The Effect of Microbial Compound Fertilizer on the Heavy Metal Binding Forms and Enzyme Activity in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Preparation of Heavy-Metal-Polluted (Cr and Cd) Soil Model
2.4. Soil Amendment Experiment
2.5. Determination of Basic Physicochemical Properties of Soil and MOF
2.6. Determination of the Contents of Heavy Metal Binding Forms in Soil
2.6.1. Exchangeable State
2.6.2. Carbonate-Bound State
2.6.3. Fe-Mn Oxide State
2.6.4. Organic Matter Binding State
2.6.5. Residual State
2.7. Determination of Urease Activity of Soil
2.8. Determination of Sucrase Activity of Soil
2.9. Statistical Analysis
3. Results and Analysis
3.1. Effects of MOF on the Physicochemical Properties of Cr- and Cd-Polluted Soil
3.1.1. pH Value of Soil
3.1.2. Organic Matter Content
3.1.3. Ammonium Nitrogen Content
3.1.4. Rapidly Available Phosphorus Content
3.1.5. Available Potassium Content
3.2. Effect of MOF on the Heavy Metal Binding Forms of Cr- and Cd-Polluted Soils
3.2.1. Exchangeable State
3.2.2. Carbonate-Bound State
3.2.3. Fe-Mn Oxide State
3.2.4. Organic Matter Binding State
3.2.5. Residual State
3.3. Impact of MOF on the Enzyme Activity of Cr- and Cd-Polluted Soils
3.3.1. Urease Activity
3.3.2. Sucrase Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, Q. Analysis of the Concentration Characteristics and Sources of TSP, Anions and Heavy Metal Pollutants in the Coastal Atmosphere of Zhanjiang. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2020. [Google Scholar]
- Chen, X.; Zhang, H.; Wong, C.; Li, F.; Xie, S. Assessment of heavy metal contamination and ecological risk in soil within the Zheng–Bian–Luo urban agglomeration. Processes 2024, 12, 996. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Zeng, H. Research progress on potential effects of forest fires on heavy metal concentrations in soil and water. Chin. J. Ecol. 2017, 36, 2641–2649. [Google Scholar]
- Li, S.; Sun, X.; Li, S.; Liu, Y.; Ma, Q.; Zhou, W. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Adv. 2021, 11, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Ou, Y.; Luo, X.; Wang, S.; Wen, Y.; Li, Y.; Luo, L. Characteristics and health risk of heavy metal pollution in soil and crops near Gaoyan landfill in Guiyang city. Shandong Agric. Sci. 2023, 55, 92–99. [Google Scholar]
- Dong, D.; Hu, M.; Luo, Y.; Wang, J.; Feng, K.; Zeng, H. Pollution evaluation and source apportionment of heavy metals in vegetable fields of Luliang Country. Environ. Pollut. Control 2021, 43, 732–737+790. [Google Scholar]
- Tran, H.N.; Nguyen, D.T.; Le, G.T.; Tomul, F.; Lima, E.C.; Woo, S.H.; Sarmah, A.K.; Nguyen, H.Q.; Nguyen, D.D.; Nguyen, T.V.; et al. Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review. J. Hazard. Mater. 2019, 373, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Z.; Rafatullah, M.; Hossain, K.; Ismail, N.; Tajarudin, H.A.; Abdulkhalil, H.P.S. A review on mechanism and future perspectives of cadmium-resistant bacteria. Int. J. Environ. Sci. Technol. 2018, 15, 243–262. [Google Scholar] [CrossRef]
- Chen, L. Characteristics of soil heavy metal pollution and bioremediation technology. Outlook Sci. Technol. 2015, 25, 76. [Google Scholar]
- Suzuki, T.; Kawai, K.; Moribe, M.; Niinae, M. Recovery of Cr as Cr (III) from Cr (VI)-contaminated kaolinite clay by electrokinetics coupled with a permeable reactive barrier. J. Hazard. Mater. 2014, 278, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Song, Z.; Jeyakumar, P.; Bolan, N.; Wang, H. Characteristics and applications of biochar for remediating Cr (VI)-contaminated soils and wastewater. Environ. Geochem. Health 2020, 42, 1543–1567. [Google Scholar] [CrossRef]
- Shi, H.; Hu, J.; Chen, X.; Peng, A. Research Progress on Microbial Remediation Technology of Cadmium Contaminated Mine Soil. Conserv. Util. Miner. Resour. 2020, 40, 17–22. [Google Scholar]
- Zhu, L.; Yin, M.; Ren, R.; Ji, Z.; Sun, C.; Chen, X.; Zhao, M.; Qiao, Y. Effects of three microbial agents on growth and development, fruit yield and quality and disease of strawberry under substrate cultivation. Jiangsu Agric. Sci. 2023, 51, 155–160. [Google Scholar]
- Zhu, J. Application of Microorganisms and Related Technologies in Agriculture. J. Green Sci. Technol. 2020, 231–232. [Google Scholar]
- Lamlom, S.F.; Irshad, A.; Mosa, W.F.A. The biological and biochemical composition of wheat (Triticumaestivum) as affected by the bio and organic fertilizers. BMC Plant Biol. 2023, 23, 111. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Nadda, A.K.; Sharma, S.; Varjani, S.; Singh, S.P. Crosstalk and gene expression in microorganisms under metals stress. Arch. Microbiol. 2022, 204, 410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, L.; Li, H. Research progress of immobilized microbial technology in remediation of heavy metal contaminated soil. Source Environ. Prot. 2023, 37, 147–155. [Google Scholar]
- Wu, M.; Wang, R.; Guan, Y.; Lin, H. Soil microbial remediation of heavy metal pollution mechanism research. Nat. Sci. J. Harbin Norm. Univ. 2014, 147–150. [Google Scholar]
- Wang, M.; Xu, T.; Li, Q.; Yin, J. Mechanisms and techniques of bioremediation of heavy metal polluted soils. J. Tangshan Coll. 2011, 24, 43–44. [Google Scholar]
- Fang, L. The Molecular Mechanisms of Heavy Metals Interactions with the Bacteria-Soil Active Particles Micro-Interfaces. Ph.D. Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Yang, Y.; Yao, D.; Li, B.; Li, M.; Zhai, F.; Zu, Y.; Li, Y. Effect of microbial community in the process of remediation of heavy metal pollution in soil. Jiangsu J. Agric. Sci. 2020, 36, 1322–1331. [Google Scholar]
- Kang, X.; Jing, Y.; Zhang, X.; Kong, F.; Geng, L.; Zhao, R.; Li, Y. Progress in research on effects of combined action of passivator and microorganism on forms of heavy metals in soil. Shandong Agric. Sci. 2022, 54, 151–158. [Google Scholar]
- Wang, X.; Zou, H. Effect of thermal activation temperature of nanoscale phosphate and silicate on the morphological transformation characteristics of Cd in heavy metal contaminated Soils. Agronomy 2023, 13, 406. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Q.; Wang, Y.; Liu, H.; Du, S.; Fan, Q. Rhodococcus qingshengi inoculant preparation and its role in promoting efficient heavy metal phytoremediation. Acta Sci. Circumstantiae 2022, 42, 403–411. [Google Scholar]
- Victor, V.A.; Lyudmila, K.A.; Yulia, R.S.; Anna, S.F.; Natalia, S.V.; Alexander, Y.P. Microorganisms for bioremediation of soils contaminated with heavy metals. Microorganisms 2023, 11, 864. [Google Scholar] [CrossRef]
- Bybin, V.A.; Belogolova, G.A.; Markova, Y.A.; Sokolova, M.G.; Sidorov, A.V.; Gordeeva, O.N.; Poletaeva, V.I. Influence of heavy metals and arsenic on survival and biofilm formation of some saprotrophic soil microorganisms. Water Air Soil Pollut. 2021, 232, 343. [Google Scholar] [CrossRef]
- GB15618-2018; Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural Land. China Environment Publishing Group: Beijing, China, 2018; Volume 16.
- Chen, Y. The pH value of soil determined by potentiometric method. Rural Pract. Technol. 2019, 215, 104. [Google Scholar]
- Yan, X.; Hou, F. Detection method of organic matter in organic fertilizer and its attention. Agric. Dev. Equip. 2022, 102–103. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Li, N.; Xia, Y.; He, X.; Yuan, L.; Li, W.; He, C.; Xia, K. Research Progress of Cd form transformation and the effective environmental factors in soil based on Tessier analysis. Chin. J. Soil Sci. 2021, 52, 1505–1512. [Google Scholar]
- HJ491-2019; Soil and Sediment—Determination of Copper, Zinc, Lead, Nickel and Chromium—Flame Atomic Absorption Spectrophotometry. Nanjing Environmental Monitoring Center Station: Nanjing, China, 2019; Volume 16.
- T/NAIA 011-2020; Determination of Soil Urease Activity Phenol Sodium-Sodium Hypochlorite Colorimetric Method. NAIA: Yin Chuan, China, 2020.
- T/NAIA010-2020; Determination of Soil Sucrase Activity 3,5-Dinitrosalicylic Acid Colorimetric Method. NAIA: Yin Chuan, China, 2020.
Element | Ammonium Nitrogen (ppm) | Rapidly Available Phosphorus (ppm) | Available Potassium (ppm) | Organic Matter (g/kg) | pH | Cr (ppm) | Cd (ppm) |
---|---|---|---|---|---|---|---|
Content | 4.71 ± 0.09 f | 43.34 ± 1.11 b | 17.30 ± 0.56 d | 31.38 ± 1.48 c | 7.72 ± 0.03 e | 60.19 ± 2.18 a | 0.22 ± 0.01 g |
Element | Ammonium Nitrogen (ppm) | Rapidly Available Phosphorus (ppm) | Available Potassium (ppm) | Organic Matter (g/kg) | pH | Cr (ppm) | Cd (ppm) |
---|---|---|---|---|---|---|---|
Content | 98.73 ± 4.41 c | 363.26 ± 8.98 b | 1482 ± 86.53 a | 372.07 ± 18.62 b | 7.52 ± 0.03 d | 79.35 ± 5.00 c | 0.34 ± 0.01 d |
Heavy-Metal-Polluted Soil | Amount of MOF (%) | pH | Organic Matter (g/kg) | Ammonium Nitrogen (ppm) | Rapidly Available Phosphorus (ppm) | Available Potassium (ppm) |
---|---|---|---|---|---|---|
Cr | 0 | 7.50 ± 0.12 a | 26.56 ± 1.16 e | 23.55 ± 0.82 e | 18.21 ± 0.87 d | 123.2 ± 6.09 d |
1 | 7.39 ± 0.05 a,b | 32.66 ± 1.81 d | 28.56 ± 1.17 d | 22.53 ± 0.44 c | 135.66 ± 6.26 c,d | |
3 | 7.43 ± 0.12 a,b | 51.49 ± 2.59 c | 32.22 ± 1.21 c | 22.86 ± 0.61 c | 143.77 ± 7.35 b,c | |
5 | 7.28 ± 0.03 b,c | 66.33 ± 2.95 b | 39.97 ± 1.53 b | 26.42 ± 1.04 b | 152.68 ± 7.49 b | |
10 | 7.22 ± 0.04 c | 85.63 ± 3.75 a | 48.73 ± 2.14 a | 31.13 ± 1.25 a | 169.52 ± 10.15 a | |
Cd | 0 | 7.68 ± 0.14 a | 27.14 ± 1.34 e | 14.19 ± 0.57 e | 11.55 ± 0.37 e | 82.32 ± 3.70 d |
1 | 7.59 ± 0.10 a,b | 35.16 ± 1.97 d | 19.89 ± 1.03 d | 14.56 ± 0.55 d | 98.97 ± 4.88 c | |
3 | 7.47 ± 0.11 b,c | 55.62 ± 2.97 c | 27.26 ± 1.33 c | 17.82 ± 0.83 c | 107.32 ± 4.96 b,c | |
5 | 7.33 ± 0.05 c,d | 72.33 ± 3.10 b | 33.18 ± 1.88 b | 21.66 ± 1.06 b | 111.43 ± 6.02 a,b | |
10 | 7.27 ± 0.02 d | 92.33 ± 4.20 a | 40.88 ± 2.05 a | 25.52 ± 1.23 a | 119.97 ± 5.33 a |
Heavy-Metal-Polluted Soil | Time (Day) | Amount of MOF (%) | Concentration (mg/kg) | ||||
---|---|---|---|---|---|---|---|
Exchangeable State | Carbonate-Bound State | Fe-Mn Oxide State | Organic Matter Binding State | Residual State | |||
Cr | 0 | 0 | 9.84 ± 0.40 a | 13.62 ± 0.48 a | 53.44 ± 1.77 a | 6.52 ± 0.02 a | 8.62 ± 0.77 a |
5 | 0 | 9.89 ± 0.37 a | 13.70 ± 0.51 a | 53.74 ± 1.81 a | 6.55 ± 0.04 e | 8.50 ± 0.74 d | |
1 | 9.92 ± 0.43 a | 12.52 ± 0.46 b | 52.91 ± 1.60 a,b | 8.75 ± 0.06 d | 9.26 ± 0.05 c,d | ||
3 | 9.84 ± 0.42 a | 10.62 ± 0.10 c | 50.81 ± 1.22 b,c | 9.12 ± 0.07 c | 10.09 ± 0.09 c | ||
5 | 9.79 ± 0.33 a | 9.57 ± 0.09 d | 48.97 ± 1.09 c | 9.34 ± 0.08 b | 12.79 ± 0.49 b | ||
10 | 9.77 ± 0.29 a | 8.45 ± 0.06 e | 45.29 ± 0.91 d | 9.53 ± 0.10 a | 13.98 ± 0.53 a | ||
10 | 0 | 9.79 ± 0.28 a | 13.92 ± 0.54 a | 55.94 ± 1.82 a | 6.18 ± 0.03 d | 8.47 ± 0.06 e | |
1 | 9.67 ± 0.19 a | 12.11 ± 0.39 b | 51.25 ± 1.53 b | 9.97 ± 0.47 c | 9.38 ± 0.08 d | ||
3 | 9.69 ± 0.16 a | 10.11 ± 0.15 c | 49.06 ± 1.32 b,c | 11.30 ± 0.17 b | 11.25 ± 0.20 c | ||
5 | 9.69 ± 0.19 a | 9.08 ± 0.12 d | 48.43 ± 1.11 c | 11.26 ± 0.23 b | 14.00 ± 0.63 b | ||
10 | 9.61 ± 0.10 a | 8.03 ± 0.06 e | 43.08 ± 0.88 d | 12.86 ± 0.42 a | 15.97 ± 0.88 a | ||
15 | 0 | 9.97 ± 0.45 a | 14.26 ± 0.61 a | 57.29 ± 1.91 a | 6.04 ± 0.04 e | 8.33 ± 0.04 e | |
1 | 9.88 ± 0.44 a | 12.18 ± 0.42 b | 48.00 ± 1.03 b | 9.67 ± 0.20 d | 9.49 ± 0.14 d | ||
3 | 9.75 ± 0.24 a | 10.16 ± 0.16 c | 45.04 ± 0.88 c | 11.27 ± 0.28 c | 11.90 ± 0.26 c | ||
5 | 9.66 ± 0.21 a | 9.23 ± 0.12 d | 40.77 ± 0.74 d | 12.37 ± 0.45 b | 14.75 ± 0.48 b | ||
10 | 9.59 ± 0.16 a | 7.18 ± 0.03 e | 33.04 ± 0.61 e | 14.25 ± 0.52 a | 17.89 ± 0.60 a | ||
Cd | 0 | 0 | 12.26 ± 0.35 a | 2.65 ± 0.08 a | 2.07 ± 0.03 a | 0.11 ± 0.03 a | 2.53 ± 0.08 a |
5 | 0 | 12.71 ± 0.39 a | 2.05 ± 0.03 a | 2.14 ± 0.05 b | 0.06 ± 0.01 d | 2.52 ± 0.08 d | |
1 | 11.74 ± 0.35 b | 2.05 ± 0.02 a | 2.26 ± 0.06 b | 0.09 ± 0.01 c | 2.58 ± 0.10 c,d | ||
3 | 11.37 ± 0.31 b | 1.53 ± 0.01 b | 2.81 ± 0.09 a | 0.14 ± 0.02 b | 2.73 ± 0.11 b,c | ||
5 | 10.03 ± 0.24 c | 1.29 ± 0.02 c | 2.84 ± 0.08 a | 0.25 ± 0.02 a | 2.84 ± 0.10 b | ||
10 | 10.25 ± 0.29 c | 1.11 ± 0.02 d | 2.87 ± 0.11 a | 0.27 ± 0.01 a | 3.22 ± 0.11 a | ||
10 | 0 | 12.90 ± 0.42 a | 1.47 ± 0.04 a | 1.98 ± 0.06 a | 0.06 ± 0.00 a | 2.50 ± 0.11 a | |
1 | 10.93 ± 0.26 b | 1.38 ± 0.06 b | 2.18 ± 0.09 b | 0.09 ± 0.03 a | 2.65 ± 0.10 b | ||
3 | 10.47 ± 0.20 b,c | 1.27 ± 0.02 c | 2.24 ± 0.07 c | 0.11 ± 0.01 b | 2.64 ± 0.08 c | ||
5 | 10.31 ± 0.19 c | 0.71 ± 0.01 d | 2.59 ± 0.06 c | 0.26 ± 0.03 b,c | 2.98 ± 0.12 c | ||
10 | 8.52 ± 0.12 d | 0.64 ± 0.04 e | 2.98 ± 0.10 d | 0.27 ± 0.02 c | 3.56 ± 0.14 c | ||
15 | 0 | 13.42 ± 0.49 a | 1.04 ± 0.03 a | 1.74 ± 0.03 c | 0.06 ± 0.01 c | 2.47 ± 0.09 e | |
1 | 10.11 ± 0.15 b | 1.00 ± 0.01 a,b | 2.92 ± 0.08 b | 0.09 ± 0.01 c | 2.77 ± 0.12 d | ||
3 | 9.54 ± 0.13 c | 0.98 ± 0.03 b | 3.04 ± 0.09 b | 0.16 ± 0.03 b | 3.02 ± 0.13 c | ||
5 | 9.36 ± 0.08 c | 0.85 ± 0.04 c | 3.04 ± 0.10 b | 0.28 ± 0.03 a | 3.35 ± 0.13 b | ||
10 | 8.64 ± 0.11 d | 0.81 ± 0.01 c | 3.25 ± 0.10 a | 0.33 ± 0.05 a | 3.82 ± 0.16 a |
Soil Sample | Amount of MOF (%) | Urease Activity (mg/g) | Sucrase Activity (mg/g) |
---|---|---|---|
Cr-polluted soil | 0 | 0.19 ± 0.01 e | 13.44 ± 0.52 d |
1 | 0.35 ± 0.01 d | 16.38 ± 0.61 c | |
3 | 0.49 ± 0.02 c | 17.85 ± 0.71 b | |
5 | 0.68 ± 0.03 b | 19.10 ± 0.86 b | |
10 | 1.26 ± 0.05 a | 23.51 ± 1.07 a | |
Cd-polluted soil | 0 | 0.21 ± 0.02 e | 14.91 ± 0.70 d |
1 | 0.40 ± 0.03 d | 16.59 ± 0.99 c | |
3 | 0.58 ± 0.03 c | 18.27 ± 1.02 c | |
5 | 0.77 ± 0.04 b | 22.04 ± 1.00 b | |
10 | 1.46 ± 0.07 a | 26.65 ± 1.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Huang, C.; Liang, B.; Wang, S.; Sun, H.; Bian, S.; Sun, X. The Effect of Microbial Compound Fertilizer on the Heavy Metal Binding Forms and Enzyme Activity in Soil. Processes 2024, 12, 1134. https://doi.org/10.3390/pr12061134
Zhao Z, Huang C, Liang B, Wang S, Sun H, Bian S, Sun X. The Effect of Microbial Compound Fertilizer on the Heavy Metal Binding Forms and Enzyme Activity in Soil. Processes. 2024; 12(6):1134. https://doi.org/10.3390/pr12061134
Chicago/Turabian StyleZhao, Zheng, Changyin Huang, Baohui Liang, Siyu Wang, Huiwen Sun, Simeng Bian, and Xiaoran Sun. 2024. "The Effect of Microbial Compound Fertilizer on the Heavy Metal Binding Forms and Enzyme Activity in Soil" Processes 12, no. 6: 1134. https://doi.org/10.3390/pr12061134
APA StyleZhao, Z., Huang, C., Liang, B., Wang, S., Sun, H., Bian, S., & Sun, X. (2024). The Effect of Microbial Compound Fertilizer on the Heavy Metal Binding Forms and Enzyme Activity in Soil. Processes, 12(6), 1134. https://doi.org/10.3390/pr12061134