A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. GRU Models
2.2. Fibonacci Attenuation Particle Swarm Optimization
2.3. The Process of FAPSO-GRU
3. Experiments and Results
3.1. Data Preparation
3.2. FAPSO-GRU Results
3.3. FAPSO-GRU Results with Complex Data
- In Shanghai, the test MAE for FAPSO-GRU is 3.5079, while the MAE for GRU is 17.3467.
- In Beijing, the test MAE for FAPSO-GRU is 2.6671, while the MAE for GRU is 9.9971.
- In Guangdong, the test MAE for FAPSO-GRU is 26.987, while the MAE for GRU is 108.838.
- In Hubei, the test MAE for FAPSO-GRU is 17.8247, while the MAE for GRU is 39.4897.
- In Hunan, the test MAE for FAPSO-GRU is 22.6347, while the MAE for GRU is 33.4465.
3.4. Validation and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, H. Prediction of direct carbon emissions of Chinese provinces using artificial neural networks. PLoS ONE 2021, 16, e0236685. [Google Scholar] [CrossRef] [PubMed]
- Abeydeera, L.H.U.W.; Mesthrige, J.W.; Samarasinghalage, T.I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, F.; Liu, C.; Cheng, L.; Mao, Y. An improved Wolf pack algorithm for optimization problems: Design and evaluation. PLoS ONE 2021, 16, e0254239. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tian, Z.; Zhang, G.; Li, W. Multi-AUV Formation Predictive Control Based on CNN-LSTM under Communication Constraints. J. Mar. Sci. Eng. 2023, 11, 873. [Google Scholar] [CrossRef]
- Majeed, M.T.; Ozturk, I.; Samreen, I.; Luni, T. Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan. Nucl. Eng. Technol. 2022, 54, 1664–1673. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, R.; Sun, Y.; Wu, J.; Zhu, W. China’s Port Carbon Emission Reduction: A Study of Emission-Driven Factors. Atmosphere 2022, 13, 550. [Google Scholar] [CrossRef]
- Kong, F.; Song, J.; Yang, Z. A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine. Environ. Sci. Pollut. Res. 2022, 29, 87983–87997. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, S.; Qiu, Y.; Armaghani, D.J.; Zhou, A.; Yong, W. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotech. 2022, 17, 1343–1366. [Google Scholar] [CrossRef]
- Kong, F.; Song, J.; Yang, Z. A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network. Environ. Sci. Pollut. Res. 2022, 29, 64983–64998. [Google Scholar] [CrossRef]
- Zhao, A.; Song, X.; Li, J.; Yuan, Q.; Pei, Y.; Li, R.; Hitch, M. Effects of Carbon Tax on Urban Carbon Emission Reduction: Evidence in China Environmental Governance. Int. J. Environ. Res. Public Health 2023, 20, 2289. [Google Scholar] [CrossRef]
- Ott, C.; Schiemann, F. The market value of decomposed carbon emissions. J. Bus. Financ. Account. 2023, 50, 3–30. [Google Scholar] [CrossRef]
- Kılıç, M.; Kuzey, C. The effect of corporate governance on carbon emission disclosures: Evidence from Turkey. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 35–53. [Google Scholar] [CrossRef]
- Houqe, M.N.; Opare, S.; Zahir-Ul-hassan, M.K.; Ahmed, K. The Effects of Carbon Emissions and Agency Costs on Firm Performance. J. Risk Financ. Manag. 2022, 15, 152. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Li, Z.; He, J.; Ni, T.; Huo, J. Numerical computation based few-shot learning for intelligent sea surface temperature prediction. Multimed. Syst. 2022, 29, 3001–3013. [Google Scholar] [CrossRef]
- Kolemen, E.; Egrioglu, E.; Bas, E.; Turkmen, M. A new deep recurrent hybrid artificial neural network of gated recurrent units and simple seasonal exponential smoothing. Granul. Comput. 2024, 9, 7. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhang, Z.; Chen, K.; Jin, Y.; Yan, Y.; Liu, J. Sparse Data-Extended Fusion Method for Sea Surface Temperature Prediction on the East China Sea. Appl. Sci. 2022, 12, 5905. [Google Scholar] [CrossRef]
- Hu, Y.; Lv, K. Hybrid prediction model for the interindustry carbon emissions transfer network based on the grey model and general vector machine. IEEE Access 2020, 8, 20616–20627. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Guo, J.; Shi, B.; Yan, K.; Di, Y.; Tang, J.; Xiao, H.; Sato, Y. A twinning bare bones particle swarm optimization algorithm. PLoS ONE 2022, 17, e0267197. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, G.; Di, Y.; Shi, B.; Yan, K.; Sato, Y. A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization. IEEE Access 2023, 11, 31549–31568. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, G.; Yan, K.; Shi, B.; Di, Y.; Sato, Y. A novel hermit crab optimization algorithm. Sci. Rep. 2023, 13, 9934. [Google Scholar] [CrossRef] [PubMed]
Parameters | GRU | LSTM | PSO-GRU | FAPSO-GRU |
---|---|---|---|---|
Populations | None | None | 5 | 5 |
Iterations | None | None | 20 | 20 |
Learning rate | 0.001 | 0.001 | [0.001, 0.15] | [0.001, 0.15] |
Number of neurons | 25 | 25 | [10, 50] | [10, 50] |
Epochs | 1000 | 1000 | 1000 | 1000 |
Optimizer | Amda | Amda | Amda | Amda |
GRU | LSTM | PSO-GRU | FAPSO-GRU | ||||||
---|---|---|---|---|---|---|---|---|---|
Year | Reality | Prediction | Error | Prediction | Error | Prediction | Error | Prediction | Error |
2016 | 62.26 | 64.153496 | 3.05% | 68.30172 | 9.71% | 65.77932 | 5.66% | 63.01046 | 1.21% |
2017 | 60.75 | 62.97126 | 3.65% | 68.251022 | 12.34% | 66.186607 | 8.94% | 61.601376 | 1.40% |
2018 | 63.83 | 60.2159 | 5.67% | 67.634743 | 5.96% | 63.729317 | 0.16% | 60.186832 | 5.71% |
2019 | 66.10 | 56.059467 | 15.19% | 67.536888 | 2.18% | 62.896084 | 4.84% | 61.087147 | 7.58% |
Indicator | Type | GRU | LSTM | PSO-GRU | FAPSO-GRU |
---|---|---|---|---|---|
MAE | Train | 3.7650 | 3.3301 | 2.4651 | 2.0798 |
Test | 4.4426 | 4.6969 | 3.0654 | 2.5647 | |
MAPE | Train | 0.2651 | 0.2276 | 0.2169 | 0.1882 |
Test | 0.0689 | 0.0755 | 0.0490 | 0.0397 | |
RMSE | Train | 5.8398 | 6.1205 | 3.8574 | 3.6503 |
Test | 5.5306 | 5.2278 | 3.6125 | 3.1494 |
Shanghai | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
---|---|---|---|---|---|---|---|---|---|
Year | Reality | Prediction | Error | Prediction | Error | Prediction | Error | Prediction | Error |
2017 | 1.57 × 102 | 1.48 × 102 | 5.28% | 1.51 × 102 | 3.75% | 1.69 × 102 | 8.21% | 1.56 × 102 | 0.31% |
2018 | 1.51 × 102 | 1.42 × 102 | 6.48% | 1.47 × 102 | 3.26% | 1.71 × 102 | 12.94% | 1.55 × 102 | 2.31% |
2019 | 1.59 × 102 | 1.36 × 102 | 14.85% | 1.42 × 102 | 11.03% | 1.67 × 102 | 4.48% | 1.54 × 102 | 3.52% |
2020 | 1.55 × 102 | 1.34 × 102 | 13.15% | 1.41 × 102 | 8.95% | 1.66 × 102 | 7.44% | 1.51 × 102 | 2.42% |
2021 | 1.61 × 102 | 1.37 × 102 | 15.27% | 1.43 × 102 | 11.42% | 1.83 × 102 | 13.72% | 1.57 × 102 | 2.61% |
Beijing | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 7.01 × 101 | 7.73 × 101 | 10.36% | 7.54 × 101 | 7.65% | 7.65 × 101 | 9.22% | 7.48 × 101 | 6.72% |
2018 | 7.19 × 101 | 7.78 × 101 | 8.21% | 7.50 × 101 | 4.41% | 7.97 × 101 | 10.87% | 7.17 × 101 | 0.19% |
2019 | 7.16 × 101 | 7.98 × 101 | 11.40% | 7.52 × 101 | 4.94% | 8.05 × 101 | 12.37% | 6.92 × 101 | 3.38% |
2020 | 6.61 × 101 | 8.04 × 101 | 21.76% | 7.53 × 101 | 14.04% | 7.90 × 101 | 19.50% | 6.43 × 101 | 2.69% |
2021 | 6.70 × 101 | 8.12 × 101 | 21.17% | 7.55 × 101 | 12.70% | 7.86 × 101 | 17.30% | 6.26 × 101 | 6.49% |
Guangdong | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 5.33 × 102 | 4.93 × 102 | 7.45% | 4.83 × 102 | 9.46% | 4.83 × 102 | 9.49% | 5.13 × 102 | 3.71% |
2018 | 5.57 × 102 | 4.75 × 102 | 14.85% | 4.81 × 102 | 13.74% | 4.75 × 102 | 14.75% | 5.22 × 102 | 6.27% |
2019 | 5.52 × 102 | 4.62 × 102 | 16.43% | 4.80 × 102 | 13.03% | 4.78 × 102 | 13.43% | 5.56 × 102 | 0.63% |
2020 | 5.75 × 102 | 4.56 × 102 | 20.67% | 4.77 × 102 | 17.06% | 4.97 × 102 | 13.60% | 5.86 × 102 | 1.97% |
2021 | 6.70 × 102 | 4.58 × 102 | 31.68% | 4.73 × 102 | 29.36% | 4.95 × 102 | 26.04% | 6.04 × 102 | 9.78% |
Hubei | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 2.67 × 102 | 2.43 × 102 | 9.03% | 2.37 × 102 | 11.17% | 2.39 × 102 | 10.44% | 2.56 × 102 | 4.19% |
2018 | 2.58 × 102 | 2.32 × 102 | 10.13% | 2.31 × 102 | 10.62% | 2.29 × 102 | 11.37% | 2.56 × 102 | 0.78% |
2019 | 2.82 × 102 | 2.29 × 102 | 18.91% | 2.28 × 102 | 19.36% | 2.28 × 102 | 19.16% | 2.56 × 102 | 9.27% |
2020 | 2.42 × 102 | 2.14 × 102 | 11.54% | 2.23 × 102 | 8.07% | 2.32 × 102 | 4.22% | 2.43 × 102 | 0.32% |
2021 | 2.87 × 102 | 2.21 × 102 | 22.94% | 2.20 × 102 | 23.24% | 2.34 × 102 | 18.55% | 2.38 × 102 | 17.07% |
Hunan | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 2.76 × 102 | 2.75 × 102 | 0.30% | 2.65 × 102 | 3.96% | 2.64 × 102 | 4.47% | 2.52 × 102 | 8.54% |
2018 | 2.43 × 102 | 2.83 × 102 | 16.53% | 2.62 × 102 | 7.76% | 2.83 × 102 | 16.32% | 2.41 × 102 | 1.08% |
2019 | 2.42 × 102 | 2.82 × 102 | 16.37% | 2.58 × 102 | 6.76% | 3.09 × 102 | 27.86% | 2.12 × 102 | 12.27% |
2020 | 2.28 × 102 | 2.67 × 102 | 17.21% | 2.55 × 102 | 11.94% | 3.25 × 102 | 42.59% | 1.97 × 102 | 13.52% |
2021 | 2.18 × 102 | 2.65 × 102 | 21.73% | 2.54 × 102 | 16.55% | 3.39 × 102 | 55.47% | 1.92 × 102 | 12.16% |
Indicator | Type | GRU | LSTM | PSO-GRU | FAPSO-GRU | |
---|---|---|---|---|---|---|
Shanghai | MAE | Train | 3.9906 | 6.2799 | 1.8563 | 6.4119 |
Figure 4 | Test | 17.3467 | 12.1303 | 14.6456 | 3.5079 | |
MAPE | Train | 0.03143 | 0.056309 | 0.018076 | 0.049994 | |
Test | 0.11006 | 0.076807 | 0.093571 | 0.022325 | ||
RMSE | Train | 5.3332 | 11.536 | 3.5607 | 7.918 | |
Test | 18.6869 | 13.4085 | 15.6362 | 3.8907 | ||
Beijing | MAE | Train | 3.2317 | 3.4758 | 1.9523 | 3.6039 |
Figure 5 | Test | 9.9771 | 5.9717 | 9.5209 | 2.6771 | |
MAPE | Train | 0.043489 | 0.046034 | 0.023622 | 0.046167 | |
Test | 0.14581 | 0.0875 | 0.13851 | 0.038925 | ||
RMSE | Train | 4.5037 | 4.9129 | 3.7689 | 5.0115 | |
Test | 10.6025 | 6.4778 | 9.8139 | 3.1643 | ||
Guangdong | MAE | Train | 10.2797 | 22.6605 | 51.8649 | 17.8525 |
Figure 6 | Test | 108.838 | 98.7454 | 91.9193 | 26.987 | |
MAPE | Train | 0.048321 | 0.12716 | 0.24141 | 0.09715 | |
Test | 0.18214 | 0.16531 | 0.15463 | 0.044691 | ||
RMSE | Train | 20.1912 | 49.8581 | 62.2152 | 32.5912 | |
Test | 123.1097 | 111.2409 | 101.3371 | 34.744 | ||
Hubei | MAE | Train | 12.1843 | 21.7037 | 13.4301 | 18.4447 |
Figure 7 | Test | 39.4897 | 39.6322 | 34.9526 | 17.8247 | |
MAPE | Train | 0.063819 | 0.14075 | 0.091632 | 0.12562 | |
Test | 0.14511 | 0.14494 | 0.12748 | 0.063255 | ||
RMSE | Train | 15.8157 | 32.4832 | 17.6059 | 24.2832 | |
Test | 42.9677 | 43.4993 | 38.7343 | 25.3507 | ||
Hunan | MAE | Train | 7.5641 | 34.3669 | 36.1966 | 8.8814 |
Figure 8 | Test | 33.4465 | 21.8872 | 67.4729 | 22.6347 | |
MAPE | Train | 0.063502 | 0.34756 | 0.32783 | 0.092538 | |
Test | 0.14429 | 0.093944 | 0.29342 | 0.095131 | ||
RMSE | Train | 12.1432 | 47.1701 | 43.5294 | 14.7654 | |
Test | 37.3306 | 23.5976 | 77.8497 | 24.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Li, J.; Sato, Y.; Yan, Z. A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes 2024, 12, 1063. https://doi.org/10.3390/pr12061063
Guo J, Li J, Sato Y, Yan Z. A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes. 2024; 12(6):1063. https://doi.org/10.3390/pr12061063
Chicago/Turabian StyleGuo, Jia, Jiacheng Li, Yuji Sato, and Zhou Yan. 2024. "A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction" Processes 12, no. 6: 1063. https://doi.org/10.3390/pr12061063
APA StyleGuo, J., Li, J., Sato, Y., & Yan, Z. (2024). A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes, 12(6), 1063. https://doi.org/10.3390/pr12061063