: A Dynamic Model-Based Approach for High Yield of Lipid Production. Waste Biomass Valorization 2018, 9, 2399–2411. [Google Scholar] [CrossRef]
- Demerdash, M.; Nasr, A.A. Batch and Repeated Fed Batch Cultivation of Candida utilis on Corn Meal Hydrolysate for Cellular Biomass Production. J. Food Dairy Sci. 2000, 25, 3461–3472. [Google Scholar] [CrossRef]
- Bao, W.; Li, Z.; Wang, X.; Gao, R.; Zhou, X.; Cheng, S.; Men, Y.; Zheng, L. Approaches to Improve the Lipid Synthesis of Oleaginous Yeast Yarrowia lipolytica: A Review. Renew. Sustain. Energy Rev. 2021, 149, 111386. [Google Scholar] [CrossRef]
- Fei, Q.; Liu, Y.; Meruvu, H.; Jiao & Rongzhan, Z. Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass. In Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities; Liu, Z.-H., Ragauskas, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 229–243. ISBN 978-3-030-65584-6. [Google Scholar]
- Grubišić, M.; Mihajlovski, K.; Gruičić, A.M.; Beluhan, S.; Šantek, B.; Šantek, M.I. Strategies for Improvement of Lipid Production by Yeast Trichosporon oleaginosus from Lignocellulosic Biomass. J. Fungi 2021, 7, 934. [Google Scholar] [CrossRef]
- Rivera, E.C.; Yamakawa, C.K.; Herrera Garcia, M.; Geraldo, V.C.; Rossell, C.E.V.; Filho, R.M.; Bonomi, A. A Procedure for Estimation of Fermentation Kinetic Parameters in Fed-Batch Bioethanol Production Process with Cell Recycle. Chem. Eng. 2013, 32, 1369–1374. [Google Scholar]
- Mendes, T.A.d.O.; Pinto, L.M.; Mendes, D.d.S.O.; Malta, H.L.; Oliveira, E.d.S. Aumento Na Produção de Biomassa de Levedura Em Propagador Aerado Por Processo Descontínuo e Semicontínuo Para Produção de Cachaça. Braz. J. Food Technol. 2013, 16, 81–89. [Google Scholar] [CrossRef]
- Rajpurohit, H.; Eiteman, M.A. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022, 10, 2226. [Google Scholar] [CrossRef] [PubMed]
- Monge, O.; Certucha Barragn, M.T.; Almendariz Tapi, F.J. Microbial Biomass in Batch and Continuous System. In Biomass Now—Sustainable Growth and Use; InTech Open: London, UK, 2013. [Google Scholar]
- Finkel, Z.V.; Follows, M.J.; Liefer, J.D.; Brown, C.M.; Benner, I.; Irwin, A.J. Phylogenetic Diversity in the Macromolecular Composition of Microalgae. PLoS ONE 2016, 11, e0155977. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, S.M.; Milley, J.E.; Lall, S.P. Chemical Composition and Nutritional Properties of Freshwater and Marine Microalgal Biomass Cultured in Photobioreactors. J. Appl. Phycol. 2015, 27, 1109–1119. [Google Scholar] [CrossRef]
- de Oliveira, M.A.C.L.; Monteiro, M.P.C.; Robbs, P.G.; Leite, S.G.F. Growth and Chemical Composition of Spirulina maxima and Spirulina platensis Biomass at Different Temperatures. Aquac. Int. 1999, 7, 261–275. [Google Scholar] [CrossRef]
- El-fayoumy, E.A.; Ali, H.E.A.; Elsaid, K.; Elkhatat, A.; Al-Meer, S.; Rozaini, M.Z.H.; Abdullah, M.A. Co-Production of High Density Biomass and High-Value Compounds via Two-Stage Cultivation of Chlorella vulgaris Using Light Intensity and a Combination of Salt Stressors. Biomass Convers. Biorefin 2024, 14, 22673–22686. [Google Scholar] [CrossRef]
- Morowvat, M.H.; Ghasemi, Y. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Recent. Pat. Food Nutr. Agric. 2019, 10, 115–123. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, J.; Fa, Y.; Liu, X.; Lindblad, P. Enhancing Microalgal Lipid Accumulation for Biofuel Production. Front. Microbiol. 2022, 13, 1024441. [Google Scholar] [CrossRef]
- Zou, S.; Lu, Y.; Ma, H.; Li, Y.; Chen, G.; Han, D.; Hu, Q. Microalgal Glycerol-3-Phosphate Acyltransferase Role in Galactolipids and High-Value Storage Lipid Biosynthesis. Plant Physiol. 2023, 192, 426–441. [Google Scholar] [CrossRef]
- Shi, T.-Q.; Wang, L.-R.; Zhang, Z.-X.; Sun, X.-M.; Huang, H. Stresses as First-Line Tools for Enhancing Lipid and Carotenoid Production in Microalgae. Front. Bioeng. Biotechnol. 2020, 8, 610. [Google Scholar] [CrossRef]
- Gao, B.; Hong, J.; Chen, J.; Zhang, H.; Hu, R.; Zhang, C. The Growth, Lipid Accumulation and Adaptation Mechanism in Response to Variation of Temperature and Nitrogen Supply in Psychrotrophic Filamentous Microalga Xanthonema hormidioides (Xanthophyceae). Biotechnol. Biofuels Bioprod. 2023, 16, 12. [Google Scholar] [CrossRef]
- Alkhamis, Y.A.; Mathew, R.T.; Nagarajan, G.; Rahman, S.M.; Rahman, M. pH Induced Stress Enhances Lipid Accumulation in Microalgae Grown under Mixotrophic and Autotrophic Condition. Front. Energy Res. 2022, 10, 1033068. [Google Scholar] [CrossRef]
- Roostaei, J.; Zhang, Y.; Gopalakrishnan, K.; Ochocki, A.J. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-Efficiency of Biofuel Feedstock Production. Sci. Rep. 2018, 8, 12528. [Google Scholar] [CrossRef] [PubMed]
- Hang, L.T.; Mori, K.; Toyama, T. Enhanced Biomass and Lipid Production Capacity of Chlamydomonas reinhardtii under Mixotrophic Cultivation Using Sewage Effluent and Waste Molasses. Jpn. J. Water Treat. Biol. 2020, 56, 57–66. [Google Scholar] [CrossRef]
- Iasimone, F.; Panico, A.; De Felice, V.; Fantasma, F.; Iorizzi, M.; Pirozzi, F. Effect of Light Intensity and Nutrients Supply on Microalgae Cultivated in Urban Wastewater: Biomass Production, Lipids Accumulation and Settleability Characteristics. J. Environ. Manag. 2018, 223, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Ogbonna, I.O.; Ikwebe, J.; Ogbonna, J.C.; Eze, C.N.; Ndrimbula, J.B. Effects of Light Intensity and Photoperiod on Growth, Lipid Accumulation and Fatty Acid Composition of Desmodesmus subspicatus LC172266 under Photoautotrophic Cultivation. Niger. J. Biotechnol. 2022, 38, 1–13. [Google Scholar] [CrossRef]
- Ratomski, P.; Hawrot-Paw, M. Production of Chlorella vulgaris Biomass in Tubular Photobioreactors during Different Culture Conditions. Appl. Sci. 2021, 11, 3106. [Google Scholar] [CrossRef]
- Arcila, J.S.; Céspedes, D.; Buitrón, G. Influence of Wavelength Photoperiods and N/P Ratio on Wastewater Treatment with Microalgae–Bacteria. Water Sci. Technol. 2021, 84, 712–724. [Google Scholar] [CrossRef]
- Ho, S.-H.; Nakanishi, A.; Ye, X.; Chang, J.-S.; Chen, C.-Y.; Hasunuma, T.; Kondo, A. Dynamic Metabolic Profiling of the Marine Microalga Chlamydomonas sp. JSC4 and Enhancing Its Oil Production by Optimizing Light Intensity. Biotechnol. Biofuels 2015, 8, 48. [Google Scholar] [CrossRef]
- Huang, Y.; Cheng, J.; Lu, H.; Huang, R.; Zhou, J.; Cen, K. Simultaneous Enhancement of Microalgae Biomass Growth and Lipid Accumulation under Continuous Aeration with 15% CO2. RSC Adv. 2015, 5, 50851–50858. [Google Scholar] [CrossRef]
- Pedersen, T.C.; Gardner, R.D.; Gerlach, R.; Peyton, B.M. Assessment of Nannochloropsis gaditana Growth and Lipid Accumulation with Increased Inorganic Carbon Delivery. J. Appl. Phycol. 2018, 30, 2155–2166. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and Novel Strategies for Enhancing Lipid Accumulation and Quality in Microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Vaidyanathan, S. Influence of Gas Management on Biochemical Conversion of CO2 by Microalgae for Biofuel Production. Appl. Energy 2020, 261, 114420. [Google Scholar] [CrossRef]
- Omar Faruque, M.; Ilyas, M.; Mozahar Hossain, M.; Abdur Razzak, S. Influence of Nitrogen to Phosphorus Ratio and CO2 Concentration on Lipids Accumulation of Scenedesmus dimorphus for Bioenergy Production and CO2 Biofixation. Chem. Asian J. 2020, 15, 4307–4320. [Google Scholar] [CrossRef] [PubMed]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of Microalgae with High Lipid Content and Their Potential as Sources of Nutraceuticals. Phytochem. Rev. 2023, 22, 833–860. [Google Scholar] [CrossRef]
- Ma, X.; Mi, Y.; Zhao, C.; Wei, Q. A Comprehensive Review on Carbon Source Effect of Microalgae Lipid Accumulation for Biofuel Production. Sci. Total Environ. 2022, 806, 151387. [Google Scholar] [CrossRef]
- Fistarol, G.O. Viability of Using Flue Gases as Carbon Source for Microalgae Cultivation. Int. J. Green. Technol. 2018, 2, 13–19. [Google Scholar] [CrossRef]
- Yu, X.; Guo, W.; Hu, Z.; Li, P.; Zhang, Z.; Cheng, J.; Song, C.; Ye, Q. Flue Gas CO2 Supply Methods for Microalgae Utilization: A Review. Clean. Energy Sci. Technol. 2023, 1. [Google Scholar] [CrossRef]
- Pavlou, A.; Penloglou, G.; Kiparissides, C. Evaluation of Tolerant to CO2 Excess Microalgae for the Production of Multiple Biochemicals in a 3G Biorefinery. Sustainability 2023, 15, 3889. [Google Scholar] [CrossRef]
- Gong, Z.; Shen, H.; Wang, Q.; Yang, X.; Xie, H.; Zhao, Z.K. Efficient Conversion of Biomass into Lipids by Using the Simultaneous Saccharification and Enhanced Lipid Production Process. Biotechnol. Biofuels 2013, 6. [Google Scholar] [CrossRef]
- Saisriyoot, M.; Thanapimmetha, A.; Suwaleerat, T.; Chisti, Y.; Srinophakun, P. Biomass and Lipid Production by Rhodococcus opacus PD630 in Molasses-Based Media with and without Osmotic-Stress. J. Biotechnol. 2019, 297, 1–8. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Xia, L. An Oleaginous Endophyte Bacillus subtilis HB1310 Isolated from Thin-Shelled Walnut and Its Utilization of Cotton Stalk Hydrolysate for Lipid Production. Biotechnol. Biofuels 2014, 7. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Saravanabhupathy, S.; Singh, S.; Daverey, A.; Dutta, K. Multi-Objective Optimization for Biomass and Lipid Production by Oleaginous Bacteria Using Vegetable Waste as Feedstock. Environ. Eng. Res. 2022, 27. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Diamantopoulou, P.; Chatzifragkou, A.; Philippoussis, A.; Aggelis, G. Suitability of Low-Cost Sugars as Substrates for Lipid Production by the Fungus Thamnidium elegans. Energy Fuels 2010, 24, 4078–4086. [Google Scholar] [CrossRef]
- Ali, T.H.; El-Ghonemy, D.H. Optimization of Culture Conditions for the Highest Lipid Production from Some Oleaginous Fungi for Biodiesel Preparation. Asian J. Appl. Sci. 2014, 2, 5. [Google Scholar]
- Dzurendova, S.; Zimmermann, B.; Tafintseva, V.; Kohler, A.; Ekeberg, D.; Shapaval, V. The Influence of Phosphorus Source and the Nature of Nitrogen Substrate on the Biomass Production and Lipid Accumulation in Oleaginous Mucoromycota Fungi. Appl. Microbiol. Biotechnol. 2020, 104, 8065–8076. [Google Scholar] [CrossRef]
- Dobrowolski, A.; Drzymała, K.; Rzechonek, D.A.; Mituła, P.; Mirończuk, A.M. Lipid Production from Waste Materials in Seawater-Based Medium by the Yeast Yarrowia lipolytica. Front. Microbiol. 2019, 10, 547. [Google Scholar] [CrossRef]
- Galafassi, S.; Cucchetti, D.; Pizza, F.; Franzosi, G.; Bianchi, D.; Compagno, C. Lipid Production for Second Generation Biodiesel by the Oleaginous Yeast Rhodotorula graminis. Bioresour. Technol. 2012, 111, 398–403. [Google Scholar] [CrossRef]
- Wang, G.Y.; Chi, Z.; Song, B.; Wang, Z.P.; Chi, Z.M. High Level Lipid Production by a Novel Inulinase-Producing Yeast Pichia guilliermondii Pcla22. Bioresour. Technol. 2012, 124, 77–82. [Google Scholar] [CrossRef]
- Chang, W.; Li, Y.; Qu, Y.; Liu, Y.; Zhang, G.; Zhao, Y.; Liu, S. Mixotrophic Cultivation of Microalgae to Enhance the Biomass and Lipid Production with Synergistic Effect of Red Light and Phytohormone IAA. Renew. Energy 2022, 187, 819–828. [Google Scholar] [CrossRef]
- Duong, V.T.; Ahmed, F.; Thomas-Hall, S.R.; Quigley, S.; Nowak, E.; Schenk, P.M. High Protein- and High Lipid-Producing Microalgae from Northern Australia as Potential Feedstock for Animal Feed and Biodiesel. Front. Bioeng. Biotechnol. 2015, 3, 53. [Google Scholar] [CrossRef]
- Tang, C.; Dai, D.; Li, S.; Qv, M.; Liu, D.; Li, Z.; Huang, L.Z.; Zhu, L. Responses of Microalgae under Different Physiological Phases to Struvite as a Buffering Nutrient Source for Biomass and Lipid Production. Bioresour. Technol. 2023, 384, 129352. [Google Scholar] [CrossRef] [PubMed]
- Kabir, F.; Gulfraz, M.; Raja, G.K.; Inam-ul-Haq, M.; Awais, M.; Mustafa, M.S.; Khan, S.U.; Tlili, I.; Shadloo, M.S. Screening of Native Hyper-Lipid Producing Microalgae Strains for Biomass and Lipid Production. Renew. Energy 2020, 160, 1295–1307. [Google Scholar] [CrossRef]
- Xue, S.J.; Chi, Z.; Zhang, Y.; Li, Y.F.; Liu, G.L.; Jiang, H.; Hu, Z.; Chi, Z.M. Fatty Acids from Oleaginous Yeasts and Yeast-like Fungi and Their Potential Applications. Crit. Rev. Biotechnol. 2018, 38, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Chapkin, R.S. Importance of Dietary γ-Linolenic Acid in Human Health and Nutrition. J. Nutr. 1998, 128, 1411–1414. [Google Scholar] [CrossRef]
- Yang, B.; Gao, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y.Q.; Chen, H.; Chen, W. Bacterial Conjugated Linoleic Acid Production and Their Applications. Prog. Lipid Res. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Venkatakrishnan, P.; Palanisamy, P. Synthesis and Characterization of Myristic Acid—Infused Al2O3/CuO/MWCNT Nanocomposites for Energy Storage and Cooling Applications. Phys. Scr. 2024, 99. [Google Scholar] [CrossRef]
- Basene, Y.; Gothalwal, R. Effective Use and Transformation of Organic/Agriculture Waste for Energy Recovery along with Zero Carbon Footprint. Energy 2022, 10, 2307–2316. [Google Scholar] [CrossRef]
- Andersson, V.; Heyne, S.; Harvey, S.; Berntsson, T. Integration of Algae-Based Biofuel Production with an Oil Refinery: Energy and Carbon Footprint Assessment. Int. J. Energy Res. 2020, 44, 10860–10877. [Google Scholar] [CrossRef]
- Al Azad, S.; Madadi, M.; Song, G.; Sun, C.; Sun, F. New Trends in Microbial Lipid-Based Biorefinery for Fermentative Bioenergy Production from Lignocellulosic Biomass. Biofuel Res. J. 2024, 11, 2040–2064. [Google Scholar] [CrossRef]
- Baral, N.R.; Banerjee, D.; Mukhopadhyay, A.; Simmons, B.A.; Singer, S.W.; Scown, C.D. Integration of Genome-Scale Metabolic Model with Biorefinary Process Model Reveals Market-Competitive Carbon-Negative Sustainable Aviation Fuel Utilizing Microbial Cell Mass Lipids and Biogenic CO2. Bioresources 2024, 19, 4056–4086. [Google Scholar] [CrossRef]
- Jones, A.D.; Boundy-Mills, K.L.; Barla, G.F.; Kumar, S.; Ubanwa, B.; Balan, V. Microbial Lipid Alternatives to Plant Lipids. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1995, pp. 1–32. [Google Scholar]
- Xu, Q.; Tang, Q.; Xu, Y.; Wu, J.; Mao, X.; Li, F.; Wang, S.; Wang, Y. Biotechnology in Future Food Lipids: Opportunities and Challenges. Annu. Rev. Food Sci. Technol. 2023, 14, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Gaignard, C.; Zissis, G.; Buso, D. Influence of Different Abiotic Factors on Lipid Production by Microalgae—A Review. OCL—Oilseeds Fats Crops Lipids 2021, 28, 57. [Google Scholar] [CrossRef]
- Lee, J.-E.; Vadlani, P.V.; Min, D. Sustainable Production of Microbial Lipids from Lignocellulosic Biomass Using Oleaginous Yeast Cultures. J. Sustain. Bioenergy Syst. 2017, 7, 36–50. [Google Scholar] [CrossRef]
- Gallego-García, M.; Susmozas, A.; Negro, M.J.; Moreno, A.D. Challenges and Prospects of Yeast-Based Microbial Oil Production within a Biorefinery Concept. Microb. Cell Fact. 2023, 22, 246. [Google Scholar] [CrossRef] [PubMed]
- Christophe, G.; Kumar, V.; Nouaille, R.; Gaudet, G.; Fontanille, P.; Pandey, A.; Soccol, C.R.; Larroche, C. Recent Developments in Microbial Oils Production: A Possible Alternative to Vegetable Oils for Biodiesel Without Competition with Human Food? Braz. Arch. Biol. Technol. 2012, 55, 29–46. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.C.; Ma, C. Elevating Biotransamiantion of Pineapple Peel-Derived Furfural into Furfurylamine by Recombinant Escherichia coli Carrying Pyruvate Decarboxylase and Mutant ω-Transaminase with Low Loading of Amine Donor. Food Biosci. 2024, 62, 105164. [Google Scholar] [CrossRef]
- Wedan, R.J.; Longenecker, J.Z.; Nowinski, S.M. Mitochondrial Fatty Acid Synthesis Is an Emergent Central Regulator of Mammalian Oxidative Metabolism. Cell Metab. 2024, 36, 36–47. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, M.; Chen, H.; Lu, X.; Tian, Y.; Hu, P.; Zhao, Q.; Li, P.; Li, C.; Ji, X.; et al. Metabolic Engineering of Yarrowia lipolytica for High-Level Production of Squalene. Bioresour. Technol. 2024, 394, 130233. [Google Scholar] [CrossRef]
- Han, Z.; Zong, Y.; Zhang, X.; Gong, D.; Wang, B.; Prusky, D.; Sionov, E.; Xue, H.; Bi, Y. Erg4 Is Involved in Ergosterol Biosynthesis, Conidiation and Stress Response in Penicillium Expansum. J. Fungi 2023, 9, 568. [Google Scholar] [CrossRef]
- Park, J.K.; Jeon, J.M.; Yang, Y.H.; Kim, S.H.; Yoon, J.J. Efficient Polyhydroxybutyrate Production Using Acetate by Engineered Halomonas sp. JJY01 Harboring Acetyl-CoA Acetyltransferase. Int. J. Biol. Macromol. 2024, 254, 127475. [Google Scholar] [CrossRef]
- Baik, Y.; Lee, K.; Choi, M. Catalytic Conversion of Triglycerides into Diesel, Jet Fuel, and Lube Base Oil. Chin. J. Catal. 2024, 58, 15–24. [Google Scholar] [CrossRef]
- Worland, A.M.; Han, Z.; Maruwan, J.; Wang, Y.; Du, Z.Y.; Tang, Y.J.; Su, W.W.; Roell, G.W. Elucidation of Triacylglycerol Catabolism in Yarrowia lipolytica: How Cells Balance Acetyl-CoA and Excess Reducing Equivalents. Metab. Eng. 2024, 85, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Kurt, E.; LBassi, T.; Sa, L.; Xie, D. Biotechnological Production of Omega-3 Fatty Acids: Current Status and Future Perspectives. Front. Microbiol. 2023, 14, 1280296. [Google Scholar] [CrossRef] [PubMed]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae—Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef]
- Calarnou, L.; Vigouroux, E.; Thollas, B.; Le Grand, F.; Mounier, J. Screening for the Production of Polyunsaturated Fatty Acids and Cerebrosides in Fungi. J. Appl. Microbiol. 2024, 135, 30. [Google Scholar] [CrossRef]
- Jiru, T.M.; Groenewald, M.; Pohl, C.; Steyn, L.; Kiggundu, N.; Abate, D. Optimization of Cultivation Conditions for Biotechnological Production of Lipid by Rhodotorula kratochvilovae (Syn, Rhodosporidium kratochvilovae) SY89 for Biodiesel Preparation. 3 Biotech 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Gorte, O.; Kugel, M.; Ochsenreither, K. Optimization of Carbon Source Efficiency for Lipid Production with the Oleaginous Yeast Saitozyma podzolica DSM 27192 Applying Automated Continuous Feeding. Biotechnol. Biofuels 2020, 13, 181. [Google Scholar] [CrossRef]
- Osorio-González, C.S.; Saini, R.; Hegde, K.; Brar, S.K.; Lefebvre, A.; Avalos Ramirez, A. Carbon/Nitrogen Ratio as a Tool to Enhance the Lipid Production in Rhodosporidium toruloides-1588 Using C5 and C6 Wood Hydrolysates. J. Clean. Prod. 2023, 384, 135687. [Google Scholar] [CrossRef]
- Ye, Z.; Sun, T.; Hao, H.; He, Y.; Liu, X.; Guo, M.; Chen, G. Optimising Nutrients in the Culture Medium of Rhodosporidium toruloides Enhances Lipids Production. AMB Express 2021, 11. [Google Scholar] [CrossRef]
- Gao, B.; Wang, F.; Huang, L.; Liu, H.; Zhong, Y.; Zhang, C. Biomass, Lipid Accumulation Kinetics, and the Transcriptome of Heterotrophic Oleaginous Microalga Tetradesmus bernardii under Different Carbon and Nitrogen Sources. Biotechnol. Biofuels 2021, 14. [Google Scholar] [CrossRef]
- Konzock, O.; Zaghen, S.; Fu, J.; Kerkhoven, E.J. Urea Is a Drop-in Nitrogen Source Alternative to Ammonium Sulphate in Yarrowia lipolytica. iScience 2022, 25, 105703. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.; Sundararaju, P.; Srinivasan, N.; Uthandi, S. Bioconversion of Sago Processing Wastewater into Biodiesel: Optimization of Lipid Production by an Oleaginous Yeast, Candida tropicalis ASY2 and Its Transesterification Process Using Response Surface Methodology. Microb. Cell Fact. 2021, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, A.; Bhran, A.; Rasmey, A.H.; Mikky, Y. Optimization of Cultural Conditions for Lipid Accumulation by Aspergillus Wentii Ras101 and Its Transesterification to Biodiesel: Application of Response Surface Methodology. 3 Biotech 2018, 8, 417. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; et al. A Comprehensive Classification System for Lipids. J. Lipid Res. 2005, 46, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Yellapu, S.K.; Bharti; Kaur, R.; Kumar, L.R.; Tiwari, B.; Zhang, X.; Tyagi, R.D. Recent Developments of Downstream Processing for Microbial Lipids and Conversion to Biodiesel. Bioresour. Technol. 2018, 256, 515–528. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Morales-Palomo, S.; González-Fernández, C. Microbial Lipids from Organic Wastes: Outlook and Challenges. Bioresour. Technol. 2021, 323, 124612. [Google Scholar] [CrossRef]
- Joseph Antony Sundarsingh, T.; Ameen, F.; Ranjitha, J.; Raghavan, S.; Shankar, V. Engineering Microbes for Sustainable Biofuel Production and Extraction of Lipids—Current Research and Future Perspectives. Fuel 2024, 355, 129532. [Google Scholar] [CrossRef]
- Min, D.B.; Ellefson, W.C. Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: Boston, MA, USA, 2010; Volume 2, ISBN 978-1-4419-1477-4. [Google Scholar]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- Martinez-Burgos, W.J.; Porto de Souza Vandenberghe, L.; Karp, S.G.; Murawski de Mello, A.F.; Thomaz Soccol, V.; Soccol, C.R. Microbial Lipid Production from Soybean Hulls Using Lipomyces starkeyi LPB53 in a Circular Economy. Bioresour. Technol. 2023, 372, 128650. [Google Scholar] [CrossRef]
- Ponnumsamy, V.K.; Al-Hazmi, H.E.; Shobana, S.; Dharmaraja, J.; Jadhav, D.A.; Piechota, G.; Igliński, B.; Kumar, V.; Bhatnagar, A.; Chae, K.J.; et al. A Review on Homogeneous and Heterogeneous Catalytic Microalgal Lipid Extraction and Transesterification for Biofuel Production. Chin. J. Catal. 2024, 59, 97–117. [Google Scholar] [CrossRef]
- Enomoto, A.; Fukushima, H.; Nagai, K.; Hakoda, M.; Nakamura, K. Disruption of Microbial Cells by the Flash Discharge of High-Pressure Carbon Dioxide. Biosci. Biotechnol. Biochem. 1994, 58, 1297–1301. [Google Scholar] [CrossRef]
- Silva, J.d.M.E.; Martins, L.H.d.S.; Moreira, D.K.T.; Silva, L.d.P.; Barbosa, P.d.P.M.; Komesu, A.; Ferreira, N.R.; Oliveira, J.A.R.d. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023, 12, 2074. [Google Scholar]
- Middelberg, A.P.J. Process-Scale Disruption of Microorganisms. Biotechnol. Adv. 1995, 13, 491–551. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, W.; Zhao, S.; Yang, X.; Xu, W.; Guo, M.; Xu, E.; Ding, T.; Ye, X.; Liu, D. Ultrasound-Assisted Extraction of Lipids as Food Components: Mechanism, Solvent, Feedstock, Quality Evaluation and Coupled Technologies—A Review. Trends Food Sci. Technol. 2022, 122, 83–96. [Google Scholar] [CrossRef]
- Marques, F.; Pinho, M.; Guerra, I.M.S.; Conde, T.A.; Silva, J.; Cardoso, H.; Martins, M.; Abreu, M.H.; Cerqueira, M.Â.; Domingues, M.R. Unlocking Functional Lipid Ingredients from Algae by Food-Grade Biosolvents and Ultrasound-Assisted Extraction for Nutritional Applications. LWT 2024, 200. [Google Scholar] [CrossRef]
- Mienis, E.; Vandamme, D.; Foubert, I. Ultrasound Assisted Extraction of Nannochloropsis: Effects on Lipid Extraction Efficiency and Lipid Stability. Algal Res. 2024, 80. [Google Scholar] [CrossRef]
- Karimi Sani, I.; Mehrnoosh, F.; Rasul, N.H.; Hassani, B.; Mohammadi, H.; Gholizadeh, H.; Sattari, N.; Kaveh, M.; Khodaei, S.M.; Alizadeh Sani, M.; et al. Pulsed Electric Field-Assisted Extraction of Natural Colorants; Principles and Applications. Food Biosci. 2024, 61, 104746. [Google Scholar] [CrossRef]
- Ferraz, L.P.; Silva, E.K. Pulsed Electric Field-Assisted Extraction Techniques for Obtaining Vegetable Oils and Essential Oils: Recent Progress and Opportunities for the Food Industry. Sep. Purif. Technol. 2025, 354, 128833. [Google Scholar] [CrossRef]
- Straessner, R.; Nikolausz, M.; Silve, A.; Nazarova, N.; Wuestner, R.; Papachristou, I.; Akaberi, S.; Leber, K.; Mueller, G.; Frey, W. Holistic Exploitation of Pulsed Electric Field (PEF)-Treated and Lipid Extracted Microalgae Auxenochlorella protothecoides, Utilizing Anaerobic Digestion (AD). Algal Res. 2023, 69. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Filho, R.M. Recent Advances in Lipid Extraction Using Green Solvents. Renew. Sustain. Energy Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Duarte, S.H.; dos Santos, P.; Michelon, M.; Oliveira, S.M.d.P.; Martínez, J.; Maugeri, F. Recovery of Yeast Lipids Using Different Cell Disruption Techniques and Supercritical CO2 Extraction. Biochem. Eng. J. 2017, 125, 230–237. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.A.N.; Omar, A.K.M. Application of Supercritical CO2 in Lipid Extraction—A Review. J. Food Eng. 2009, 95, 240–253. [Google Scholar] [CrossRef]
- Liu, H.; Liu, T.J.; Guo, H.W.; Wang, Y.J.; Ji, R.; Kang, L.L.; Wang, Y.T.; Guo, X.; Li, J.G.; Jiang, L.Q.; et al. A Review of the Strategy to Promote Microalgae Value in CO2 Conversion-Lipid Enrichment-Biodiesel Production. J. Clean. Prod. 2024, 436, 140538. [Google Scholar] [CrossRef]
- Santana, A.; Jesus, S.; Larrayoz, M.A.; Filho, R.M. Supercritical Carbon Dioxide Extraction of Algal Lipids for the Biodiesel Production. Procedia Eng. 2012, 42, 1755–1761. [Google Scholar]
- Gomez-Gomez, A.; Brito-de la Fuente, E.; Gallegos, C.; Garcia-Perez, J.V.; Benedito, J. Combination of Supercritical CO2 and High-Power Ultrasound for the Inactivation of Fungal and Bacterial Spores in Lipid Emulsions. Ultrason. Sonochem. 2021, 76, 105636. [Google Scholar] [CrossRef]
- Vasilakis, G.; Gamraoui, A.; Karayannis, D.; Giannakis, N.; Chatti, A.; Politis, I.; Diamantopoulou, P.; Papanikolaou, S. Mycelial Mass, Microbial Lipids and γ-Linolenic Acid (GLA) by Cunninghamella elegans Cultivated on Agro-Industrial Residues. Resour. Chem. Mater. 2024. [Google Scholar] [CrossRef]
- Das, S.; Das, S.; Ghangrekar, M.M. Enzymatic Cell Disruption Followed by Application of Imposed Potential for Enhanced Lipid Extraction from Wet Algal Biomass Employing Photosynthetic Microbial Fuel Cell. Bioresour. Technol. 2022, 363. [Google Scholar] [CrossRef]
- Carruthers, D.N.; Lee, T.S. Translating Advances in Microbial Bioproduction to Sustainable Biotechnology. Front. Bioeng. Biotechnol. 2022, 10, 968437. [Google Scholar] [CrossRef]
- Long, X.; He, N.; He, Y.; Jiang, J.; Wu, T. Biosurfactant Surfactin with PH-Regulated Emulsification Activity for Efficient Oil Separation When Used as Emulsifier. Bioresour. Technol. 2017, 241, 200–206. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Q.; Wang, X.; Li, Y.; Zhou, Q. Surfactants Selectively Reallocated the Bacterial Distribution in Soil Bioelectrochemical Remediation of Petroleum Hydrocarbons. J. Hazard. Mater. 2018, 344, 23–32. [Google Scholar] [CrossRef]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial Biosurfactants: A Review of Recent Environmental Applications. Bioeng. 2022, 13, 12365–12391. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.R.; Hayashi, J.A. Structure of a Rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys. 1965, 111, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Peñalver, P.; Rodríguez, A.; Daverey, A.; Font, X.; Gea, T. Use of Wastes for Sophorolipids Production as a Transition to Circular Economy: State of the Art and Perspectives. Rev. Environ. Sci. Biotechnol. 2019, 18, 413–435. [Google Scholar] [CrossRef]
- Pi, Y.; Bao, M.; Liu, Y.; Lu, T.; He, R. The Contribution of Chemical Dispersants and Biosurfactants on Crude Oil Biodegradation by Pseudomonas sp. LSH-7′. J. Clean. Prod. 2017, 153, 74–82. [Google Scholar] [CrossRef]
- Grand View Research Biosurfactants Market Size, Share & Trends Analysis Report By Product (Rhamnolipids, Sophorolipids, MES, APG, Sorbitan Esters, Sucrose Esters), By Application (Household), By Region And Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/biosurfactants-industry (accessed on 17 October 2024).
- Heider, S.A.E.; Peters-Wendisch, P.; Netzer, R.; Stafnes, M.; Brautaset, T.; Wendisch, V.F. Production and Glucosylation of C50 and C40 Carotenoids by Metabolically Engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2014, 98, 1223–1235. [Google Scholar] [CrossRef]
- Barretto, D.A.; Vootla, S.K. In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus gallinarum KX912244, a Gut Microbe of Bombyx mori. Indian. J. Microbiol. 2018, 58, 146–158. [Google Scholar] [CrossRef]
- Foong, L.C.; Loh, C.W.L.; Ng, H.S.; Lan, J.C.W. Recent Development in the Production Strategies of Microbial Carotenoids. World J. Microbiol. Biotechnol. 2021, 37, 12. [Google Scholar] [CrossRef]
- Cardoso, L.A.C.; Karp, S.G.; Vendruscolo, F.; Kanno, K.Y.F.; Zoz, L.I.C.; Carvalho, J.C. Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products. In Carotenoids; Cvetkovic, D.J., Nikolic, G.S., Eds.; InTechOpen: Rijeka, Croatia, 2017; Volume 1, pp. 125–142. [Google Scholar]
- Grand View Research Carotenoids Market Size, Share & Trends Analysis Report By Product, By Application (Food, Supplements, Feed, Pharmaceuticals, Cosmetics), By Source, By Region, And Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/carotenoids-market (accessed on 17 October 2024).
- Germany’s Union for the Promotion of Oil and Protein Plants World Production of Biodiesel Rises to Record Level–Demand for Soybeans Drives Biodiesel Fuel Production in North and South America. Available online: https://www.ufop.de/english/news/chart-week/#kw23_2024 (accessed on 17 October 2024).
- Pandey, A.K.; Sirohi, R.; Gaur, V.K.; Pandey, K.; Udayan, A.; Sharma, P.; Pilli, S.; Kim, S.H.; Pandey, A. Sustainable Technologies for Biodiesel Production from Microbial Lipids. In Biomass, Biofuels, Biochemicals Circular Bioeconomy: Technologies for Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 29–66. [Google Scholar] [CrossRef]
- Radlein, D.; Quignard, A. Une Bréve Revue Historique de La Pyrolyse Rapide de La Biomasse. Oil Gas Sci. Technol. 2013, 68, 765–783. [Google Scholar] [CrossRef]
- Béligon, V.; Christophe, G.; Fontanille, P.; Larroche, C. Microbial Lipids as Potential Source to Food Supplements. Curr. Opin. Food Sci. 2016, 7, 35–42. [Google Scholar] [CrossRef]
- Birch, E.E.; Garfield, S.; Castañeda, Y.; Hughbanks-Wheaton, D.; Uauy, R.; Hoffman, D. Visual Acuity and Cognitive Outcomes at 4 Years of Age in a Double-Blind, Randomized Trial of Long-Chain Polyunsaturated Fatty Acid-Supplemented Infant Formula. Early Hum. Dev. 2007, 83, 279–284. [Google Scholar] [CrossRef]
- Horrobin, D.F. Nutritional and Medical Importance of Gamma-Linolenic Acid. Prog. Lipid Res. 1992, 31, 163–194. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N. Polyhydroxybutyrate (PHB) Production by Bacteria and Its Application as Biodegradable Plastic in Various Industries. Acad. J. Polym. Sci. 2019, 2. [Google Scholar] [CrossRef]
- Turco, R.; Santagata, G.; Corrado, I.; Pezzella, C.; Di Serio, M. In Vivo and Post-Synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front. Bioeng. Biotechnol. 2021, 8, 619266. [Google Scholar] [CrossRef] [PubMed]
- Policastro, G.; Panico, A.; Fabbricino, M. Improving Biological Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) (PHBV) Co-Polymer: A Critical Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 479–513. [Google Scholar] [CrossRef]
- Valdés, G.; Mendonça, R.T.; Aggelis, G. Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review. Appl. Sci. 2020, 10, 7698. [Google Scholar] [CrossRef]
- El Kantar, S.; Khelfa, A.; Vorobiev, E.; Koubaa, M. Strategies for Increasing Lipid Accumulation and Recovery from Y. Lipolytica: A Review. OCL—Oilseeds Fats Crops Lipids 2021, 28, 51. [Google Scholar]
- Li, Y.P.; Ahmadi, F.; Kariman, K.; Lackner, M. Recent Advances and Challenges in Single Cell Protein (SCP) Technologies for Food and Feed Production. NPJ Sci. Food 2024, 8, 66. [Google Scholar] [CrossRef]
- Němcová, A.; Szotkowski, M.; Samek, O.; Cagáňová, L.; Sipiczki, M.; Márová, I. Use of Waste Substrates for the Lipid Production by Yeasts of the Genus Metschnikowia—Screening Study. Microorganisms 2021, 9, 2295. [Google Scholar] [CrossRef]
- Liu, G.-Q.; Lin, Q.-L.; Jin, X.-C.; Wang, X.-L.; Zhao, Y. Screening and Fermentation Optimization of Microbial Lipid-Producing Molds from Forest Soils. Afr. J. Microbiol. Res. 2010, 4, 1462–1468. [Google Scholar]
- Hashem, A.H.; Abu-Elreesh, G.; El-Sheikh, H.H.; Suleiman, W.B. Isolation, Identification, and Statistical Optimization of a Psychrotolerant Mucor racemosus for Sustainable Lipid Production. Biomass Convers. Biorefin 2023, 13, 3415–3426. [Google Scholar] [CrossRef]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.C.; Thurecht, K.J.; Ghafor, W.A.; Tannock, S.; Schenk, P.M. A Comparative Study: The Impact of Different Lipid Extraction Methods on Current Microalgal Lipid Research. Microb. Cell Fact. 2014, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zhao, X.; Turcotte, F.; Deschênes, J.S.; Tremblay, R.; Jolicoeur, M. Current Lipid Extraction Methods Are Significantly Enhanced Adding a Water Treatment Step in Chlorella protothecoides. Microb. Cell Fact. 2017, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wei, C.; Yan, Q.; Shan, X.; Wu, M.; Zhao, X.; Song, Y. Optimization of a Novel Lipid Extraction Process from Microalgae. Sci. Rep. 2021, 11, 20221. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22I, 13643. [Google Scholar] [CrossRef]
- Retra, K.; Bleijerveld, O.B.; Van Gestel, R.A.; Tielens, A.G.M.; Van Hellemond, J.J.; Brouwers, J.F. A Simple and Universal Method for the Separation and Identification of Phospholipid Molecular Species. Rapid Commun. Mass. Spectrom. 2008, 22, 1853–1862. [Google Scholar] [CrossRef]
- Rizzo, G.; Baroni, L.; Lombardo, M. Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 1683. [Google Scholar] [CrossRef]
- Priefert, H.; Schneider, J.; Windau, J. Method for Producing a Biomass with an Increased Content of Polyunsaturated Fatty Acids. Patent Application No. US20220017929A1, 7 November 2022. [Google Scholar]
- Kumar, G.R.K.; Subhash, V.G.; Musale, A.S.; Govindachary, S.; Prasad, V.; Gupta, S.D. Inducing Lipid in Fungi Rapidly Comprises Exposing the Fungi to Infrared Radiation. Patent Application No. 202021039478, 2022. [Google Scholar]
- Huang, Q.; Huang, J.; Zhang, S.; Xu, S.; Shen, X. Method for Improving Oil Yield of Microalgae in Photoheterotrophic System. Patent Application No. CN113512567A, 29 June 2021. [Google Scholar]
- Soccol, C.R.; Colonia, B.S.O.; De Melo Pereira, G.V.; Karp, S.G. Producing Traustochitrid Biomass Rich in Docosahexaenoic Acid Used in Animal Feed, by Using Sugarcane Molasses, Yeast Cream and Cornstarch as Substrates for Culture Medium, Artificial Sea Water and Monosodium Glutamate by Employing Auratiochytrium. Patent Application No. 870230058262, 2022. [Google Scholar]
- Petrie, J.R.; Singh, S.P.; El Tahchy, A.; Shrestha, P.; Devilla, R.A.; Nguyen, H. Composition Useful e.g., for Producing Food-like Aroma and Flavor When Heated, Comprises Mortierella Species Biomass, Branched Chain Fatty Acids, Sugars, Sugar Alcohols, Sugar Acids or Sugar Derivatives and Amino Acids or Thiamine. Patent Application No. WO2024050590A1, 14 March 2024. [Google Scholar]
- Ranjitha, J.; Vijayalakshmi, S.; Donatus, M.S.; Anand, M. Producing Biodiesel from Microalgae, Comprises e.g., Isolation of Oleaginous Microalgal Species from Agro-Industrial Waste Water, and Cultivation of Oleaginous Microalgal Species Using Media Optimized Heterotrophic Growth. Patent Application No. 202041037060, 2020. [Google Scholar]
- Cucchetti, D.; Frattini, A.; Del Seppia, A.; Prando, T. Producing Lipids in Presence of Oleaginous Yeast by Fermentation, Used to Produce Biofuels in Diesel Engines for Automotive or Aviation, Comprises Growing Oleaginous Cell Biomass, and Producing Lipid. Patent Application No. WO2023180925A1, 21 March 2023. [Google Scholar]
- Soccol, C.R.; De Melo Pereira, G.V.; De Carvalho Neto, D.P. Cosmetic Composition for Hair, Comprises Microbial Lipids from Dry and Enriched Biomass, Distilled Water as Vehicle, Surfactant, Conditioning Agent, Foam Active Stabilizer, Sequestrant Component, Wetting Component, and Thickening Component. Patent Application No. 870190128208, 2021. [Google Scholar]
- Mcnamara, H.M.; Ticku, S.; Heller, D.; Moevus, C.; Zhang, B. Refined, Bleached, and/or Deodorized Microbial Oil Used in Personal Care Composition, Is Produced by Oleaginous Yeast. Patent Application No. WO2022104063A2, 12 November 2022. [Google Scholar]
- Mcnamara, H.M.; Moevus, C.; Li, J.; Chapeaux, A. Isolating Bioproduct from Yeast Involves Treating Yeast Cells with Beta-1,3-Glucomannanase, Separating Lipid Phase from Aqueous Phase of Enzymatically Lysed Sample via Solvent or Non-Solvent Extraction, and Isolating Bioproduct from Sample. Patent Application No. WO2023220060A1, 9 May 2023. [Google Scholar]
- Ribeiro De Lima Pereira, E.; Dantas Calixto, C.; Barbosa Da Silva Araújo, V.; Da Costa Sassi, C.F.; Emerenciano Das Chagas, B.M.; De Lira, E.B.; Alves Alcântara, M.; Barboza Da Silva, V.M.; De Athayde Filho, P.F.; Sassi, R. Extracting Bioactive Compounds from Microalgae Involves Selecting Dry Microalgal Biomass in the Form of a Powder, Preferably from Scenedesmus quadricauda, Obtaining Saponifiable Compounds, Comprising Fatty and Unsaponifiable Acids. Patent Application No. 870190015157, 2020. [Google Scholar]
- Ratledge, C. Microbial Oils: An Introductory Overview of Current Status and Future Prospects. OCL—Oilseeds Fats Crops Lipids 2013, 20, D602. [Google Scholar] [CrossRef]
- Soccol, C.R.; Dalmas Neto, C.J.; Soccol, V.T.; Sydney, E.B.; da Costa, E.S.F.; Medeiros, A.B.P.; Vandenberghe, L.P.d.S. Pilot Scale Biodiesel Production from Microbial Oil of Rhodosporidium toruloides DEBB 5533 Using Sugarcane Juice: Performance in Diesel Engine and Preliminary Economic Study. Bioresour. Technol. 2017, 223, 259–268. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Available online: https://www.undp.org/sustainable-development-goals (accessed on 31 October 2024).
- Qin, L.; Qin, Y.; Cui, N.; Han, X.; Lu, H.; Yang, T.; Liang, W. Photosynthetic Microalgae Microbial Fuel Cells for Bioelectricity Generation and Microalgae Lipid Recovery Using Gd-Co@N-CSs/NF as Cathode. Chem. Eng. J. 2024, 490. [Google Scholar] [CrossRef]
Trophic Mode | Energy Source | Carbon Source | Biomass Productivity | Lipid Accumulation |
---|---|---|---|---|
Autotrophic | Light | CO2 | Moderate to high | Variable |
Heterotrophic | Organic carbon | Glucose (or similar) | High | High |
Mixotrophic | Light + Organic | CO2 + Organic Carbon | Highest | Highest |
Microorganism | Strain | Biomass | Lipid | Carbon Source | Type of Fatty Acids Produced (Mass in Relation to Total Lipid Mass) | Reference |
---|---|---|---|---|---|---|
Bacteria | Cryptococcus curvatus ATCC 20509 | 12.4 | 6.9 | Cellulose | Palmitic (28.8–39.0%), stearic (15.5–21.8%) and oleic (37.9–46.7%) acids | [122] |
Rhodococcus opacus PD630 | 11.9 | 3.56 | Molasses | Palmitic (44.3%). oleic (26.2%). elaidic (18.7%) and stearic (5.1%) acids | [123] | |
Bacillus subtilis HB1310 | 5.2 | 1.88 | Cotton stalk hydrolysate | Palmitic (28.33%), oleic (32.13%), linoleic (8.59%) and myristic (5.28%) acids | [124] | |
DS-7 * | 3.96 | 2.91 | Hydrolysate of vegetable residues | Palmitic (15.9%), heptadecanoic (15.21%), oleic (19.53%) and eicosanoic (20.22%) acids | [125] | |
Fungi | Mucor circinelloides VI4 04473 | 12.92 | 6.7 | Glucose | Palmitic (22%), oleic (38%), linoleic (14%) and γ-linolenic (12%) acids | [50] |
Thamnidium elegans CCF-1465 | 13.3 | 9.3 | Sucrose | Palmitic (16.0–30.1%), oleic (50.7–57.4%) and linoleic (4.2–12.5%) acids | [126] | |
Trichoderma viride NRC 314 | 16 | 4.7 | Dextrose | Palmitoleic (30%), linoleic (22.64%), α–Linolenic (12.16%) and erucic (7.91%) acids | [127] | |
Umbelopsis vinacea CCM F539 | 22 | 14 | Glucose | Palmitic, oleic, linoleic and γ-linolenic acids (percentage not specified) | [128] | |
Yeasts | Yarrowia lipolytica A101 | 8.33 | 1.39 | Glycerol | Oleic acid (60%) | [129] |
Yarrowia lipolytica AJD pAD-DGA1 | 12.7 | 5.47 | Crude glycerol | Oleic (60%) and palmitoleic (8%) acids | [129] | |
Rhodotorula graminis DBVPG 4620 | 16.09 | 7.9 | Glucose | Palmitic (50%). oleic (20%) and linoleic (15%) acids | [130] | |
Pichia guilliermondii Pcla22 | 20.4 | 12.33 | Inulin | Palmitic (21.9%), oleic (57.9%), linoleic (1.7%), stearic (5.8%), myristic (0.4%) and linolenic (not specified) acids | [131] | |
Trichosporon oleaginosus DSM 11815 | Not reported | 26.74 | Corn cob hydrolysate | Palmitic, oleic, linoleic, myristic and palmitoleic acids (percentage not specified) | [90] | |
Microalgae | Chlorella vulgaris | 3.53 | 0.980 | Glucose and CO2 | Palmitic (21.37%), oleic (19.8%), hexadecadienoic (9.47%), hexadecatrienoic (6.78%) and linolenic (27.91%) acids | [132] |
Chlorella sp. NT8a | 2.31 | 0.8183 | CO2 | Palmitic (33.43%), linolenic (38.85%), linoleic (22.29%) and oleic (15.09%) acids | [133] | |
Graesiella emersonii NT1e | 1.12 | 0.64 | CO2 | Oleic (23.79%), linolenic (18.36%), palmitic (18.79%) and linolenic (11.09%) acids | [133] | |
Chlorella sorokiniana | 0.53 | 0.129 | CO2 | Palmitic (32.83%), conjugated linoleic (8.58%), linoleic (29.10%) and linolenic (26.07%) acids | [134] | |
Scenedesmus obliquus | 1.11 | 0.369 | CO2 | Stearic (42.69%), palmitic (18.21%) and oleic (5.2%) acids | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, G.d.S.; Martinez-Burgos, W.J.; dos Reis, G.A.; Puche, Y.P.; Vega, F.R.; Rodrigues, C.; Serra, J.L.; Campos, S.d.M.; Soccol, C.R. Advances in Biomass and Microbial Lipids Production: Trends and Prospects. Processes 2024, 12, 2903. https://doi.org/10.3390/pr12122903
Costa GdS, Martinez-Burgos WJ, dos Reis GA, Puche YP, Vega FR, Rodrigues C, Serra JL, Campos SdM, Soccol CR. Advances in Biomass and Microbial Lipids Production: Trends and Prospects. Processes. 2024; 12(12):2903. https://doi.org/10.3390/pr12122903
Chicago/Turabian StyleCosta, Gabriela dos S., Walter J. Martinez-Burgos, Guilherme A. dos Reis, Yenis P. Puche, Fernando R. Vega, Cristine Rodrigues, Josilene L. Serra, Sofia de M. Campos, and Carlos R. Soccol. 2024. "Advances in Biomass and Microbial Lipids Production: Trends and Prospects" Processes 12, no. 12: 2903. https://doi.org/10.3390/pr12122903
APA StyleCosta, G. d. S., Martinez-Burgos, W. J., dos Reis, G. A., Puche, Y. P., Vega, F. R., Rodrigues, C., Serra, J. L., Campos, S. d. M., & Soccol, C. R. (2024). Advances in Biomass and Microbial Lipids Production: Trends and Prospects. Processes, 12(12), 2903. https://doi.org/10.3390/pr12122903