Convective Hot Air Drying of Red Cabbage (Brassica oleracea var. Capitata Rubra): Mathematical Modeling, Energy Consumption and Microstructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation for Drying Process
2.2. Drying Process and Determination of Effective Diffusion Coefficient (Deff)
2.3. Modeling of Desorption Isotherm
2.4. Energy Consumption Inside the Drying Chamber
2.5. Rehydration Process
2.5.1. Rehydration Kinetics
2.5.2. Mathematical Modeling of Rehydration Kinetics
2.5.3. Rehydration Indices
Water Absorption (Wabs) Index
Water Holding Capacity (%WHC)
2.6. Microstructure Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Modeling of Desorption Isotherms
3.2. Drying Kinetics and Mathematical Modeling
3.2.1. Drying Process and Determination of Diffusion Coefficient (Deff)
3.2.2. Energy Consumption Inside the Drying Chamber
3.3. Rehydration Process
3.3.1. Rehydration Kinetics
3.3.2. Mathematical Modelling of Rehydration Curves
3.3.3. Total Water Absorption and Water Holding Capacity
3.4. Microstructure Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Xiao, Y.; Lagnika, C.; Li, D.; Liu, C.; Jiang, N.; Song, J.; Zhang, M. A Comparative Evaluation of Nutritional Properties, Antioxidant Capacity and Physical Characteristics of Cabbage (Brassica oleracea var. Capitate var L.) Subjected to Different Drying Methods. Food Chem. 2020, 309, 124935. [Google Scholar] [CrossRef]
- Drozdowska, M.; Leszczyńska, T.; Piasna-Słupecka, E.; Domagała, D.; Koronowicz, A. Young Shoots and Mature Red Cabbage Inhibit Proliferation and Induce Apoptosis of Prostate Cancer Cell Lines. Appl. Sci. 2021, 11, 11507. [Google Scholar] [CrossRef]
- Hanschen, F.S. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020, 321, 126694. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Yang, Y.; Wei, H.; Xue, L.; Zhao, M.; Cai, J. Optimization of Combined Microwave and Hot Air Drying Technology for Purple Cabbage by Response Surface Methodology (RSM). Food Sci. Nutr. 2021, 9, 4568–4577. [Google Scholar] [CrossRef] [PubMed]
- Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by Spray-Drying of Polyphenols Extracted from Red Chicory and Red Cabbage: Effects on Stability and Color Properties. Food Chem. 2020, 307, 125535. [Google Scholar] [CrossRef]
- Ali, A.; Oon, C.C.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdylo, A.; Turkiewicz, I.P.; Szumny, A.; Łyczko, J. Volatile and polyphenol composition, anti-oxidant, anti-diabetic and antiaging properties, and drying kinetics as affected by convective and hybrid vacuum microwave drying of Rosmarinus officinalis L. Ind. Crops Prod. 2020, 151, 112463. [Google Scholar] [CrossRef]
- Guo, X.; Hao, Q.; Qiao, X.; Li, M.; Qiu, Z.; Zheng, Z.; Zhang, B. An evaluation of different pretreatment methods of hot-air drying of garlic: Drying characteristics, energy consumption and quality properties. LWT Food Sci. Technol. 2023, 180, 114685. [Google Scholar] [CrossRef]
- Altay, K.; Hayaloglu, A.A.; Dirim, S.N. Determination of the Drying Kinetics and Energy Efficiency of Purple Basil (Ocimum basilicum L.) Leaves Using Different Drying Methods. Heat Mass Transf. 2019, 55, 2173–2184. [Google Scholar] [CrossRef]
- Ojediran, J.O.; Okonkwo, C.E.; Olaniran, A.F.; Iranloye, Y.M.; Adewumi, A.D.; Erinle, O.; Afolabi, Y.T.; Adeyi, O.; Adeyi, A. Hot air convective drying of hog plum fruit (Spondias mombin): Effects of physical and edible-oil-aided chemical pretreatments on drying and quality characteristics. Heliyon 2021, 7, e08312. [Google Scholar] [CrossRef]
- Seremet, L.; Botez, E.; Nistor, O.V.; Andronoiu, D.G.; Mocanu, G.D. Effect of Different Drying Methods on Moisture Ratio and Rehydration of Pumpkin Slices. Food Chem. 2016, 195, 104–109. [Google Scholar] [CrossRef]
- Doymaz, İ. Drying Kinetics, Rehydration and Colour Characteristics of Convective Hot-Air Drying of Carrot Slices. Heat Mass Transf. 2017, 53, 25–35. [Google Scholar] [CrossRef]
- Ponwiboon, N.; Rojanakorn, T. Desorption isotherms and drying characteristics of Nile tilapia fish sheet. Int. Food Res. J. 2017, 24, 1292–1300. [Google Scholar]
- Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.L.; Liu, C.; Ye, X.; Xie, G. Applications of Water Blanching, Surface Contacting Ultrasound-Assisted Air Drying, and Their Combination for Dehydration of White Cabbage: Drying Mechanism, Bioactive Profile, Color and Rehydration Property. Ultrason. Sonochem. 2019, 53, 192–201. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Uribe, E.; Pastén, A.; Vega, M.; Poblete, J.; Bilbao-Sainz, C.; Chiou, B. Sen Low-Temperature Vacuum Drying as Novel Process to Improve Papaya (Vasconcellea pubescens) Nutritional-Functional Properties. Futur. Foods 2022, 5, 100117. [Google Scholar] [CrossRef]
- Inyang, U.E.; Oboh, I.O.; Etuk, B.R. Kinetic Models for Drying Techniques—Food Materials. Adv. Chem. Eng. Sci. 2018, 8, 27–48. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Spiess, W.; Wolf, W. The results of the COST 90 project on water activity. In Physical Properties of Foods; Jowitt, R., Escher, F., Hallstrom, F., Meffert, M., Spiess, W., Vos, G., Eds.; Applied Science Publisher: London, UK, 1983; pp. 65–91. [Google Scholar]
- Association of Official Analytical Chemist Official Methods of Analysis. AOAC Official Method 934.06, Moisture in Dried Fruits, 17th ed.; Association of Official Analytical Chemist Official Methods of Analysis: Rockville, MD, USA, 2000. [Google Scholar]
- Kemmene Dapabko, S.; Jiokap Nono, Y.; Arebga, A.W.; Kapseu, C.; Puiggali, J.R. Determination and Modeling Desorption Isotherms of Okra (Abelmoschus esculentus L. Moench) and Sweet Green Pepper (Capsicum annum L. Moench). J. Biosyst. Eng. 2021, 46, 60–80. [Google Scholar] [CrossRef]
- Motevali, A.; Minaei, S.; Khoshtagaza, M.H. Evaluation of Energy Consumption in Different Drying Methods. Energy Convers. Manag. 2011, 52, 1192–1199. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Notte-Cuello, E.; Lemus-Mondaca, R.; Zura, L.; Miranda, M. Mathematical Modelling of Mass Transfer during Rehydration Process of Aloe Vera (Aloe barbadensis miller). Food Bioprod. Process. 2009, 87, 254–260. [Google Scholar] [CrossRef]
- Ghellam, M.; Koca, I. Modelling of Rehydration Kinetics of Desert Truffles (Terfezia spp.) Dried by Microwave Oven. Turk. J. Agric. Food Sci. Technol. 2020, 8, 407. [Google Scholar] [CrossRef]
- Wang, J.; Bai, T.; Wang, D.; Fang, X.; Xue, L.; Zheng, Z.; Gao, Z.; Xiao, H.W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2018, 37, 301–311. [Google Scholar] [CrossRef]
- Mallek-Ayadi, S.; Bahloul, N.; Kechaou, N. Mathematical Modelling of Water Sorption Isotherms and Thermodynamic Properties of Cucumis Melo L. Seeds. LWT 2020, 131, 109727. [Google Scholar] [CrossRef]
- Caballero-Cerón, C.; Guerrero-Beltrán, J.A.; Mújica-Paz, H.; Torres, J.A.; Welti-Chanes, J. Moisture Sorption Isotherms of Foods: Experimental Methodology, Mathematical Analysis, and Practical Applications. In Water Stress in Biological, Chemical, Pharmaceutical and Food Systems; Gutiérrez-López, G., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G., Eds.; Food Engineering Series; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Seetapan, N.; Limparyoon, N.; Fuongfuchat, A.; Gamonpilas, C.; Methacanon, P. Effect of Freezing Rate and Starch Granular Morphology on Ice Formation and Non-Freezable Water Content of Flour and Starch Gels. Int. J. Food Prop. 2015, 19, 1616–1630. [Google Scholar] [CrossRef]
- Bellagha, S.; Sahli, A.; Zid, M.B.; Farhat, A. Desorption Isotherms of Fresh and Osmotically Dehydrated Apples (Golden Delicious). Rev. Énergies Renouv. 2008, 2, 45–52. [Google Scholar]
- Pankaew, P.; Janjai, S.; Nilnont, W.; Phusampao, C.; Bala, B.K. Moisture Desorption Isotherm, Diffusivity and Finite Element Simulation of Drying of Macadamia Nut (Macadamia integrifolia). Food Bioprod. Process. 2016, 100, 16–24. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Demiray, E.; Seker, A.; Tulek, Y. Drying Kinetics of Onion (Allium cepa L.) Slices with Convective and Microwave Drying. Heat Mass Transf. 2017, 53, 1817–1827. [Google Scholar] [CrossRef]
- Sonmete, M.H.; Mengeş, H.O.; Ertekin, C.; Özcan, M.M. Mathematical Modeling of Thin Layer Drying of Carrot Slices by Forced Convection. J. Food Meas. Charact. 2017, 11, 629–638. [Google Scholar] [CrossRef]
- Liu, Z.L.; Bai, J.W.; Yang, W.X.; Wang, J.; Deng, L.Z.; Yu, X.L.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) and Drying Parameters on Drying Characteristics and Quality of Broccoli Florets. Dry. Technol. 2019, 37, 1251–1264. [Google Scholar] [CrossRef]
- Manjunatha, S.S.; Raju, P.S. Mathematical Modelling the Drying Kinetics of Beetroot Strips during Convective Drying at Different Temperatures. Def. Life Sci. J. 2019, 4, 140–149. [Google Scholar] [CrossRef]
- Benseddik, A.; Azzi, A.; Zidoune, M.N.; Allaf, K. Mathematical Empirical Models of Thin-Layer Airflow Drying Kinetics of Pumpkin Slice. Eng. Agric. Environ. Food 2018, 11, 220–231. [Google Scholar] [CrossRef]
- Demirpolat, A.B. Investigation of Mass Transfer with Different Models in a Solar Energy Food-Drying System. Energies 2019, 12, 3447. [Google Scholar] [CrossRef]
- Ambawat, S.; Sharma, A.; Saini, R. Mathematical Modeling of Thin Layer Drying Kinetics and Moisture Diffusivity Study of Pretreated Moringa Oleifera Leaves Using Fluidized Bed Dryer. Processes 2022, 10, 2464. [Google Scholar] [CrossRef]
- Naderinezhad, S.; Etesami, N.; Najafabady, A.P.; Falavarjani, M.G. Mathematical Modeling of Drying of Potato Slices in a Forced Convective Dryer Based on Important Parameters. Food Sci. Nutr. 2016, 4, 110–118. [Google Scholar] [CrossRef]
- Koukouch, A.; Idlimam, A.; Asbik, M.; Sarh, B.; Izrar, B.; Bah, A.; Ansari, O. Thermophysical Characterization and Mathematical Modeling of Convective Solar Drying of Raw Olive Pomace. Energy Convers. Manag. 2015, 99, 221–230. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Yapar, Z. A New Model for Single-Layer Drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Torki-Harchegani, M.; Ghanbarian, D.; Ghasemi Pirbalouti, A.; Sadeghi, M. Dehydration Behaviour, Mathematical Modelling, Energy Efficiency and Essential Oil Yield of Peppermint Leaves Undergoing Microwave and Hot Air Treatments. Renew. Sustain. Energy Rev. 2016, 58, 407–418. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Dehghani, M.R.; Ramaswamy, H.S. Hybrid Microwave-Hot Air Tunnel Drying of Onion Slices: Drying Kinetics, Energy Efficiency, Product Rehydration, Color, and Flavor Characteristics. Dry. Technol. 2020, 40, 966–986. [Google Scholar] [CrossRef]
- Ohaco, E.H.; Ichiyama, B.; Lozano, J.E.; De Michelis, A. Rehydration of Rosa Rubiginosa Fruits Dried with Hot Air. Dry. Technol. 2015, 33, 696–703. [Google Scholar] [CrossRef]
- Lopez-Quiroga, E.; Prosapio, V.; Fryer, P.J.; Norton, I.T.; Bakalis, S. Model Discrimination for Drying and Rehydration Kinetics of Freeze-Dried Tomatoes. J. Food Process Eng. 2020, 43, e13192. [Google Scholar] [CrossRef]
- Doymaz, I.; Kocayigit, F. Drying and Rehydration Behaviors of Convection Drying of Green Peas. Dry. Technol. 2011, 29, 1273–1282. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Nguyen, T.H.A.; Kyomugasho, C.; Buvé, C.; Dewettinck, K.; Van Loey, A.; Hendrickx, M.E. The Impact of Drying and Rehydration on the Structural Properties and Quality Attributes of Pre-Cooked Dried Beans. Foods 2021, 10, 1665. [Google Scholar] [CrossRef] [PubMed]
- Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I.S. Normalized Weibull Distribution for Modeling Rehydration of Food Particulates. Eur. Food Res. Technol. 2003, 217, 311–318. [Google Scholar] [CrossRef]
- Marabi, A.; Saguy, I. Effect of Porosity on Rehydration of Dry Food Particulates. J. Sci. Food Agric. 2004, 84, 1105–1110. [Google Scholar] [CrossRef]
- Afrin, S.M.; Acharjee, A.; Sit, N. Convective Drying of Orange Pomace at Different Temperatures and Characterization of the Obtained Powders. J. Food Sci. Technol. 2022, 59, 1040–1052. [Google Scholar] [CrossRef] [PubMed]
- Ngamwonglumlert, L.; Devahastin, S. Microstructure and Its Relationship with Quality and Storage Stability of Dried Foods; Devahastin, S., Ed.; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780081007648. [Google Scholar]
- Mahiuddin, M.; Khan, M.I.H.; Kumar, C.; Rahman, M.M.; Karim, M.A. Shrinkage of Food Materials During Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in Curcuminoids and Chemical Components of Turmeric (Curcuma longa L.) under Freeze-Drying and Low-Temperature Drying Methods. Food Chem. 2021, 339, 128121. [Google Scholar] [CrossRef]
- Pashazadeh, H.; Redha, A.A.; Koca, I. Effect of convective drying on phenolic acid, flavonoid and anthocyanin content, texture and microstructure of black rosehip fruit. J. Food Compost. Anal. 2024, 125, 105738. [Google Scholar] [CrossRef]
- Qiu, Y.; Bi, J.; Jin, X.; Hu, L.; Lyu, J.; Wu, X. An Understanding of the Changes in Water Holding Capacity of Rehydrated Shiitake Mushroom (Lentinula edodes) from Cell Wall, Cell Membrane and Protein. Food Chem. 2021, 351, 129230. [Google Scholar] [CrossRef]
Drying Temperature (°C) | ||||||
---|---|---|---|---|---|---|
Models | 50 | 60 | 70 | 80 | 90 | |
Newton | k | 0.010180 ± 0.000165 | 0.012997 ± 0.000540 | 0.016560 ± 0.000525 | 0.020880 ± 0.000688 | 0.021913 ± 0.001590 |
Page | k | 0.004708 ± 0.000288 | 0.005883 ± 0.000843 | 0.006623 ± 0.000540 | 0.009064 ± 0.000870 | 0.005749 ± 0.001787 |
n | 1.169864 ± 0.010597 | 1.188153 ± 0.044593 | 1.230600 ± 0.011404 | 1.223348 ± 0.019440 | 1.371160 ± 0.067486 | |
Page mod. | k | 0.010240 ± 0.000170 | 0.013190 ± 0.000586 | 0.016937 ± 0.000505 | 0.021347 ± 0.000698 | 0.022707 ± 0.001461 |
n | 1.169863 ± 0.010597 | 1.188227 ± 0.044716 | 1.230600 ± 0.011401 | 1.223347 ± 0.019437 | 1.371153 ± 0.067494 | |
Logarithmic | k | 0.009506 ± 0.000274 | 0.012230 ± 0.000381 | 0.015837 ± 0.000442 | 0.019757 ± 0.001017 | 0.020080 ± 0.001790 |
c | −0.050276 ± 0.007538 | −0.050397 ± 0.008757 | −0.046493 ± 0.001611 | −0.051090 ± 0.007556 | −0.088337 ± 0.017672 | |
a | 1.078039 ± 0.006140 | 1.081223 ± 0.014845 | 1.081893 ± 0.005751 | 1.082523 ± 0.006430 | 1.141067 ± 0.026083 | |
Weibull | β | 97.6603 ± 1.62570 | 75.9217 ± 3.29046 | 59.0857 ± 1.750804 | 46.8750 ± 1.55297 | 44.1670 ± 2.808941 |
α | 1.169667 ± 0.010599 | 1.188000 ± 0.044677 | 1.230333 ± 0.011372 | 1.223333 ± 0.019399 | 1.371333 ± 0.067300 | |
Silva and Alii | a | 0.012630 ± 0.000167 | 0.016533 ± 0.001369 | 0.021773 ± 0.000304 | 0.027243 ± 0.001197 | 0.032503 ± 0.001183 |
b | −0.021893 ± 0.000320 | −0.027323 ± 0.006212 | −0.035607 ± 0.002063 | −0.038813 ± 0.004110 | −0.062863 ± 0.006886 | |
Midilli and Kuçuk | a | 0.998500 ± 0.004063 | 0.997967 ± 0.004441 | 0.989249 ± 0.004920 | 0.986276 ± 0.006555 | 0.989854 ± 0.001858 |
k | 0.004788 ± 0.000443 | 0.005674 ± 0.000570 | 0.005957 ± 0.000184 | 0.006740 ± 0.001077 | 0.006097 ± 0.001637 | |
n | 1.164000 ± 0.016523 | 1.182000 ± 0.040150 | 1.251335 ± 0.002888 | 1.251189 ± 0.000012 | 1.390367 ± 0.067817 | |
c | −0.000018 ± 0.000007 | −0.000026 ± 0.000018 | −0.000020 ± 0.000007 | −0.000027 ± 0.000012 | −0.000051 ± 0.000013 |
Statistics | R2 | |||||
---|---|---|---|---|---|---|
Models/T °C | 50 | 60 | 70 | 80 | 90 | Average |
Newton | 0.99307 | 0.98116 | 0.99397 | 0.98572 | 0.98605 | 0.987996 |
Page | 0.99989 | 0.99949 | 0.99983 | 0.99959 | 0.99945 | 0.999650 |
Page mod | 0.99989 | 0.99949 | 0.99983 | 0.99959 | 0.99945 | 0.999650 |
Logarithmic | 0.99807 | 0.99086 | 0.99764 | 0.98644 | 0.99448 | 0.993497 |
Weibull | 0.99989 | 0.99949 | 0.99983 | 0.99959 | 0.99945 | 0.999650 |
Silva and Alii | 0.99931 | 0.99791 | 0.99914 | 0.99766 | 0.99786 | 0.998375 |
Midilli and kucuk | 0.99994 | 0.99983 | 0.99986 | 0.99965 | 0.99951 | 0.999757 |
SSE | ||||||
Newton | 0.0007233 | 0.0017654 | 0.0005253 | 0.0013586 | 0.0014010 | 0.001155 |
Page | 0.0000079 | 0.0000318 | 0.0000132 | 0.0000317 | 0.0000515 | 0.000027 |
Page mod | 0.0000088 | 0.0000411 | 0.0000132 | 0.0000317 | 0.0000515 | 0.000029 |
Logarithmic | 0.0001848 | 0.0005740 | 0.0001487 | 0.0004248 | 0.0005289 | 0.000372 |
Weibull | 0.0000088 | 0.0000410 | 0.0000132 | 0.0000317 | 0.0000515 | 0.000029 |
Silva and Alii | 0.0000694 | 0.0001857 | 0.0000728 | 0.0002105 | 0.0002111 | 0.000150 |
Midilli and kucuk | 0.0000057 | 0.0000120 | 0.0000107 | 0.0000291 | 0.0000477 | 0.000021 |
χ2 | ||||||
Newton | 0.000761 | 0.001849 | 0.000558 | 0.001456 | 0.001518 | 0.001228 |
Page | 0.000009 | 0.000035 | 0.000015 | 0.000037 | 0.000061 | 0.000031 |
Page mod | 0.000010 | 0.000045 | 0.000015 | 0.000037 | 0.000061 | 0.000033 |
Logarithmic | 0.000217 | 0.000665 | 0.000181 | 0.000531 | 0.000688 | 0.000456 |
Weibull | 0.000010 | 0.000045 | 0.000015 | 0.000037 | 0.000061 | 0.000033 |
Silva and Alii | 0.000077 | 0.000204 | 0.000082 | 0.000243 | 0.000249 | 0.000171 |
Midilli and kucuk | 0.000007 | 0.000015 | 0.000014 | 0.000040 | 0.000069 | 0.000029 |
Drying Temperature (°C) | Process Time (h) | Et (kWh) | Ekg (kWh/kg Sample) | SMER (kg Water Removed/kWh) | MER (kg Water Removed/h) | SEC (kWh/kg Water Removed) |
---|---|---|---|---|---|---|
50 | 5.670 | 8.754 | 75.86 | 0.01215 | 0.01876 | 82.31 |
60 | 4.670 | 9.322 | 81.21 | 0.01129 | 0.02253 | 88.58 |
70 | 4.167 | 10.093 | 86.97 | 0.01061 | 0.02571 | 94.21 |
80 | 3.167 | 8.958 | 77.05 | 0.01196 | 0.03383 | 83.61 |
90 | 2.670 | 8.568 | 73.98 | 0.01249 | 0.04007 | 80.06 |
Drying Temperature | ||||||
---|---|---|---|---|---|---|
Rehydration Models | 50 | 60 | 70 | 80 | 90 | |
First order | A | 0.023 ± 0.005 | 0.014 ± 0.004 | 0.018 ± 0.001 | 0.016 ± 0.001 | 0.021 ± 0.003 |
Peleg | A | 4.235 ± 0.967 | 7.025 ± 2.517 | 5.221 ± 0.368 | 6.052 ± 0.669 | 4.289 ± 0.570 |
B | 0.110 ± 0.006 | 0.101 ± 0.004 | 0.104 ± 0.002 | 0.103 ± 0.001 | 0.104 ± 0.007 | |
Weibull | α | 45.257 ± 8.874 | 74.233 ± 17.977 | 56.482 ± 1.503 | 63.360 ± 3.490 | 51.137 ± 7.498 |
β | 0.947 ± 0.050 | 0.891 ± 0.054 | 0.912 ± 0.052 | 0.932 ± 0.058 | 0.830 ± 0.029 | |
Exponential | A | 0.029 ± 0.010 | 0.023 ± 0.010 | 0.026 ± 0.006 | 0.022 ± 0.006 | 0.039 ± 0.009 |
k | 0.947 ± 0.050 | 0.891 ± 0.054 | 0.912 ± 0.052 | 0.932 ± 0.058 | 0.830 ± 0.029 | |
Exponential related | A | 0.024 ± 0.005 | 0.015 ± 0.004 | 0.019 ± 0.001 | 0.932 ± 0.058 | 0.021 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Galvez, A.; Gomez-Perez, L.S.; Ah-Hen, K.S.; Zepeda, F.; García-Segovia, P.; Bilbao-Sainz, C.; Mejías, N.; Pasten, A. Convective Hot Air Drying of Red Cabbage (Brassica oleracea var. Capitata Rubra): Mathematical Modeling, Energy Consumption and Microstructure. Processes 2024, 12, 509. https://doi.org/10.3390/pr12030509
Vega-Galvez A, Gomez-Perez LS, Ah-Hen KS, Zepeda F, García-Segovia P, Bilbao-Sainz C, Mejías N, Pasten A. Convective Hot Air Drying of Red Cabbage (Brassica oleracea var. Capitata Rubra): Mathematical Modeling, Energy Consumption and Microstructure. Processes. 2024; 12(3):509. https://doi.org/10.3390/pr12030509
Chicago/Turabian StyleVega-Galvez, Antonio, Luis S. Gomez-Perez, Kong Shun Ah-Hen, Francisca Zepeda, Purificación García-Segovia, Cristina Bilbao-Sainz, Nicol Mejías, and Alexis Pasten. 2024. "Convective Hot Air Drying of Red Cabbage (Brassica oleracea var. Capitata Rubra): Mathematical Modeling, Energy Consumption and Microstructure" Processes 12, no. 3: 509. https://doi.org/10.3390/pr12030509
APA StyleVega-Galvez, A., Gomez-Perez, L. S., Ah-Hen, K. S., Zepeda, F., García-Segovia, P., Bilbao-Sainz, C., Mejías, N., & Pasten, A. (2024). Convective Hot Air Drying of Red Cabbage (Brassica oleracea var. Capitata Rubra): Mathematical Modeling, Energy Consumption and Microstructure. Processes, 12(3), 509. https://doi.org/10.3390/pr12030509