Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of SBA-15 and Hybrid Photocatalysts
2.3. Characterization of the Prepared Samples
2.4. Photolytic and Photocatalytic Experiments
3. Results and Discussion
3.1. XRD Analysis
3.2. FT-IR Analysis
3.3. SEM/EDX and Mapping Analyses
3.4. Photocatalytic Activity Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J. Microbiol. 2020, 60, 125–138. [Google Scholar] [CrossRef]
- Shimomura, M.; Yokota, M.; Ihara, M.; Akamatsu, M.; Sattelle, D.B.; Matsuda, K. Role in the Selectivity of Neonicotinoids of Insect-Specific Basic Residues in Loop D of the Nicotinic Acetylcholine Receptor Agonist Binding Site. Mol. Pharmacol. 2006, 70, 1255–1263. [Google Scholar] [CrossRef]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, M.R. Mechanism for the differential toxicity of neonicotinoid insecticides in the honeybee, Apismellifera. Crop Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R. 5.3 Neonicotinoid Insecticides. Elsevier Ocean. Eng. Ser. 2006, 5, 53–105. [Google Scholar] [CrossRef]
- Alex Omo Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef]
- Otálora, A.; Lerma, T.L.; Arrieta-Urango, Y.; Palencia, M. Emerging organic pollutants in aqueous environments: Detection, monitoring, and removal techniques. J. Sci. Technol. Appl. 2022, 10, 92–153. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar]
- Lama, G.; Meijide, J.; Sanromán, A.; Pazos, M. Heterogeneous Advanced Oxidation Processes: Current Approaches for Wastewater Treatment. Catalysts 2022, 12, 344. [Google Scholar] [CrossRef]
- Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9853–9889. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Vale, M.; Vicente, D.; Schreck, M.; Tervoort, E.; Niederberger, M. Porous Silica Microspheres with Immobilized Titania Nanoparticles for In-Flow Solar-Driven Purification of Wastewater. Glob. Chall. 2021, 5, 2000116. [Google Scholar] [CrossRef] [PubMed]
- Vale, M.; Orišková, S.; Mariquito, A.; Reis, L.; Pinto, M.; Marques, A.C. Multicomponent oxide microspheres with designed macroporosity (MICROSCAFS®): A customized platform for chemicals immobilization. RSC Adv. 2023, 13, 12951–12965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Jiang, L.; Wang, H.; Yang, J.; Yuan, X.; Wang, H.; Liang, J.; Li, X.; Li, H.; Bu, Y. Oxygen Vacancies Modified TiO2/O-Terminated Ti3C2 Composites: Unravelling the Dual Effects between OxygenVacancy and High-Work-Function Titanium Carbide. Adv. Funct. Mater. 2023, 33, 2307702. [Google Scholar] [CrossRef]
- Wei, R.; Wang, H.; Jiang, L.; Yang, J.; Li, W.; Yuan, X.; Wang, H.; Liang, J.; Chen, Y.; Bu, Y. Molecular self-assembled synthesis of highly dispersed Co single-atomcoordinated 2-methylimidazole modified carbon nitride forperoxymonosulfate activation. Chem. Eng. J. 2023, 471, 144494. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W.; Jiang, L.; Yang, J.; Zhou, S.; Li, W.; Yuan, X.; Wang, H.; Wang, J.; Bu, Y. Mechanism insights into visible light-induced crystalline carbonnitride activating periodate for highly efficient ciprofloxacin removal. Chem. Eng. J. 2023, 471, 144521. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, D. Ordered mesoporous materials as adsorbents. Chem. Commun. 2011, 47, 3332–3338. [Google Scholar] [CrossRef] [PubMed]
- Schüth, F.; Schmidt, W. Microporous and Mesoporous Materials. Adv. Eng. Mater. 2002, 4, 269–279. [Google Scholar] [CrossRef]
- Branković, M.D.; Zarubica, A.R.; Andjelković, T.D.; Andjelković, D.H. Mesoporoussilica (MCM-41): Synthesis/Modification, characterization and removal of selected organic micro-pollutants from water. Adv. Technol. 2017, 6, 50–57. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333. [Google Scholar] [CrossRef]
- Sahoo, D.P.; Rath, D.; Nanda, B.; Parida, K.M. Transition metal/metal oxide modified MCM-41 for pollutant degradation and hydrogen energy production: A review. RSC Adv. 2015, 5, 83707–83724. [Google Scholar] [CrossRef]
- Sharma, M.V.P.; Kumari, V.D.; Subrahmanyam, M. Photocatalytic degradation of Isoproturon herbicide over TiO2/Al-MCM-41 composite system using solar light. Chemosphere 2008, 72, 644–651. [Google Scholar] [CrossRef]
- Sharma, M.V.P.; Kumari, V.D.; Subrahmanyam, M. TiO2 supported over SBA-15: An efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 2008, 73, 1562–1569. [Google Scholar] [CrossRef]
- Sadjadi, M.S.; Farhadyar, N.; Zare, K. Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity. Superlattices Microstruct. 2009, 46, 266–271. [Google Scholar] [CrossRef]
- Anandan, S. Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors. Dye. Pigment. 2008, 76, 535. [Google Scholar] [CrossRef]
- Ozbay, N.; Yargic, A.S.; Yarbay Sahin, R.Z.; Yaman, E. Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renew. Energy 2019, 140, 633–646. [Google Scholar] [CrossRef]
- Thieleman, J.P.; Girgsdies, F.; Schlögl, R.; Hess, C. Pore structure and surface area of silica SBA-15: Influence of washing and scale-up. Beilstein J. Nanotechnol. 2011, 2, 110–118. [Google Scholar] [CrossRef]
- Şimşek, V. Synthesis and Characterization of Fe/SBA-15 Heterogeneous Catalysts for Methyl Acetate Production. Eur. J. Sci. Technol. 2021, 28, 21–28. [Google Scholar] [CrossRef]
- Şimşek, V. Cd/SBA-15 heterogeneous catalyst used for acetic acid conversion: Pseudo-homogeneous kinetic model, response surface methodology, and historical data design. Z. Phys. Chem. 2023, 237, 1443–1456. [Google Scholar] [CrossRef]
- Şimşek, V. Investigation of catalytic Sustainability of Silica-Based Mesoporous Acidic Catalysts and Ion Exchange Resins in Methyl Acetate Synthesis and Characterizations of Synthesized Catalysts. Arab. J. Sci. Eng. 2019, 44, 5301–5310. [Google Scholar] [CrossRef]
- Reza, P.H.; Sara, B. Characterization and photocatalytic activity of ZnO, ZnS, ZnO/ZnS, CdO and CdO/CdS nanoparticles in mesoporous SBA-15. Iran. J. Chem. Chem. Eng. 2015, 34, 11–19. [Google Scholar] [CrossRef]
- Zhao, D.; Sun, J.; Li, Q.; Stucky, G.D. Morphological Control of Highly Ordered Mesoporous Silica SBA-15. Chem. Mater. 2000, 12, 275–279. [Google Scholar] [CrossRef]
- Talha, Z.; Bachir, C.; Ziri, S.; Bellahouel, S.; Bengueddach, A.; Villièras, F.; Pelletier, M.; Weidler, P.G. Al-Rich Ordered Mesoporous Silica SBA-15 Materials: Synthesis, Surface Characterization and Acid Properties. Catal. Lett. 2017, 147, 2116–2126. [Google Scholar] [CrossRef]
- Toro, R.G.; Diab, M.; de Caro, T.; Al-Shemy, M.; Adel, A.; Caschera, D. Study of the Effect of Titanium Dioxide Hydrosol on the Photocatalytic and Mechanical Properties of Paper Sheets. Materials 2020, 13, 1326. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ji, Y.; Qiao, Z.; Zhao, C.; He, J.; Zhang, H. Preparation, Characterization, and Application of Magnetic Fe-SBA-15 Mesoporous Silica Molecular Sieves. Hindawi Publ. Corp. J. Autom. Methods Manag. Chem. 2010, 7, 323509. [Google Scholar] [CrossRef] [PubMed]
- Mikheeva, N.N.; Zaikovskii, V.I.; Mamontov, G.V. Synthesis of ceria nanoparticles in pores of SBA-15: Pore size effect and influence of citric acid addition. Microporous Mesoporous Mater. 2019, 277, 10–16. [Google Scholar] [CrossRef]
- Shen, H.; Tang, Z.; Xiao, X.; Wu, H.; Zhou, H.; Fang, P.; Zhu, D.; Ge, J. Catalytic Oxidation of NO by Ozone over Mn-Ce/Al2O3/TiO2 Catalyst. Processes 2022, 10, 1946. [Google Scholar] [CrossRef]
- Junhong, W.J.; Shao, X.; Liu, J.; Ji, X.; Ma, J.; Tian, G. Fabrication of CdS-SBA-15 nanomaterials and their photocatalytic activity for degradation of salicylic acid under visible light. Ecotoxixology Environ. Saf. 2020, 190, 110139. [Google Scholar]
- Ziarani, G.M.; Ebrahimi, Z.; Mohajer, F.; Alireza, B. Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg2+ in Aqueous Media. Arab. J. Sci. Eng. 2021, 47, 397–406. [Google Scholar] [CrossRef]
- Bhuyan, D.; Selvaraj, K.; Saikia, L. Pd/SBA-15 nanocomposite catalyst: Synthesis and efficient solvent-free semihydrogenation of phenylacetylene under mild conditions. Microporous Mesoporous Mater. 2017, 241, 266–273. [Google Scholar] [CrossRef]
- Yarbay Şahin, R.Z. A comparative study on dark adsorption of dyes using mesoporous MCM-41 catalyst. Res. Chem. Intermed. 2022, 48, 541–553. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, J.K. Stable phase CdS nanoparticles for optoelectronics: A study on surface morphology, structural and optical characterization. Mater. Sci.-Pol. 2016, 34, 368–373. [Google Scholar] [CrossRef]
- Anucha, C.B.; Bacaksiz, E.; Stathopoulos, V.N.; Pandis, P.K.; Argirusis, C.; Andreouli, C.-D.; Tatoudi, Z.; Altin, I. Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes 2022, 10, 1113. [Google Scholar] [CrossRef]
- Bin, M.; Tingmei, W.; Zhenhua, W.; Huigang, S.; Desheng, X.; Peng, L. Fabrication of functional block copolymer grafted superparamagnetic nanoparticles for targeted and controlled drug delivery. Colloids Surf. A Physicochem. Eng. Asp. 2011, 375, 163–168. [Google Scholar] [CrossRef]
- Sayari, A.; Han, B.H.; Yang, Y. Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 2004, 126, 14348–14349. [Google Scholar] [CrossRef]
- Simsek, V. Synthesis, Characterization and Investigation Catalytic Activity in the Glycerol Esterification Reaction of Acidic Catalyst. Ph.D. Thesis, Gazi University Graduate School of Natural and Applied Sciences, Ankara, Türkiye, 2015. [Google Scholar]
- Sudhaik, A.; Raizada, P.; Thakur, S.; Saini, R.V.; Saini, A.K.; Singh, P.; Thakur, V.K.; Nguyen, V.H.; Khan, A.A.P.; Asiri, A.M. Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst. J. Taiwan Inst. Chem. Eng. 2020, 113, 142–154. [Google Scholar] [CrossRef]
- Ghaedi, H.; Zhao, M. Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy Fuels 2022, 36, 2424–2446. [Google Scholar] [CrossRef]
- Ruchomski, L.; Pikus, S.; Pikula, T.; Mączka, E.; Marek Kosmulski, M. Synthesis and properties of Fe/SBA-15. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124922. [Google Scholar] [CrossRef]
- Colilla, M.; Martínez-Carmona, M.; Sánchez Salcedo, S.; Ruiz-González, M.L.; González-Calbetc, J.M.; Vallet-Regí, M. A Novel Zwitterionic Bioceramicwith Dual Antibacterial Capability. J. Mater. Chem. B 2014, 2, 5639–5651. [Google Scholar] [CrossRef]
- Kosmulski, M. Isoelectricpoints and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interf. Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef]
- Urán-Duque, L.; Saldarriaga-Molina, J.C.; Rubio-Clemente, A. Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. Water 2021, 13, 2445. [Google Scholar] [CrossRef]
- Hasija, V.; Nguyen, V.H.; Kumar, A.; Raizada, P.; Krishnan, V.; Khan, A.A.P.; Singh, P.; Lichtfouse, E.; Wang, C.; Thi Huong, P. Advanced Activation of Persulfate by Polymeric G-C3N4 Based Photocatalysts for Environmental Remediation: A Review. J. Hazard. Mater. 2021, 413, 125324. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Yang, Z.; Shen, W.; Ai, Z.; Zhang, L. Oxygen Vacancy Associated Surface Fenton Chemistry: Surface Structure Dependent Hydroxyl Radicals Generation and Substrate Dependent Reactivity. Environ. Sci. Technol. 2017, 51, 5685–5694. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.D.; Dong, Z.; Lim, T.T. Generation of Sulfate Radical through Heterogeneous Catalysis for Organic Contaminants Removal: Current Development, Challenges and Prospects. Appl. Catal. B 2016, 194, 169–201. [Google Scholar] [CrossRef]
- Wang, Q.; Rao, P.; Li, G.; Dong, L.; Zhang, X.; Shao, Y.; Gao, N.; Chu, W.; Xu, B.; An, N. Degradation of imidacloprid by UV-activated persulfate and peroxymonosulfate processes: Kinetics, impact of key factors and degradation pathway. Ecotoxicol. Environ. Saf. 2020, 187, 109779. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarbay, R.Z.; Şimşek, V.; Bogdan, L.; Tomašić, V. Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts. Processes 2024, 12, 489. https://doi.org/10.3390/pr12030489
Yarbay RZ, Şimşek V, Bogdan L, Tomašić V. Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts. Processes. 2024; 12(3):489. https://doi.org/10.3390/pr12030489
Chicago/Turabian StyleYarbay, Rahmiye Zerrin, Veli Şimşek, Lucija Bogdan, and Vesna Tomašić. 2024. "Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts" Processes 12, no. 3: 489. https://doi.org/10.3390/pr12030489
APA StyleYarbay, R. Z., Şimşek, V., Bogdan, L., & Tomašić, V. (2024). Photocatalytic Degradation of Neonicotinoids—A Comparative Study of the Efficacy of Hybrid Photocatalysts. Processes, 12(3), 489. https://doi.org/10.3390/pr12030489