Microwave-Assisted Synthesis of 5-Substituted 3-Amino-1,2,4-triazoles from Aminoguanidine Bicarbonate and Carboxylic Acids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moulin, A.; Bibian, M.; Blayo, A.-L.; El Habnouni, S.; Martinez, J.; Fehrentz, J.-A. Synthesis of 3,4,5-trisubstituted-1,2,4-triazoles. Chem. Rev. 2010, 110, 1809–1827. [Google Scholar] [CrossRef]
- Kazeminejad, Z.; Marzi, M.; Shiroudi, A.; Kouhpayeh, S.A.; Farjam, M.; Zarenezhad, E. Novel 1,2,4-triazoles as antifungal agents. BioMed Res. Int. 2022, 2022, 4584846. [Google Scholar] [CrossRef]
- Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as important antibacterial agents. Pharmaceuticals 2021, 14, 224. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.-C.; Chang, L.; Lv, Z.-S.; Feng, L.-S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 2017, 138, 501–513. [Google Scholar] [CrossRef]
- Kaur, R.; Ranjan Dwivedi, A.; Kumar, B.; Kumar, V. Recent developments on 1,2,4-triazole nucleus in anticancer compounds: A review. Anti-Cancer Agents Med. Chem. 2016, 16, 465–489. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008–2011). Expert Opin. Ther. Patents 2013, 23, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Zeidler, J.; Baraniak, D.; Ostrowski, T. Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur. J. Med. Chem. 2015, 97, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem. 2016, 109, 380–392. [Google Scholar] [CrossRef]
- Sathyanarayana, R.; Poojary, B. Exploring recent developments on 1,2,4-triazole: Synthesis and biological applications. J. Chin. Chem. Soc. 2020, 67, 459–477. [Google Scholar] [CrossRef]
- Singh, G.; Prem Felix, S. Studies on energetic compounds: 25. An overview of preparation, thermolysis and applications of the salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). J. Hazard. Mater. 2002, 90, 409–418. [Google Scholar] [CrossRef]
- Phadke Swathi, N.; Alva, V.D.P.; Samshuddin, S. A review on 1,2,4-triazole derivatives as corrosion inhibitors. J. Bio. Tribo. Corros. 2017, 3, 42. [Google Scholar] [CrossRef]
- Naik, A.D.; Dîrtu, M.M.; Railliet, A.P.; Marchand-Brynaert, J.; Garcia, Y. Coordination polymers and metal organic frameworks derived from 1,2 4-triazole amino acid linkers. Polymers 2011, 3, 1750–1775. [Google Scholar] [CrossRef]
- Haasnoot, J.G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem. Rev. 2000, 200–202, 131–185. [Google Scholar] [CrossRef]
- Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485–546. [Google Scholar] [CrossRef]
- Nasri, S.; Bayat, M.; Kochia, K. Strategies for synthesis of 1,2,4-triazole-containing scaffolds using 3-amino-1,2,4-triazole. Mol. Divers. 2021, 26, 717–739. [Google Scholar] [CrossRef] [PubMed]
- Chebanov, V.A.; Desenko, S.M. Multicomponent heterocyclization reactions with controlled selectivity (Review). Chem. Heterocycl. Comp. 2012, 48, 566–583. [Google Scholar] [CrossRef]
- Murlykina, M.V.; Morozova, A.D.; Zviagin, I.M.; Sakhno, Y.I.; Desenko, S.M.; Chebanov, V.A. Aminoazole-based Ddiversity-oriented synthesis of heterocycles. Front. Chem. 2018, 6, 527–569. [Google Scholar] [CrossRef]
- Pacetti, M.; Pismataro, M.C.; Felicetti, T.; Giammarino, F.; Bonomini, A.; Tiecco, M.; Bertagnin, C.; Barreca, M.L.; Germani, R.; Cecchetti, V.; et al. Switching the three-component Biginelli-like reaction conditions for the regioselective synthesis of new 2-amino [1,2,4]triazolo[1,5-a]pyrimidines. Org. Biomol. Chem. 2024, 22, 767–783. [Google Scholar] [CrossRef]
- Aouali, M.; Mhalla, D.; Allouche, F.; El Kaim, L.; Tounsi, S.; Trigui, M.; Chabchoub, F. Synthesis, antimicrobial and antioxidant activities of imidazotriazoles and new multicomponent reaction toward 5-amino-1-phenyl[1,2,4]triazole derivatives. Med. Chem. Res. 2015, 24, 2732–2741. [Google Scholar] [CrossRef]
- Gümüş, M.K. Green formation of novel pyridinyltriazole-salicylidene Schiff bases. Curr. Org. Synth. 2019, 16, 309–313. [Google Scholar] [CrossRef]
- Çakır, O.; Bakhshpour, M.; Göktürk, I.; Yılmaz, F.; Baysal, Z. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor. J. Mol. Recognit. 2021, 34, e2929. [Google Scholar] [CrossRef]
- Mahdavi, M.; Akbarzadeh, T.; Sheibani, V.; Abbasi, M.; Firoozpour, L.; Tabatabai, S.A.; Shafiee, A.; Foroumadi, A. Synthesis of two novel 3-amino-5-[4-chloro-2-phenoxyphenyl]-4H-1,2,4-triazoles with anticonvulsant activity. Iran. J. Pharm. Res. 2010, 9, 265–269. [Google Scholar]
- Marino, J.P.; Fisher, P.W.; Hofmann, G.A.; Kirkpatrick, R.B.; Janson, C.A.; Johnson, R.K.; Ma, C.; Mattern, M.; Meek, T.D.; Ryan, M.D.; et al. Highly potent inhibitors of methionine aminopeptidase-2 based on a 1,2,4-triazole pharmacophore. J. Med. Chem. 2007, 50, 3777–3785. [Google Scholar] [CrossRef]
- Brittain, R.T.; Jack, D.; Reeves, J.J.; Stables, R. Pharmacological basis for the induction of gastric carcinoid tumours in the rat by loxtidine, an insurmountable histamine H2-receptor blocking drug. Br. J. Pharmacol. 1985, 85, 843–847. [Google Scholar] [CrossRef]
- Beinat, C.; Banister, S.D.; Herrera, M.; Law, V.; Kassiou, M. The therapeutic potential of α7 nicotinic acetylcholine receptor (α7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs 2015, 29, 529–542. [Google Scholar] [CrossRef]
- Arkhipushkin, I.A.; Agafonkina, M.O.; Kazansky, L.P.; Kuznetsov, Y.I.; Shikhaliev, K.S. Characterization of adsorption of 5-carboxy-3-amino-1,2,4-triazole towards copper corrosion prevention in neutral media. Electrochim. Acta 2019, 308, 392–399. [Google Scholar] [CrossRef]
- Chirkunov, A.A.; Kuznetsov, Y.I.; Shikhaliev, K.S.; Agafonkina, M.O.; Andreeva, N.P.; Kazansky, L.P.; Potapov, A.Y. Adsorption of 5-alkyl-3-amino-1,2,4-triazoles from aqueous solutions and protection of copper from atmospheric corrosion. Corros. Sci. 2018, 144, 230–236. [Google Scholar] [CrossRef]
- Faisal, M.; Saeed, A.; Shahzad, D.; Abbas, N.; Larik, F.A.; Channar, P.A.; Fattah, T.A.; Khan, D.M.; Shehzadi, S.A. General properties and comparison of the corrosion inhibition efficiencies of the triazole derivatives for mild steel. Corros. Rev. 2018, 36, 507–545. [Google Scholar] [CrossRef]
- Kukuljan, L.; Kranjc, K. 3-(5-Amino-1,2,4-triazole)-1,2,4-oxadiazole: A new biheterocyclic scaffold for the synthesis of energetic materials. Tetrahedron Lett. 2019, 60, 207–209. [Google Scholar] [CrossRef]
- Atia, N.N.; Ali, M.F.B. 3-Amino-5-pyridin-3-yl-1,2,4-triazole, a novel fluorescence probe for trace analysis of silymarin in bulk material, pharmaceutical dosage forms and human plasma: Further insights on reaction mechanism using computational molecular modeling and NMR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 188–195. [Google Scholar] [CrossRef]
- Available online: https://scifinder-n.cas.org/ (accessed on 11 January 2024).
- Gorobets, N.Y.; Sedash, Y.V.; Ostras, K.S.; Zaremba, O.V.; Shishkina, S.V.; Baumer, V.N.; Shishkin, O.V.; Kovalenko, S.M.; Desenko, S.M.; Van der Eycken, E.V. Unexpected alternative direction of a Biginelli-like multicomponent reaction with 3-amino-1,2,4-triazole as the urea component. Tetrahedron Lett. 2010, 51, 2095–2098. [Google Scholar] [CrossRef]
- Sedash, Y.V.; Gorobets, N.Y.; Chebanov, V.A.; Konovalova, I.S.; Shishkin, O.V.; Desenko, S.M. Dotting the i’s in three-component Biginelli-like condensations using 3-amino-1,2,4-triazole as a 1,3-binucleophile. RSC Adv. 2012, 2, 6719–6728. [Google Scholar] [CrossRef]
- Kondratiuk, M.; Gorobets, N.Y.; Sedash, Y.V.; Gümüş, M.K.; Desenko, S.M. 5-(5-Bromo-2-hydroxy-3-methoxyphenyl)-7-methyl-4,5,6,7-tetrahydro[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Molbank 2016, 2016, M898. [Google Scholar] [CrossRef]
- Gümüş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Shishkina, S.V.; Desenko, S.M. Rapid formation of chemical complexity via a modified Biginelli reaction leading to dihydrofuran-2 (3H)-one spiro-derivatives of triazolo [1,5-a] pyrimidine. Tetrahedron Lett. 2017, 58, 3446–3448. [Google Scholar] [CrossRef]
- Komykhov, S.A.; Bondarenko, A.A.; Musatov, V.I.; Diachkov, M.V.; Gorobets, N.Y.; Desenko, S.M. (5S,7R)-5-Aryl-7-methyl-4,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-7-ols as products of three-component condensation. Chem. Heterocycl. Comp. 2017, 53, 378–380. [Google Scholar] [CrossRef]
- Gümüş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Chebanov, V.A.; Desenko, S.M. A modified Biginelli reaction toward oxygen-bridged tetrahydropyrimidines fused with substituted 1,2,4-triazole ring. Chem. Heterocycl. Comp. 2017, 53, 1261–1267. [Google Scholar] [CrossRef]
- Dolzhenko, A.V.; Pastorin, G.; Dolzhenko, A.V.; Chui, W.K. An aqueous medium synthesis and tautomerism study of 3(5)-amino-1,2,4-triazoles. Tetrahedron Lett. 2009, 50, 2124–2128. [Google Scholar] [CrossRef]
- Beyzaei, H.; Khosravi, Z.; Aryan, R.; Ghasemi, B. A green one-pot synthesis of 3(5)-substituted 1,2,4-triazol-5(3)-amines as potential antimicrobial agents. J. Iran. Chem. Soc. 2019, 16, 2565–2573. [Google Scholar] [CrossRef]
- Bogolyubsky, A.V.; Savych, O.; Zhemera, A.V.; Pipko, S.E.; Grishchenko, A.V.; Konovets, A.I.; Doroshchuk, R.O.; Khomenko, D.N.; Brovarets, V.S.; Moroz, Y.S.; et al. Facile one-pot parallel synthesis of 3-amino-1,2,4-triazoles. ACS Comb. Sci. 2018, 20, 461–466. [Google Scholar] [CrossRef]
- Lim, F.P.L.; Tan, L.Y.; Tiekink, E.R.; Dolzhenko, A.V. Synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl) propanamides and their tautomerism. RSC Adv. 2018, 8, 22351–22360. [Google Scholar] [CrossRef] [PubMed]
- Rohand, T.; Mkpenie, V.N.; El Haddad, M.; Marko, I.E. A novel iron-catalyzed one-pot synthesis of 3-amino-1,2,4-triazoles. J. Heterocycl. Chem. 2019, 56, 690–695. [Google Scholar] [CrossRef]
- Chernyshev, V.M.; Tarasova, E.V.; Chernysheva, A.V.; Taranushich, V.A. Synthesis of 3-pyridyl-substituted 5-amino-1,2,4-triazoles from aminoguanidine and pyridinecarboxylic acids. Russ. J. Appl. Chem. 2011, 84, 1890–1896. [Google Scholar] [CrossRef]
- Lim, F.P.L.; Hu, L.M.; Tiekink, E.R.T.; Dolzhenko, A.V. One-pot, microwave-assisted synthesis of polymethylene-bridged bis (1H-1,2,4-triazol-5(3)-amines) and their tautomerism. Tetrahedron Lett. 2018, 59, 3792–3796. [Google Scholar] [CrossRef]
- Reilly, J.; Madden, D. The stability of diazonium salts of the triazole series. J. Chem. Soc. 1929, 815–816. [Google Scholar] [CrossRef]
- Huang, L.; Ding, J.; Li, M.; Hou, Z.; Geng, Y.; Li, X.; Yu, H. Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity. Eur. J. Med. Chem. 2020, 185, 111824. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Tang, M.; Zhang, S.; Zhang, Q. Diversity-Oriented Synthesis of 1,2,4-Triazols, 1,3,4-Thiadiazols, and 1,3,4-Selenadiazoles from N-Tosylhydrazones. Org. Lett. 2021, 23, 4436–4440. [Google Scholar] [CrossRef]
- Gaubert, G.; Bertozzi, F.; Kelly, N.M.; Pawlas, J.; Scully, A.L.; Nash, N.R.; Gardell, L.R.; Lameh, J.; Olsson, R. Discovery of selective nonpeptidergic neuropeptide FF2 receptor agonists. J. Med. Chem. 2009, 52, 6511–6514. [Google Scholar] [CrossRef]
- Bongard, J.; Schmitz, A.L.; Wolf, A.; Zischinsky, G.; Pieren, M.; Schellhorn, B.; Bravo-Rodriguez, K.; Schillinger, J.; Koch, U.; Nussbaumer, P. Chemical validation of DegS as a target for the development of antibiotics with a novel mode of action. ChemMedChem 2019, 14, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.M.-C.; Chobanian, H.R.; Palyha, O.; Kan, Y.; Kelly, T.M.; Guan, X.-M.; Reitman, M.L.; Dragovic, J.; Lyons, K.A.; Nargund, R.P. Pyridinesulfonylureas and pyridinesulfonamides as selective bombesin receptor subtype-3 (BRS-3) agonists. Bioorg. Med. Chem. Lett. 2011, 21, 2040–2043. [Google Scholar] [CrossRef] [PubMed]
- Astakhov, A.V.; Tarasova, E.V.; Chernysheva, A.V.; Rybakov, V.B.; Starikova, Z.A.; Chernyshev, V.M. Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines). Russ. Chem. Bull. 2021, 70, 1509–1522. [Google Scholar] [CrossRef]
- Chernyshev, V.M.; Chernysheva, A.V.; Starikova, Z.A. Rearrangement of 2-(2,5-dioxopyrrolidin-1-yl) guanidine: An efficient synthesis and structure of 3-(5-amino-1H-1,2,4-triazol-3-yl) propanoic acid and derivatives. Heterocycles 2010, 81, 2291. [Google Scholar] [CrossRef]
Entry | Starting Material | Conditions | Yields (%) | Reference |
---|---|---|---|---|
1 | Carboxylic acid chloride | Aminoguanidine, reflux, 4–6 h or MW 100 W, 2.5–3 h, in water | 92–98 | [38] |
2 | Benzohydrazide | Thiourea, dimethyl sulfate, water, 50 °C, 15–20 h | 83–95 | [39] |
3 | Unsymmetrically substituted thiourea | 1,3-Propane sultone, 16 h; NEt3, 30 min; hydrazide, 100 °C, 16 h | 15–55 | [40] |
4 | Aminoguanidine hydrochloride | Succinic anhydride; amine, MW, 180 °C, 15 min | 48–88 | [41] |
5 | Cyanamide | Hydroxylamine, 100 °C, 12 h; iron (III) chloride, nitriles, 100 °C, 12 h | 59–94 | [42] |
Entry | Amount of HCl, mmol (n) | T °C/t, h | Yield 1 (%) |
---|---|---|---|
1 | 1.0 | 180/2 | 48 |
2 | 1.0 | 180/4 | 70 |
3 | 1.2 | 180/2 | 53 |
4 | 1.2 | 180/4 | 75 |
5 | 1.5 | 180/2 | 73 |
6 | 1.5 | 180/4 | 86 |
7 | 1.5 | 180/3 | 86 |
8 | 2.0 | 180/2 | 52 |
9 | 2.0 | 180/4 | 66 |
10 | 1.5 | 170/3 | 62 |
11 | 1.5 | 190/3 | 76 |
12 | 1.5 | 200/3 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gümüş, M.K.; Gorobets, M.Y.; Uludag, N. Microwave-Assisted Synthesis of 5-Substituted 3-Amino-1,2,4-triazoles from Aminoguanidine Bicarbonate and Carboxylic Acids. Processes 2024, 12, 573. https://doi.org/10.3390/pr12030573
Gümüş MK, Gorobets MY, Uludag N. Microwave-Assisted Synthesis of 5-Substituted 3-Amino-1,2,4-triazoles from Aminoguanidine Bicarbonate and Carboxylic Acids. Processes. 2024; 12(3):573. https://doi.org/10.3390/pr12030573
Chicago/Turabian StyleGümüş, Mustafa Kemal, Mykola Yu. Gorobets, and Nesimi Uludag. 2024. "Microwave-Assisted Synthesis of 5-Substituted 3-Amino-1,2,4-triazoles from Aminoguanidine Bicarbonate and Carboxylic Acids" Processes 12, no. 3: 573. https://doi.org/10.3390/pr12030573
APA StyleGümüş, M. K., Gorobets, M. Y., & Uludag, N. (2024). Microwave-Assisted Synthesis of 5-Substituted 3-Amino-1,2,4-triazoles from Aminoguanidine Bicarbonate and Carboxylic Acids. Processes, 12(3), 573. https://doi.org/10.3390/pr12030573