Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials
Abstract
:1. Introduction
1.1. General Perspectives
1.2. Alternatives to Mitigate CO2 Emissions
2. Electrochemical CO2 Reduction (CO2RE)
- (1)
- CO2 chemisorption on the surface of the electrocatalyst, in which CO2 species are adsorbed at the electrode interface by chemical phenomena;
- (2)
- Cleavage of the C=O bond through electron transfer and/or proton coupling;
- (3)
- Formation of C-C and C-H bonds to form hydrocarbons;
- (4)
- Rearrangement of the configuration and desorption of products into the electrolyte.
3. Electrocatalysts for CO2 Reduction
4. Mechanisms of Formation of C1 and C2 Compounds
4.1. Copper Electrocatalysts
4.2. Nickel Electrocatalysts
4.3. Zinc Electrocatalysts
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larkum, A.; Orth, R.J.; Duarte, C. Seagrasses: Biology, Ecology and Conservation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; ISBN 140202942X. [Google Scholar]
- Jones, A.M. Environmental Biology; Routledge: London, UK, 2006; ISBN 9781134777662. [Google Scholar]
- Grace, J. Understanding and Managing the Global Carbon Cycle. J. Ecol. 2004, 92, 189–202. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide. Energy Environ. Sci. 2010, 3, 43–81. [Google Scholar] [CrossRef]
- Pacheco, M.R.P.D.S.; Helene, E.M. Atmosphere, carbon fluxes, and CO2 fertilization. Estud. Avançados 1990, 4, 204–220. (In Portuguese) [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Ivanovski, K. Conditional Convergence in per Capita Carbon Emissions since 1900. Appl. Energy 2018, 228, 916–927. [Google Scholar] [CrossRef]
- Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem 2017, 10, 1039–1055. [Google Scholar] [CrossRef] [PubMed]
- Viva, F.A. Electrochemical Reduction of CO2 on Metal Electrodes. Fundamentals and Applications Review. Adv. Chem. Lett. 2013, 1, 1–12. [Google Scholar] [CrossRef]
- ONU. Sustainable Development Goals in Brazil. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 16 January 2023). (In Portuguese).
- Benson, S.M.; Orr, F.M., Jr. Carbon Dioxide Capture and Storage. MRS Bull. 2008, 33, 303–305. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Y.; Zhou, Y.; Dong, F. Photoelectrocatalytic Carbon Dioxide Reduction: Fundamental, Advances and Challenges. Nano Mater. Sci. 2021, 3, 344–367. [Google Scholar] [CrossRef]
- Simões, L.A.A.; Rodrigues, S.J.; Araujo, H.M.; Vieira, S.S. The Chemistry Involved in CO2 Conversion: Challenges and Opportunities. Rev. Virtual Quim. 2022, 14, 468–483. [Google Scholar] [CrossRef]
- Albo, J.; Alvarez-Guerra, M.; Castaño, P.; Irabien, A. Towards the Electrochemical Conversion of Carbon Dioxide into Methanol. Green Chem. 2015, 17, 2304–2324. [Google Scholar] [CrossRef]
- Nguyen, D.L.T.; Kim, Y.; Hwang, Y.J.; Won, D.H. Progress in Development of Electrocatalyst for CO2 Conversion to Selective CO Production. Carbon Energy 2019, 2, 72–98. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Filippi, J.; Miller, H.A.; Vizza, F. Recent Technological Progress in CO2 Electroreduction to Fuels and Energy Carriers in Aqueous Environments. Energy Technol. 2015, 3, 197–210. [Google Scholar] [CrossRef]
- Birhanu, M.K.; Tsai, M.; Kahsay, A.W.; Chen, C.; Zeleke, T.S.; Ibrahim, K.B.; Huang, C.; Su, W.; Hwang, B. Copper and Copper-Based Bimetallic Catalysts for Carbon Dioxide Electroreduction. Adv. Mater. Interfaces 2018, 5, 1800919. [Google Scholar] [CrossRef]
- Kong, X.; Liu, B.; Tong, Z.; Bao, R.; Yi, J.; Bu, S.; Liu, Y.; Wang, P.; Lee, C.S.; Zhang, W. Charge-Switchable Ligand Ameliorated Cobalt Polyphthalocyanine Polymers for High-Current-Density Electrocatalytic CO2 Reduction. SmartMat 2024. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, P.; Jiang, Q.; Pan, Y.; Liang, W.; Stavitsk, E.; Alshareef, H.N.; Wang, H. Continuous Production of Pure Liquid Fuel Solutions via Electrocatalytic CO2 Reduction Using Solid-Electrolyte Devices. Nat. Energy 2019, 4, 776–785. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Q.L. MOF-Based Materials for Photo- and Electrocatalytic CO2 Reduction. EnergyChem 2020, 2, 100033. [Google Scholar] [CrossRef]
- Ren, C.; Ni, W.; Li, H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts 2023, 13, 644. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.C.; Zeng, J.; Zhao, X.; Chen, C.; Wu, Q.M.; Chen, L.M.; Chen, Z.Y.; Lei, Y.P. Bimetallic Chalcogenides for Electrocatalytic CO2 Reduction. Rare Met. 2021, 40, 3442–3453. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Fang, R.; Wang, J.; Yu, X.; Chen, J.; Jing, H. Photoelectrocatalytic CO2 Reduction to Ethanol via Graphite-Supported and Functionalized TiO2 Nanowires Photocathode. J. Photochem. Photobiol. A Chem. 2020, 391, 112368. [Google Scholar] [CrossRef]
- Pan, Z.; Han, E.; Zheng, J.; Lu, J.; Wang, X.; Yin, Y.; Waterhouse, G.I.N.; Wang, X.; Li, P. Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst. Nanomicro Lett. 2020, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hou, M.; Li, J.; Li, L.; Zhang, Z. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction. Chin. J. Inorg. Chem. 2022, 38. [Google Scholar] [CrossRef]
- Amos, P.I.; Louis, H.; Adegoke, K.A.; Eno, E.A.; Udochukwu, A.O.; Magub, T.O. Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review. Asian J. Nanosci. Mater 2022, 4, 252–293. [Google Scholar] [CrossRef]
- Ishiki, N.A.; Lima, F.H.B.; Ticianelli, E. AElectrochemical CO2 Reduction: Remaking Our Carbon Footprints. Quim. Nova Esc. 2023, 45, 109–116. (In Portuguese) [Google Scholar] [CrossRef]
- Woldu, A.R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 Reduction (CO2RR) to Multi-Carbon Products over Copper-Based Catalysts. Coord. Chem. Rev. 2022, 454, 214340. [Google Scholar] [CrossRef]
- Kas, R.; Yang, K.; Bohra, D.; Kortlever, R.; Burdyny, T.; Smith, W.A. Electrochemical CO2 Reduction on Nanostructured Metal Electrodes: Fact or Defect? Chem. Sci. 2020, 11, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B. Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem 2017, 3, 560–587. [Google Scholar] [CrossRef]
- Vickers, J.W.; Alfonso, D.; Kauffman, D.R. Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials. Energy Technol. 2017, 5, 775–795. [Google Scholar] [CrossRef]
- Chen, F.; Yao, Z.; Lyu, Z.-H.; Fu, J.; Zhang, X.; Hu, J.-S. Recent Advances in P-Block Metal Chalcogenide Electrocatalysts for High-Efficiency CO2 Reduction. eScience 2023, 100172. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Mualliful Ilmi, M.; Mardiana, S.; Khalil, M.; Sagita, F.; Culsum, N.T.U.; Fajar, A.T.N. Recent Advances of Carbon Nanotubes as Electrocatalyst for In-Situ Hydrogen Production and CO2 Conversion to Fuels. Results Chem. 2023, 6, 101037. [Google Scholar] [CrossRef]
- Ligt, B.; Hensen, E.J.M.; Costa Figueiredo, M. Electrochemical Interfaces during CO2 Reduction on Copper Electrodes. Curr. Opin. Electrochem. 2023, 41, 101351. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Hu, Q.; Chai, X.; Ren, X.; Zhang, Q.; Liu, J.; He, C. Recent Progress in Self-Supported Catalysts for CO2 Electrochemical Reduction. Small Methods 2020, 4, 1900826. [Google Scholar] [CrossRef]
- Zoubir, O.; Atourki, L.; Ait Ahsaine, H.; BaQais, A. Current State of Copper-Based Bimetallic Materials for Electrochemical CO2 Reduction: A Review. RSC Adv. 2022, 12, 30056–30075. [Google Scholar] [CrossRef] [PubMed]
- Jeyachandran, N.; Yuan, W.; Giordano, C. Cutting-Edge Electrocatalysts for CO2RR. Molecules 2023, 8, 3504. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, J. Single-Atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020, 30, 2000768. [Google Scholar] [CrossRef]
- Du, D.; Lan, R.; Humphreys, J.; Tao, S. Progress in Inorganic Cathode Catalysts for Electrochemical Conversion of Carbon Dioxide into Formate or Formic Acid. J. Appl. Electrochem. 2017, 47, 661–678. [Google Scholar] [CrossRef]
- Rende, K.; Kayan, D.B.; Arslan, L.Ç.; Ergenekon, P. Facile fabrication of Sn/SnOx electrode as an eficiente electrocatalyst for CO2 reduction to formate. Mater. Today Commun. 2023, 35, 105819. [Google Scholar] [CrossRef]
- Mustapha, U.; Nnadiekwe, C.C.; Alhaboudal, M.A.; Yunusa, U.; Abdullahi, A.H.S.; Abdulazeez, I.; Hussain, I.; Ganiyu, S.A.; Al-Saadi, A.A.; Alhooshani, K. The Role of Morphology on the Electrochemical CO2 Reduction Performance of Transition Metal-Based Catalysts. J. Energy Chem. 2023, 85, 198–219. [Google Scholar] [CrossRef]
- Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical Reduction of CO2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Adv. Sci. 2021, 8, 2102886. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhao, S.; Johannessen, B.; Veder, J.P.; Saunders, M.; Rowles, M.R.; Cheng, M.; Liu, C.; Chisholm, M.F.; De Marco, R.; et al. Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Adv. Mater. 2018, 30, 1706287. [Google Scholar] [CrossRef] [PubMed]
- Aljabour, A.; Coskun, H.; Apaydin, D.H.; Ozel, F.; Hassel, A.W.; Stadler, P.; Sariciftci, N.S.; Kus, M. Nanofibrous Cobalt Oxide for Electrocatalysis of CO2 Reduction to Carbon Monoxide and Formate in an Acetonitrile-Water Electrolyte Solution. Appl. Catal. B 2018, 229, 163–170. [Google Scholar] [CrossRef]
- Wu, L.; Wu, L.; Guo, C.; Guan, Y.; Wang, H.; Lu, J. Progress in Electroreduction of CO2 to Form Various Fuels Based on Zn Catalysts. Processes 2023, 11, 1039. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9, 3783–3791. [Google Scholar] [CrossRef]
- Quan, F.; Zhong, D.; Song, H.; Jia, F.; Zhang, L. A Highly Efficient Zinc Catalyst for Selective Electroreduction of Carbon Dioxide in Aqueous NaCl Solution. J. Mater. Chem. A 2015, 3, 16409–16413. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, M.R.; Liu, S.; Luo, J.L. Hexagonal Zn Nanoplates Enclosed by Zn(100) and Zn(002) Facets for Highly Selective CO2 Electroreduction to CO. ACS Appl. Mater. Interfaces 2020, 12, 31431–31438. [Google Scholar] [CrossRef]
- Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H.M.; Pan, X.; Duan, X.; et al. Highly Active and Stable Stepped Cu Surface for Enhanced Electrochemical CO2 Reduction to C2H4. Nat. Catal. 2020, 3, 804–812. [Google Scholar] [CrossRef]
- Wang, H.; Tzeng, Y.K.; Ji, Y.; Li, Y.; Li, J.; Zheng, X.; Yang, A.; Liu, Y.; Gong, Y.; Cai, L.; et al. Synergistic Enhancement of Electrocatalytic CO2 Reduction to C2 Oxygenates at Nitrogen-Doped Nanodiamonds/Cu Interface. Nat. Nanotechnol. 2020, 15, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.J.; Li, T.; Muntean, J.V.; Winans, R.E.; et al. Highly Selective Electrocatalytic CO2 Reduction to Ethanol by Metallic Clusters Dynamically Formed from Atomically Dispersed Copper. Nat. Energy 2020, 5, 623–632. [Google Scholar] [CrossRef]
- El Aisnada, A.N.; Miyauchi, M.; Liu, M.; Yamaguchi, A. Recent Update on Electrochemical CO2 Reduction Catalyzed by Metal Sulfide Materials. Mater. Rep. Energy 2023, 3, 100190. [Google Scholar] [CrossRef]
- Raciti, D.; Wang, C. Recent Advances in CO2 Reduction Electrocatalysis on Copper. Energy Lett. 2018, 3, 1545–1556. [Google Scholar] [CrossRef]
- Santos, E.; Nazmutdinov, R.; Schmickler, W. Electron Transfer at Different Electrode Materials: Metals, Semiconductors, and Graphene. Curr. Opin. Electrochem. 2020, 19, 106–112. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Electrocatalysis for CO2 conversion: From Fundamentals to Value-Added Products. Chem. Soc. Rev. 2021, 50, 4993–5061. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.D.; Liu, J.L.; Qiao, S.Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv. Mater. 2016, 28, 3423–3452. [Google Scholar] [CrossRef] [PubMed]
- Benson, E.E.; Kubiak, C.P.; Sathrum, A.J.; Smieja, J.M. Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. Rev. 2009, 38, 89–99. [Google Scholar] [CrossRef]
- Long, C.; Li, X.; Guo, J.; Shi, Y.; Liu, S.; Tang, Z. Electrochemical Reduction of CO2 over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods 2019, 3, 1800369. [Google Scholar] [CrossRef]
- Lu, X.; Ahsaine, H.A.; Dereli, B.; Garcia-Esparza, A.T.; Reinhard, M.; Shinagawa, T.; Li, D.; Adil, K.; Tchalala, M.R.; Kroll, T.; et al. Operando Elucidation on the Working State of Immobilized Fluorinated Iron Porphyrin for Selective Aqueous Electroreduction of CO2 to CO. Catalysis 2021, 11, 6499–6509. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Chen, Z.; Xiong, Y.; Huang, Q.; Xu, X.; Huo, Z. Effects of Irrigation and Fertilization on Grain Yield, Water and Nitrogen Dynamics and Their Use Efficiency of Spring Wheat Farmland in an Arid Agricultural Watershed of Northwest China. Agric. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Zhou, L.; Qu, Z.; Fu, L. Rational Design of Hollow Nitrogen-Doped Carbon Supported Nickel Nanoparticles for Efficient Electrocatalytic CO2 Reduction. J. Environ. Chem. Eng. 2023, 11, 109427. [Google Scholar] [CrossRef]
- Verma, S.; Lu, S.; Kenis, P.J.A. Co-Electrolysis of CO2 and Glycerol as a Pathway to Carbon Chemicals with Improved Technoeconomics Due to Low Electricity Consumption. Nat. Energy 2019, 4, 466–474. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Alghoraibi, N.M.; Henckel, D.A.; Zhang, R.; Nwabara, U.O.; Madsen, K.E.; Kenis, P.J.A.; Zimmerman, S.C.; Gewirth, A.A. Electrochemical CO2-to-Ethylene Conversion on Polyamine-Incorporated Cu Electrodes. Nat. Catal. 2021, 4, 20–27. [Google Scholar] [CrossRef]
- Gabardo, C.M.; O’Brien, C.P.; Edwards, J.P.; McCallum, C.; Xu, Y.; Dinh, C.T.; Li, J.; Sargent, E.H.; Sinton, D. Continuous Carbon Dioxide Electroreduction to Concentrated Multi-Carbon Products Using a Membrane Electrode Assembly. Joule 2019, 3, 2777–2791. [Google Scholar] [CrossRef]
- Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C.M.; Ozden, A.; Dinh, C.T.; Li, J.; Wang, Y.; et al. Molecular Tuning of CO2-to-Ethylene Conversion. Nature 2020, 577, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Qin, Q.; Wang, P.; Zhao, X.; Hu, C.; Liu, P.; Qin, R.; Chen, M.; Ou, D.; Xu, C.; et al. Ultrastable Atomic Copper Nanosheets for Selective Electrochemical Reduction of Carbon Dioxide. Sci. Adv. 2017, 3, e1701069. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, J.; Sun, M.; Liao, L.; Zhang, Q.; Zhai, L.; Zhou, X.; Li, L.; Wang, G.; Meng, F.; et al. Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industry-Relevant Current Density. Small 2022, 18, e2106766. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Chen, A.; Hou, S.; Guan, J. CNT Modified by Mesoporous Carbon Anchored by Ni Nanoparticles for CO2 Electrochemical Reduction. Carbon Energy 2022, 4, 1274–1284. [Google Scholar] [CrossRef]
- Hong, J.; Park, K.T.; Kim, Y.E.; Tan, D.; Jeon, Y.E.; Park, J.E.; Youn, M.H.; Jeong, S.K.; Park, J.; Ko, Y.N.; et al. Ag/C Composite Catalysts Derived from Spray Pyrolysis for Efficient Electrochemical CO2 Reduction. Chem. Eng. J. 2022, 431, 133384. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, L.; Zhong, J.H.; Yang, H.G. Partially Oxidized Palladium Nanodots for Enhanced Electrocatalytic Carbon Dioxide Reduction. Chem. Asian J. 2018, 13, 2800–2804. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical Reconstruction of ZnO for Selective Reduction of CO2 to CO. Appl. Catal. B 2020, 273, 119060. [Google Scholar] [CrossRef]
- Gong, Y.N.; Jiao, L.; Qian, Y.; Pan, C.Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.H.; Jiang, H.L. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction. Angew. Chem.-Int. Ed. 2020, 59, 2705–2709. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, T.; Yu, K.; Liu, J.; Chen, W.; Li, A.; Rong, H.; Lin, R.; Ji, S.; Zheng, X.; et al. Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573. [Google Scholar] [CrossRef]
- Xiang, K.; Zhu, F.; Liu, Y.; Pan, Y.; Wang, X.; Yan, X.; Liu, H. A Strategy to Eliminate Carbon Deposition on a Copper Electrode in Order to Enhance Its Stability in CO2RR Catalysis by Introducing Crystal Defects. Electrochem. Commun. 2019, 102, 72–77. [Google Scholar] [CrossRef]
- Wu, J.; Risalvato, F.G.; Ke, F.-S.; Pellechia, P.J.; Zhou, X.-D. Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode. J. Electrochem. Soc. 2012, 159, F353–F359. [Google Scholar] [CrossRef]
- Larrazábal, G.O.; Martín, A.J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J. Enhanced Reduction of CO2 to CO over Cu-In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catal. 2016, 6, 6265–6274. [Google Scholar] [CrossRef]
- Sarfraz, S.; Garcia-Esparza, A.T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO. ACS Catal. 2016, 6, 2842–2851. [Google Scholar] [CrossRef]
- Ma, M.; Djanashvili, K.; Smith, W.A. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. Angew. Chem. 2016, 128, 6792–6796. [Google Scholar] [CrossRef]
- Huan, T.N.; Simon, P.; Rousse, G.; Génois, I.; Artero, V.; Fontecave, M. Porous Dendritic Copper: An Electrocatalyst for Highly Selective CO2 Reduction to Formate in Water/Ionic Liquid Electrolyte. Chem. Sci. 2016, 8, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Delacourt, C.; Ridgway, P.L.; Kerr, J.B.; Newman, J. Design of an Electrochemical Cell Making Syngas (CO + H2) from CO2 and H2O Reduction at Room Temperature. J. Electrochem. Soc. 2008, 155, B42. [Google Scholar] [CrossRef]
- Oloman, C.; Li, H. Electrochemical Processing of Carbon Dioxide. ChemSusChem 2008, 1, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. Copper-Based Metal–Organic Porous Materials for CO2 Electrocatalytic Reduction to Alcohols. ChemSusChem 2017, 10, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Albo, J.; Irabien, A. Cu2O-Loaded Gas Diffusion Electrodes for the Continuous Electrochemical Reduction of CO2 to Methanol. J. Catal. 2016, 343, 232–239. [Google Scholar] [CrossRef]
- Gu, Z.; Shen, H.; Shang, L.; Lv, X.; Qian, L.; Zheng, G. Nanostructured Copper-Based Electrocatalysts for CO2 Reduction. Small Methods 2018, 2, 1800121. [Google Scholar] [CrossRef]
- Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.Z. Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. Chem 2018, 4, 1809–1831. [Google Scholar] [CrossRef]
- Hori, Y.; Murata, A.; Takahashi, R. Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution. J. Chem. Soc. Faraday Trans. 1989, 85, 2309. [Google Scholar] [CrossRef]
- Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrocatalytic Process of CO Selectivity in Electrochemical Reduction of CO2 at Metal Electrodes in Aqueous Media. Electrochim. Acta 1994, 39, 1833–1839. [Google Scholar] [CrossRef]
- Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, NY, USA, 2008; pp. 89–189. [Google Scholar]
- Zhou, H.; Liu, K.; Li, H.; Cao, M.; Fu, J.; Gao, X.; Hu, J.; Li, W.; Pan, H.; Zhan, J.; et al. Recent Advances in Different-Dimension Electrocatalysts for Carbon Dioxide Reduction. J. Colloid Interface Sci. 2019, 550, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.T.; Peng, H.; Lamoureux, P.S.; Bajdich, M.; Abild-Pedersen, F. From Electricity to Fuels: Descriptors for C1 Selectivity in Electrochemical CO2 Reduction. Appl. Catal. B Environ. 2020, 279, 119384. [Google Scholar] [CrossRef]
- Johnson, D.; Qiao, Z.; Djire, A. Progress and Challenges of Carbon Dioxide Reduction Reaction on Transition Metal Based Electrocatalysts. ACS Appl. Energy Mater. 2021, 4, 8661–8684. [Google Scholar] [CrossRef]
- Jiang, J.-C.; Chen, J.-C.; Zhao, M.; Yu, Q.; Wang, Y.-G.; Li, J. Rational Design of Copper-Based Single-Atom Alloy Catalysts for Electrochemical CO2 Reduction. Nano Res. 2022, 15, 7116–7123. [Google Scholar] [CrossRef]
- Clark, E.L.; Nielsen, R.; Sørensen, J.E.; Needham, J.L.; Seger, B.; Chorkendorff, I. Tuning Surface Reactivity and Electric Field Strength via Intermetallic Alloying. ACS Energy Lett. 2023, 8, 4414–4420. [Google Scholar] [CrossRef] [PubMed]
- Ahsaine, H.A.; BaQais, A. Metal and metal oxide electrocatalysts for the electrochemical reduction of CO2-to-C1 chemicals: Are we there yet? Green Chem. Lett. Rev. 2022, 16, 2160215. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef] [PubMed]
- Todorova, T.K.; Schreiber, M.W.; Fontecave, M. Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) toward Multicarbon Products by Heterogeneous Copper-Based Catalysts. ACS Catal. 2020, 10, 1754–1768. [Google Scholar] [CrossRef]
- Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311. [Google Scholar] [CrossRef]
- Nie, X.; Esopi, M.R.; Janik, M.J.; Asthagiri, A. Selectivity of CO2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps. Angew. Chem. 2013, 125, 2519–2522. [Google Scholar] [CrossRef]
- Ren, D.; Deng, Y.; Handoko, A.D.; Chen, C.S.; Malkhandi, S.; Yeo, B.S. Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catal. 2015, 5, 2814–2821. [Google Scholar] [CrossRef]
- Montoya, J.H.; Peterson, A.A.; Nørskov, J.K. Insights into C-C Coupling in CO2 Electroreduction on Copper Electrodes. ChemCatChem 2013, 5, 737–742. [Google Scholar] [CrossRef]
- Yadav, D.K.; Singh, D.K.; Ganesan, V. Recent Strategy(Ies) for the Electrocatalytic Reduction of CO2: Ni Single-Atom Catalysts for the Selective Electrochemical Formation of CO in Aqueous Electrolytes. Curr. Opin. Electrochem. 2020, 22, 87–93. [Google Scholar] [CrossRef]
- Zong, S.; Chen, A.; Wiśniewski, M.; Macheli, L.; Jewell, L.L.; Hildebrandt, D.; Liu, X. Effect of Temperature and Pressure on Electrochemical CO2 Reduction: A Mini Review. Carbon Capture Sci. Technol. 2023, 8, 100133. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, H.; Yang, Q.; Gu, Y.; Zhu, H.; Yan, S.; Zou, Z. Inhibiting Hydrogen Evolution Using a Chloride Adlayer for Efficient Electrochemical CO2 Reduction on Zn Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 4565–4571. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Li, Y.; Fu, H.; Wang, H.; Chen, S.; Liu, Z.; Peng, F. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Interfaces 2018, 10, 20530–20539. [Google Scholar] [CrossRef] [PubMed]
- Won, D.H.; Shin, H.; Koh, J.; Chung, J.; Lee, H.S.; Kim, H.; Woo, S.I. Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst. Angew. Chem. 2016, 128, 9443–9446. [Google Scholar] [CrossRef]
Reaction | E°/V vs. RHE | Equation |
---|---|---|
CO2 + 2H+ + 2e− → HCOOH− | −0.610 | (1) |
CO2 + 2H2O + 2e− → HCOOH− | −1.491 | (2) |
CO2 + 2H+ + 2e− → CO + H2O | −0.530 | (3) |
CO2 + 2H2O + 2e− → CO + 2OH− | −1.347 | (4) |
2CO2 + 2H+ + 2e− → H2C2O4 | −0.913 | (5) |
2CO2 + 2e− → C2O42− | −1.003 | (6) |
CO2 + 4H+ + 4e− → HCHO + H2O | −0.480 | (7) |
CO2 + 3H2O + 4e− → HCHO + 4OH− | −1.311 | (8) |
CO2 + 4H+ + 4e− → C + 2H2O | −0.200 | (9) |
CO2 + 2H2O + 4e− → C + 4OH− | −1.040 | (10) |
CO2 + 6H+ + 6e− → CH3OH + H2O | −0.380 | (11) |
CO2 + 5H2O + 6e− → CH3OH + 6OH− | −1.225 | (12) |
CO2 + 8H+ + 8e− → CH4 + 2H2O | −0.240 | (13) |
CO2 + 6H2O + 8e− → CH4 + 8OH− | −1.072 | (14) |
2CO2 + 12H+ + 12e− → C2H4 + 4H2O | −0.349 | (15) |
2CO2 + 8H2O + 12e− → C2H4 + 12OH− | −1.177 | (16) |
2CO2 + 12H+ + 12e− → C2H5OH + 3H2O | −0.329 | (17) |
2CO2 + 9H2O + 12e− → C2H5OH + 12OH− | −1.157 | (18) |
2CO2 + 14H+ + 14e− → C2H6 + 4H2O | −0.270 | (19) |
3CO2 + 18H+ + 18e− → C3H7OH + H2O | −0.310 | (20) |
2H+ + 2e− → H2 | 0.000 | (21) |
Electrocatalyst | Electrolyte | Main Product | Faradaic Efficiency | Stability | Ref. |
---|---|---|---|---|---|
FeF20TPP/CNT-CF/CC | 0.5 M NaHCO3 | HCOOH | 95% | 50 h | [58] |
CuSn-4 | 0.5 M KHCO3 | HCOOH | 93.7% | - | [59] |
Ni@HNC | 0.1 M KHCO3 | CO | 98.7% | - | [60] |
Ag-NP | 2 M KOH | CO | 99.9% | - | [61] |
Cu-polyamine | 1 M KOH | C2H4 | 72% | 3 h | [62] |
Cu/PTFE | 0.1M KHCO3 | C2+ | 80% | 24 h | [63] |
Cu-12 | 0.1M KHCO3 | C2H4 | 64% | 190 h | [64] |
Cu/Ni(OH) | 0.5 M NaHCO3 | CO | 92% | 22 h | [65] |
4H/fcc Au-MMT | 1.0 M KHCO3 | HCOOH | 92.3% | 12 h | [66] |
CNT@mC/Ni | 0.5 M KHCO3 | CO | 98% | 24 h | [67] |
Ag75/C | 1 M KOH | CO, H2, and HCOOH | 90.1% | 30 h | [68] |
Pd/PdOx | 0.5 M KHCO3 | CO | 90% | 24 h | [69] |
ZnO | 1 M KOH | CO | 91.6% | 18 h | [70] |
Ni-N2-C | 0.5 M KHCO3 | HCOOH | 98% | 10 h | [71] |
Bi-N4 | 0.1 M NaHCO3 | CO | 97% | 4 h | [72] |
CuNNs | 5 M NaOH | C2H4 | 52% | 6 h | [73] |
Sn | 0.1 M Na2SO4 | HCOOH | 95% | 10 h | [74] |
Cu–In | 0.1 M KHCO3 | CO | 55% | 24 h | [75] |
CuO–Sn | 0.1 M KHCO3 | CO | 90% | 14 h | [76] |
Cu nanowire | 0.1 M KHCO3 | CO, HCOOH, C2H4 | 17.5% | 5 h | [77] |
Cu (dendrite) | [EMIM](BF4)/H2O (85/15 v/v) | HCOOH | 87% | 8 h | [78] |
Ag | 0.5 M KHCO3 | CO | 30–80% | 285 min | [79] |
Sn | 0.5 M KHCO3 + 2 M KCl | HCOOH | 70% | 4 h | [80] |
Cu-based metal–organic porous materials | 0.5 M KHCO3 | CH3OH, C2H5OH | 56% | 90 min | [81] |
Cu2O/ZnO | 0.5 M KHCO3 | CH4 C2H4 | 31.4% | 90 min | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barcelos, M.M.; Vasconcellos, M.d.L.S.; Ribeiro, J. Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials. Processes 2024, 12, 303. https://doi.org/10.3390/pr12020303
Barcelos MM, Vasconcellos MdLS, Ribeiro J. Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials. Processes. 2024; 12(2):303. https://doi.org/10.3390/pr12020303
Chicago/Turabian StyleBarcelos, Marcela Miranda, Maria de Lourdes Soprani Vasconcellos, and Josimar Ribeiro. 2024. "Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials" Processes 12, no. 2: 303. https://doi.org/10.3390/pr12020303
APA StyleBarcelos, M. M., Vasconcellos, M. d. L. S., & Ribeiro, J. (2024). Recent Progress in Electrochemical CO2 Reduction at Different Electrocatalyst Materials. Processes, 12(2), 303. https://doi.org/10.3390/pr12020303