Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Treatment of Pineapple and Osmotic Solution
2.3. Determination of Viscosity
2.4. Determination of Sound Pressure
2.5. Determined Rate of Solids Gain (SG)
2.6. Determination of Sugar Concentration
2.7. Optimum Operating Conditions for Ultrasonic-Assisted Osmosis Dehydration (UAOD) Pineapple Processing
2.7.1. Frequency
2.7.2. Output Power
2.7.3. Ultrasonic-Assisted (UA) Processing Time
2.7.4. Sugar Osmotic Solution
2.8. Determination of Polyphenol Oxidase (PPO) and Peroxidase Residual Activities
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Ultrasonic-Assisted Parameters on the Sound Pressure
3.1.1. Frequency
3.1.2. Power
3.1.3. Temperature
3.2. Effects of Different Ultrasonic-Assisted Parameters on the Osmotic Dehydration of Pineapple
3.2.1. Frequency
3.2.2. Power
3.2.3. Ultrasonic-Assisted Osmosis Dehydration (UAOD) Processing Time
3.2.4. Optimum Operating Conditions
3.3. Effects of Optimum Ultrasonic-Assisted Osmotic Dehydration (UAOD) Treatment Parameters on the Residual Activity of Polyphenol Oxidase (PPO) and Peroxidase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tylewicz, U.; Oliveira, G.; Alminger, M.; Nohynek, L.; Dalla Rosa, M.; Romani, S. Antioxidant and antimicrobial properties of organic fruits subjected to PEF-assisted osmotic dehydration. Innov. Food Sci. Emerg. Technol. 2020, 62, 102341. [Google Scholar] [CrossRef]
- Xu, B.; Sylvain Tiliwa, E.; Yan, W.; Roknul Azam, S.M.; Wei, B.; Zhou, C.; Ma, H.; Bhandari, B. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Res. Int. 2022, 152, 110744. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-T.; Huang, P.-H.; Chan, Y.-J.; Chen, S.-J.; Lu, W.-C.; Li, P.-H. A new strategy to design novel modified atmosphere packaging formulation maintains the qualities of postharvest strawberries (Fragaria ananassa) during low-temperature storage. J. Food Saf. 2023, 43, e13082. [Google Scholar] [CrossRef]
- Salehi, F.; Inanloodoghouz, M. Effects of gum-based coatings combined with ultrasonic pretreatment before drying on quality of sour cherries. Ultrason. Sonochem. 2023, 100, 106633. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yi, J.; Bi, J.; Zhao, Y.; Li, X.; Wu, X.; Du, Q. Effect of ultrasound on mass transfer kinetics and phenolic compounds of apple cubes during osmotic dehydration. LWT 2021, 151, 112186. [Google Scholar] [CrossRef]
- Lu, W.-C.; Cheng, Y.-T.; Lai, C.-J.; Chiang, B.-H.; Huang, P.-H.; Li, P.-H. Mathematical modeling of modified atmosphere package/LDPE film combination and its application to design breathing cylinders for extending the shelf life of green asparagus. Chem. Biol. Technol. Agric. 2023, 10, 60. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Yu, M.-C.; Yen, C.-Y.; Tsay, J.-S.; Hou, C.-Y.; Li, P.-H.; Huang, P.-H.; Liang, Y.-S. Exploitation of post-ripening treatment for improving cold tolerance and storage period of jin huang mango. Horticulturae 2024, 10, 103. [Google Scholar] [CrossRef]
- Amami, E.; Khezami, W.; Mezrigui, S.; Badwaik, L.S.; Bejar, A.K.; Perez, C.T.; Kechaou, N. Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrason. Sonochem. 2017, 36, 286–300. [Google Scholar] [CrossRef] [PubMed]
- González-Pérez, J.E.; Jiménez-González, O.; Romo-Hernández, A.; Ramírez-Corona, N.; López-Malo, A. Osmosonication of apple in concentrated grape juice: Evaluation of mass transfer rates and impregnation effectiveness. J. Food Eng. 2023, 359, 111692. [Google Scholar] [CrossRef]
- Prithani, R.; Dash, K.K. Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innov. Food Sci. Emerg. Technol. 2020, 64, 102407. [Google Scholar] [CrossRef]
- Salehi, F. Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review. Food Biosci. 2023, 51, 102307. [Google Scholar] [CrossRef]
- Jafarpour, D. The effect of heat treatment and thermosonication on the microbial and quality properties of green olive. J. Food Meas. Charact. 2022, 16, 2172–2180. [Google Scholar] [CrossRef]
- Xavier, J.R.; Ansari, M.J. Chapter 8—Synergistic effect of sonication and microwave for deactivation of enzymes. In Ultrasound and Microwave for Food Processing; Nayik, G.A., Ranjha, M., Zeng, X.A., Irfan, S., Zahra, S.M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 217–237. [Google Scholar]
- Rathnakumar, K.; Kalaivendan, R.G.T.; Eazhumalai, G.; Raja Charles, A.P.; Verma, P.; Rustagi, S.; Bharti, S.; Kothakota, A.; Siddiqui, S.A.; Manuel Lorenzo, J.; et al. Applications of ultrasonication on food enzyme inactivation- recent review report (2017–2022). Ultrason. Sonochem. 2023, 96, 106407. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.C.; Almeida, R.L.J.; da Silva, G.M.; Feitoza, J.V.F.; Silva, V.M.d.A.; Saraiva, M.M.T.; Silva, A.P.d.F.; André, A.M.M.C.N.; Mota, M.M.d.A.; —Carvalho, A.J.d.B.A. Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): Drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. J. Food Meas. Charact. 2023, 17, 1033–1045. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Tsai, C.-L.; Chen, C.-J.; Li, P.-L.; Huang, P.-H. Insights into the effects of multiple frequency ultrasound combined with acid treatments on the physicochemical and thermal properties of brown rice postcooking. LWT 2023, 115423. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, W.; Fan, K. Recent advances in combined ultrasound and microwave treatment for improving food processing efficiency and quality: A review. Food Biosci. 2024, 58, 103683. [Google Scholar] [CrossRef]
- Andrés, R.R.; Riera, E.; Gallego-Juárez, J.A.; Mulet, A.; García-Pérez, J.V.; Cárcel, J.A. Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer. Dry. Technol. 2021, 39, 245–258. [Google Scholar] [CrossRef]
- Wodajo Bekele, D.; Admassu, S. Pumpkin flour qualities as affected by ultrasound and microwave pre-drying treatment. Int. J. Food Prop. 2022, 25, 2409–2424. [Google Scholar] [CrossRef]
- Xu, B.; Sylvain Tiliwa, E.; Wei, B.; Wang, B.; Hu, Y.; Zhang, L.; Mujumdar, A.S.; Zhou, C.; Ma, H. Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrason. Sonochem. 2022, 88, 106083. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, B.; Lu, D.; Pan, Z.; Ma, H. Tri-frequency ultrasound as pretreatment to infrared drying of carrots: Impact on enzyme inactivation, color changes, nutrition quality parameters and microstructures. Int. J. Food Eng. 2021, 17, 275–284. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Azam, S.M.R.; Feng, M.; Wei, B.; Yan, W.; Zhou, C.; Ma, H.; Bhandari, B.; Ren, G.; et al. Flat dual-frequency sweeping ultrasound enhances the inactivation of polyphenol oxidase in strawberry juice. J. Food Meas. Charact. 2022, 16, 762–771. [Google Scholar] [CrossRef]
- Osae, R.; Zhou, C.; Xu, B.; Tchabo, W.; Tahir, H.E.; Mustapha, A.T.; Ma, H. Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. J. Food Biochem. 2019, 43, e12832. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.A.N.; Braga, T.R.; Silva, E.O.; Rodrigues, S. Use of ultrasound for dehydration of mangoes (Mangifera indica L.): Kinetic modeling of ultrasound-assisted osmotic dehydration and convective air-drying. J. Food Sci. Technol. 2019, 56, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.J.; Pawłowski, A.; Szadzińska, J.; Łechtańska, J.; Stasiak, M. High power airborne ultrasound assist in combined drying of raspberries. Innov. Food Sci. Emerg. Technol. 2016, 34, 225–233. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Rodrigues, S. Ultrasound applications in drying of fruits from a sustainable development goals perspective. Ultrason. Sonochem. 2023, 96, 106430. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Linhares, F.E.; Rodrigues, S. Ultrasound as pre-treatment for drying of pineapple. Ultrason. Sonochem. 2008, 15, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-C.; Jiang, C.-M.; Huang, P.-H.; Wu, M.-Y.; Wang, Y.T. Separation and utilization of pectin lyase from commercial pectic enzyme via highly methoxylated cross-linked alcohol-insoluble solid chromatography for wine methanol reduction. J. Agric. Food Chem. 2007, 55, 1557–1562. [Google Scholar] [CrossRef]
- Corrêa, J.L.G.; Rasia, M.C.; Mulet, A.; Cárcel, J.A. Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). Innov. Food Sci. Emerg. Technol. 2017, 41, 284–291. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D.; Vázquez, G. Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT—Food Sci. Technol. 2007, 40, 1507–1514. [Google Scholar] [CrossRef]
- Cárcel, J.A.; García-Pérez, J.V.; Benedito, J.; Mulet, A. Food process innovation through new technologies: Use of ultrasound. J. Food Eng. 2012, 110, 200–207. [Google Scholar] [CrossRef]
- Feng, R.; Zhao, Y.; Zhu, C.; Mason, T.J. Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrason. Sonochem. 2002, 9, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Al-Najjar, S.Z.; Al-Sharify, Z.T.; Onyeaka, H.; Miri, T.; Obileke, K.; Anumudu, C.K. Advances in mass transfer and fluid flows in non-thermal food processing industry—A review. Food Prod. Process. Nutr. 2023, 5, 50. [Google Scholar] [CrossRef]
- Prestes, A.A.; Canella, M.H.M.; Helm, C.V.; Gomes da Cruz, A.; Prudencio, E.S. The use of cold pressing technique associated with emerging nonthermal technologies in the preservation of bioactive compounds in tropical fruit juices: An overview. Curr. Opin. Food Sci. 2023, 51, 101005. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Wang, W. Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Biosci. 2020, 35, 100548. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Xu, Y.; Wu, J.; Yu, Y.; Peng, J.; An, K.; Zou, B.; Yang, W. Effect of ultrasound-assisted osmotic dehydration pretreatment on the drying characteristics and quality properties of Sanhua plum (Prunus salicina L.). LWT 2021, 138, 110653. [Google Scholar] [CrossRef]
- Siucińska, K.; Mieszczakowska-Frąc, M.; Połubok, A.; Konopacka, D. Effects of ultrasound assistance on dehydration processes and bioactive component retention of osmo-dried sour cherries. J. Food Sci. 2016, 81, C1654–C1661. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, M.; Tylewicz, U.; Laghi, L.; Dalla Rosa, M.; Witrowa-Rajchert, D. Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem. 2014, 144, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, M.; Wedzik, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 2016, 103, 163–171. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H. Investigating the role played by osmotic pressure difference in osmotic dehydration: Interactions between apple slices and binary and multi-component osmotic systems. Foods 2023, 12, 3179. [Google Scholar] [CrossRef]
- Rastogi, N.K. 9—Developments in osmotic dehydration of foods. In Drying Technology in Food Processing; Jafari, S.M., Malekjani, N., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 241–304. [Google Scholar]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, X.; Yagoub, A.E.A.; Xu, B.; Wu, B.; Zhang, L.; Zhou, C. Vacuum pretreatment coupled to ultrasound assisted osmotic dehydration as a novel method for garlic slices dehydration. Ultrason. Sonochem. 2019, 50, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Zongo, P.A.; Khalloufi, S.; Mikhaylin, S.; Ratti, C. Pulsed electric field and freeze-thawing pretreatments for sugar uptake modulation during osmotic dehydration of mango. Foods 2022, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
- Khuwijitjaru, P.; Somkane, S.; Nakagawa, K.; Mahayothee, B. Osmotic dehydration, drying kinetics, and quality attributes of osmotic hot air-dried mango as affected by initial frozen storage. Foods 2022, 11, 489. [Google Scholar] [CrossRef] [PubMed]
- Nieto Calvache, J.E.; Fissore, E.N.; Latorre, M.E.; Soria, M.; De Escalada Pla, M.F.; Gerschenson, L.N. Obtention of dietary fibre enriched fractions from peach bagasse using ethanol pre-treatment and microwave drying. LWT—Food Sci. Technol. 2015, 62, 1169–1176. [Google Scholar] [CrossRef]
- Santos, K.C.; Guedes, J.S.; Rojas, M.L.; Carvalho, G.R.; Augusto, P.E.D. Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrason. Sonochem. 2021, 70, 105304. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-H.; Chiu, C.-S.; Chan, Y.-J.; Chen, S.-J.; Lu, W.-C.; Li, P.-H. Response Surface Analysis and Process Optimisation of adzuki bean (Vigna angularis) food paste production. J. Agric. Food Res. 2023, 14, 100855. [Google Scholar] [CrossRef]
- Nowacka, M.; Fijalkowska, A.; Dadan, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D. Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries. Ultrasonics 2018, 83, 18–25. [Google Scholar] [CrossRef]
- Bozkir, H.; Rayman Ergün, A.; Serdar, E.; Metin, G.; Baysal, T. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason. Sonochem. 2019, 54, 135–141. [Google Scholar] [CrossRef]
- Xu, B.; Feng, M.; Chitrakar, B.; Cheng, J.; Wei, B.; Wang, B.; Zhou, C.; Ma, H. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103295. [Google Scholar] [CrossRef]
- Mothibe, K.J.; Zhang, M.; Mujumdar, A.S.; Wang, Y.C.; Cheng, X. Effects of ultrasound and microwave pretreatments of apple before spouted bed drying on rate of dehydration and physical properties. Dry. Technol. 2014, 32, 1848–1856. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Velázquez-Estrada, R.M.; Roig, A.X.; García-Galindo, H.S.; Sayago-Ayerdi, S.G.; Montalvo-González, E. Thermosonication: An alternative processing for fruit and vegetable juices. Trends Food Sci. Technol. 2017, 61, 26–37. [Google Scholar] [CrossRef]
- Bot, F.; Calligaris, S.; Cortella, G.; Plazzotta, S.; Nocera, F.; Anese, M. Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. J. Food Eng. 2018, 221, 70–76. [Google Scholar] [CrossRef]
- Azam, S.M.R.; Ma, H.; Xu, B.; Devi, S.; Siddique, M.A.B.; Stanley, S.L.; Bhandari, B.; Zhu, J. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci. Technol. 2020, 97, 417–432. [Google Scholar] [CrossRef]
Position | Concentration (°Brix) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 45 | 60 | |||||||||
Frequency (kHz) | ||||||||||||
40 | 80 | 40/80 | 40 | 80 | 40/80 | 40 | 80 | 40/80 | 40 | 80 | 40/80 | |
1 | 7.30 ± 2.02 a | 14.70 ± 0.58 a | 16.30 ± 0.00 a | 6.20 ± 0.29 a | 14.00 ± 0.87 a | 15.20 ± 0.58 a | 4.50 ± 0.00 a | 6.80 ± 0.29 a | 11.50 ± 1.00 a | 2.50 ± 0.50 a | 3.30 ± 0.29 a | 4.50 ± 0.00 a |
2 | 7.70 ± 2.08 a | 15.00 ± 0.87 a | 16.50 ± 0.29 a | 6.80 ± 0.76 a | 14.20 ± 0.76 a | 15.20 ± 0.58 a | 5.20 ± 0.29 a | 6.80 ± 0.29 a | 12.00 ± 0.87 a | 3.20 ± 0.58 a | 2.80 ± 0.29 a | 4.30 ± 0.29 a |
3 | 7.30 ± 2.02 a | 14.80 ± 0.76 a | 16.00 ± 0.76 a | 6.00 ± 0.50 a | 14.20 ± 0.76 a | 15.00 ± 0.50 a | 4.80 ± 0.29 a | 7.00 ± 0.50 a | 11.70 ± 1.61 a | 2.80 ± 0.58 a | 3.50 ± 0.00 a | 4.30 ± 0.29 a |
4 | 7.50 ± 1.80 a | 14.80 ± 0.76 a | 16.50 ± 0.29 a | 6.30 ± 0.76 a | 14.00 ± 0.87 a | 15.00 ± 0.50 a | 4.50 ± 0.00 a | 6.50 ± 0.00 a | 11.80 ± 1.53 a | 2.70 ± 0.29 a | 3.20 ± 0.58 a | 4.50 ± 0.00 a |
5 | 8.00 ± 1.50 a | 15.00 ± 0.87 a | 16.30 ± 0.29 a | 7.00 ± 1.00 a | 14.30 ± 1.04 a | 15.00 ± 0.50 a | 5.30 ± 0.29 a | 6.80 ± 0.29 a | 12.20 ± 1.15 a | 3.20 ± 0.58 a | 3.30 ± 0.58 a | 4.50 ± 0.00 a |
6 | 7.70 ± 1.61 a | 15.00 ± 1.00 a | 16.50 ± 0.29 a | 6.30 ± 0.29 a | 14.00 ± 0.87 a | 15.00 ± 0.50 a | 5.30 ± 0.29 a | 6.70 ± 0.29 a | 11.80 ± 1.53 a | 3.20 ± 0.58 a | 3.20 ± 0.58 a | 4.50 ± 0.00 a |
7 | 7.70 ± 1.61 a | 15.30 ± 1.26 a | 16.30 ± 0.29 a | 6.50 ± 0.50 a | 14.30 ± 0.76 a | 15.20 ± 0.58 a | 4.80 ± 0.58 a | 6.80 ± 0.29 a | 12.20 ± 2.08 a | 2.70 ± 0.29 a | 3.50 ± 0.50 a | 4.50 ± 0.00 a |
8 | 7.70 ± 1.61 a | 15.30 ± 1.26 a | 16.20 ± 0.29 a | 6.50 ± 0.50 a | 14.00 ± 0.87 a | 15.20 ± 0.58 a | 5.30 ± 0.29 a | 6.50 ± 0.50 a | 12.20 ± 1.61 a | 3.20 ± 0.58 a | 3.20 ± 0.76 a | 4.50 ± 0.00 a |
9 | 7.70 ± 1.61 a | 15.20 ± 1.04 a | 16.00 ± 0.29 a | 6.50 ± 0.50 a | 14.20 ± 0.76 a | 15.20 ± 0.58 a | 4.50 ± 0.50 a | 7.00 ± 0.29 a | 11.50 ± 2.08 a | 2.00 ± 0.50 a | 3.50 ± 0.50 a | 4.50 ± 0.00 a |
Average (mv) | 7.60 ± 0.22 d | 15.0 ± 0.22 d | 16.3 ± 0.16 d | 6.50 ± 0.30 c | 14.1 ± 0.13 c | 15.1 ± 0.11 c | 5.00 ± 0.33 b | 6.70 ± 0.16 b | 12.0 ± 0.27 b | 2.90 ± 0.31 a | 3.30 ± 0.22 a | 4.50 ± 0.09 a |
Position | Concentration (°Brix) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 30 | 45 | 60 | |||||||||
Power (W) | ||||||||||||
300 | 450 | 600 | 300 | 450 | 600 | 300 | 450 | 600 | 300 | 450 | 600 | |
1 | 16.30 ± 0.00 a | 17.50 ± 0.50 a | 20.30 ± 0.58 a | 15.20 ± 0.58 a | 17.00 ± 0.50 a | 19.80 ± 0.58 a | 11.50 ± 1.00 a | 13.30 ± 1.04 a | 14.70 ± 1.44 a | 4.50 ± 0.00 a | 4.70 ± 1.04 a | 6.20 ± 0.76 a |
2 | 16.50 ± 0.29 a | 17.30 ± 0.29 a | 20.70 ± 0.76 a | 15.20 ± 0.58 a | 17.20 ± 0.76 a | 20.70 ± 1.26 a | 12.00 ± 0.87 a | 13.50 ± 1.32 a | 14.50 ± 1.32 a | 4.30 ± 0.29 a | 5.20 ± 0.58 a | 6.70 ± 0.29 a |
3 | 16.00 ± 0.76 a | 17.30 ± 0.29 a | 20.70 ± 0.76 a | 15.00 ± 0.50 a | 16.80 ± 0.58 a | 20.30 ± 1.04 a | 11.70 ± 1.61 a | 13.20 ± 1.15 a | 14.80 ± 1.15 a | 4.30 ± 0.29 a | 5.00 ± 0.87 a | 6.30 ± 0.76 a |
4 | 16.50 ± 0.29 a | 17.30 ± 0.29 a | 21.20 ± 0.58 a | 15.00 ± 0.50 a | 17.20 ± 0.58 a | 20.20 ± 1.04 a | 11.80 ± 1.53 a | 13.20 ± 1.15 a | 14.80 ± 1.53 a | 4.50 ± 0.00 a | 4.80 ± 0.76 a | 6.30 ± 0.76 a |
5 | 16.30 ± 0.29 a | 17.30 ± 0.29 a | 20.70 ± 0.76 a | 15.00 ± 0.50 a | 17.00 ± 1.00 a | 20.50 ± 1.32 a | 12.20 ± 1.15 a | 13.20 ± 1.15 a | 15.00 ± 1.50 a | 4.50 ± 0.00 a | 5.20 ± 0.58 a | 6.30 ± 0.76 a |
6 | 16.50 ± 0.29 a | 17.50 ± 0.50 a | 21.00 ± 0.87 a | 15.00 ± 0.50 a | 16.80 ± 0.76 a | 20.20 ± 0.76 a | 11.80 ± 1.53 a | 13.30 ± 1.44 a | 15.00 ± 1.50 a | 4.50 ± 0.00 a | 5.20 ± 0.58 a | 6.30 ± 0.76 a |
7 | 16.30 ± 0.29 a | 17.50 ± 0.50 a | 21.00 ± 0.87 a | 15.20 ± 0.58 a | 16.70 ± 0.76 a | 20.00 ± 1.00 a | 12.20 ± 2.08 a | 13.20 ± 1.61 a | 14.80 ± 1.53 a | 4.50 ± 0.00 a | 4.80 ± 1.15 a | 6.30 ± 0.76 a |
8 | 16.20 ± 0.29 a | 17.30 ± 0.76 a | 20.80 ± 0.76 a | 15.20 ± 0.58 a | 17.20 ± 0.76 a | 20.50 ± 1.50 a | 12.20 ± 1.61 a | 13.20 ± 1.15 a | 14.70 ± 1.26 a | 4.50 ± 0.00 a | 4.80 ± 0.76 a | 6.70 ± 0.29 a |
9 | 16.30 ± 0.29 a | 17.50 ± 0.50 a | 20.70 ± 0.76 a | 15.20 ± 0.58 a | 17.00 ± 0.50 a | 20.20 ± 0.76 a | 12.20 ± 2.08 a | 13.20 ± 1.15 a | 14.80 ± 1.53 a | 4.50 ± 0.00 a | 5.00 ± 0.50 a | 6.30 ± 0.76 a |
Average (mv) | 16.30 ± 0.16 d | 17.40 ± 0.11 d | 20.80 ± 0.26 d | 15.10 ± 0.11 c | 17.00 ± 0.19 c | 20.30 ± 0.27 c | 12.00 ± 0.2 b | 13.30 ± 0.1 b | 14.80 ± 0.15 b | 4.50 ± 0.09 a | 5.500 ± 0.20 a | 6.4 ± 0.19 a |
Position | Temperature (°C) | ||
---|---|---|---|
20 ± 1 | 24 ± 1 | 28 ± 1 | |
1 | 13.80 ± 1.15 | 15.00 ± 0.87 | 15.80 ± 1.04 |
2 | 14.00 ± 1.32 | 16.00 ± 0.50 | 16.70 ± 0.76 |
3 | 13.80 ± 1.15 | 15.80 ± 0.58 | 16.50 ± 0.50 |
4 | 13.80 ± 1.15 | 15.50 ± 1.00 | 16.50 ± 0.50 |
5 | 13.80 ± 1.15 | 15.80 ± 0.58 | 16.70 ± 0.29 |
6 | 14.00 ± 1.32 | 16.00 ± 0.50 | 16.50 ± 0.50 |
7 | 13.80 ± 1.61 | 15.80 ± 0.58 | 16.50 ± 0.50 |
8 | 13.80 ± 1.15 | 15.80 ± 0.58 | 16.70 ± 0.76 |
9 | 13.70 ± 1.44 | 15.70 ± 0.76 | 16.70 ± 0.76 |
Average (mv) | 13.80 ± 0.10 c | 15.70 ± 0.31 b | 16.50 ± 0.28 a |
Rate of SG (%) | Rate of Shortened Treatment Time (%) |
---|---|
4 | 51.9 |
5 | 55.8 |
6 | 56.7 |
7 | 58.5 |
8 | 60.2 |
9 | 61.7 |
Control | UAOD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Multiple Frequencies (40/80 kHz), an Output Power of 450 W at 45 °Brix Sugar Osmotic Solution | ||||||||||
Time (min) | 5 | 10 | 15 | 20 | 25 | 5 | 10 | 15 | 20 | 25 |
Polyphenol oxidase (%) | 90.40 ± 3.60 a | 86.40 ± 3.40 a | 84.00 ± 3.30 b | 78.30 ± 1.70 c | 63.20 ± 2.30 d | 92.40 ± 0.80 a | 91.10 ± 0.60 a | 86.10 ± 0.90 a | 81.70 ± 0.80 bc | 63.80 ± 1.00 d |
Peroxidase (%) | 85.40 ± 2.20 a | 77.50 ± 1.60 c | 73.20 ± 1.50 c | 66.50 ± 1.50 d | 55.40 ± 2.90 e | 87.00 ± 2.00 a | 74.30 ± 1.70 c | 70.50 ± 2.30 c | 65.60 ± 1.80 d | 60.70 ± 1.10 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-W.; Yao, Y.-A.; Huang, D.-W.; Chen, C.-J.; Huang, P.-H. Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration. Processes 2024, 12, 1109. https://doi.org/10.3390/pr12061109
Lin Y-W, Yao Y-A, Huang D-W, Chen C-J, Huang P-H. Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration. Processes. 2024; 12(6):1109. https://doi.org/10.3390/pr12061109
Chicago/Turabian StyleLin, Yu-Wen, Yueh-An Yao, Da-Wei Huang, Chung-Jen Chen, and Ping-Hsiu Huang. 2024. "Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration" Processes 12, no. 6: 1109. https://doi.org/10.3390/pr12061109
APA StyleLin, Y. -W., Yao, Y. -A., Huang, D. -W., Chen, C. -J., & Huang, P. -H. (2024). Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration. Processes, 12(6), 1109. https://doi.org/10.3390/pr12061109