Comparison of the Limit of Detection of Paracetamol, Propyphenazone, and Caffeine Analyzed Using Thin-Layer Chromatography and High-Performance Thin-Layer Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds Analyzed and Their Solutions
2.2. Thin-Layer Chromatography
2.3. Spectrodensitometric and Densitometric Analysis
2.4. LOD Calculation
- σ—standard deviation; and s—standard deviation of the intercept (sa) or residual standard deviation (sxy)
- C—concentration of compound in a solution.
2.5. Statistical Calculation
3. Results and Discussion
- -
- Mobile phase A and 1.05554 plates (TLC), and mobile phase E and 1.05559 plates (TLC).
- -
- Mobile phase B and 1.05554 plates (TLC), and mobile phase E and 1.13726 plates (HPTLC).
- -
- Mobile phase C and 1.05554 plates (TLC), and mobile phase C and 1.13728 plates (HPTLC).
- -
- Mobile phase C and 1.05747 plates (TLC), mobile phase A and 1.13728 plates (HPTLC), and mobile phase C and 1.05548 plates (HPTLC).
- -
- Mobile phase B and 1.05548 plates (HPTLC), and mobile phase F and 1.05559 plates (TLC)
- -
- Mobile phase E and 1.05747 plates (TLC), and mobile phase F and 1.15498 plates (HPTLC).
- (a)
- Precoated with silica gel 60 F254 (#1.05554) using mobile phase C (chloroform—toluene—ethyl acetate—methanol—80% acetic acid, 18:18:7.5:6:0.3, v/v). The detection limit values for caffeine, propyphenazone and paracetamol are 0.054, 0.029, and 0.016 μg/spot, respectively. The RF values obtained under these chromatography conditions are 0.47, 0.60, and 0.38 for caffeine, propyphenazone, and paracetamol, respectively (Figure 7).
- (b)
- Precoated with silica gel 60 F254, modified with C18 groups (#1.05559) using a mobile phase F (methanol–water, 40:10, v/v). The detection limit values for caffeine, propyphenazone, and paracetamol are 0.019, 0.024, and 0.053 μg/spot, respectively. The RF values obtained under these chromatography conditions are 0.51, 0.47, and 0.74 for caffeine, propyphenazone, and paracetamol, respectively.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ICH. ICH Harmonised Tripartite Guideline: Validation of Analytical Procedures: Text and Methodology, Q2(R1). 2005. Available online: https://www.ich.org/page/quality-guidelines (accessed on 10 January 2024).
- Boque, R.; Heyden, Y.V. The Limit of Detection. LCGC Eur. 2009, 22, 82–85. [Google Scholar]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Drug Bank Online. Available online: https://go.drugbank.com/drugs (accessed on 8 April 2024).
- El Sherbiny, D.; Wahba, M.E.K. Validation of a Micellar Liquid Chromatographic Method for Determination of Caffeine and Non-Steroidal Anti-Inflammatories. J. Chromatogr. Sci. 2014, 52, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Zambakjian, C.; Sakur, A.A. A new gas chromatographic method development and validation for the simultaneous determination of ibuprofen and caffeine in bulk and pharmaceutical dosage form. Future J. Pharm. Sci. 2020, 6, 110. [Google Scholar] [CrossRef]
- Soponar, F.; Staniloae, D.; Moise, G.; Szaniszlo, B.; David, V. Simultaneous determination of paracetamol, propyphenazone and caffeine from pharmaceutical preparations in the presence of related substances using a validated HPLC-DAD method. Rev. Roum. Chim. 2013, 58, 433–440. [Google Scholar]
- Šatínský, D.; Brabcová, I.; Maroušková, A.; Chocholouš, P.; Solich, P. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Anal. Bioanal. Chem. 2013, 405, 6105–6115. [Google Scholar] [CrossRef]
- Mladenov, K.; Sunarić, S. Caffeine in hair care and anticellulite cosmetics: Sample preparation. Solid-phase extraction and HPLC determination. J. Cosmet. Sci. 2020, 71, 251–262. [Google Scholar] [PubMed]
- Sonone, R.; Tandel, L.; Jain, V. Novel rapid isocratic RP-HPLC method for simultaneous estimation of phenylephrine hydrochloride, paracetamol, caffeine, diphenhydramine dydrochloride. Curr. Pharm. Anal. 2021, 17, 792–800. [Google Scholar] [CrossRef]
- Ismail, A.; Gamal, M.; Nasr, M. Optimization of analytical method for simultaneous determination of acetaminophen, caffeine, and aspirin in tablet dosage form. Pharm. Chem. J. 2023, 56, 1682–1688. [Google Scholar] [CrossRef]
- Oliphanta, E.; Purohitb, T.J.; Alsweiler, J.M.; McKinlayc, C.J.D.; Hanning, S.M. Validation and application of a simple and rapid stability-indicating liquid chromatographic assay for the quantification of caffeine from human saliva. J. Liq. Chromatogr. Relat. Technol. 2022, 45, 10–17. [Google Scholar] [CrossRef]
- Dongala, T.; Katari, N.K.; Palakurthi, A.K.; Jonnalagadda, S.B. Development and validation of a generic RP-HPLC PDA method for the simultaneous separation and quantification of active ingredients in cold and cough medicines. Biomed. Chromatogr. 2019, 33, e4641. [Google Scholar] [CrossRef] [PubMed]
- El-Ragehy, N.A.; Ramadan, N.K.; Ragab, M.T.; El-Zeany, B.A. RP-HPLC Method for the simultaneous determination of a quaternary mixture of propyphenazone, flavoxate HCl and two of their official impurities with dissolution profiling of their tablets. J. AOAC Int. 2020, 103, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Golubitskiia, G.B.; Ivanov, V.M. Quantitative analysis of some pharmaceuticals by the HPLC method. Mosc. Univ. Chem. Bull. 2009, 64, 210–213. [Google Scholar] [CrossRef]
- Delvadiya, K.; Kabra, P.; Kimbahune, R.; Patel, N.; Nargund, L.V.G. High-performance liquid chromatographic determination of paracetamol, propyphenazone, and caffeine in pharmaceutical formulations. Indian J. Pharm. Educ. Res. 2013, 47, 65–72. [Google Scholar] [CrossRef]
- Ren, H.; Chen, Y.; Wang, H.; Liu, M.; Ji, L. Simultaneous determination of caffeine. Taurine and five water-soluble vitamins in tobacco products by HPLC–MS/MS. Chromatographia 2019, 82, 1665–1675. [Google Scholar] [CrossRef]
- Wang, A.; Sun, J.; Feng, H.; Gao, S.; He, Z. Simultaneous determination of paracetamol and caffeine in human plasma by LC–ESI–M. Chromatographia 2008, 67, 281–285. [Google Scholar] [CrossRef]
- Choi, E.J.; Bae, S.H.; Park, J.B.; Kwon, M.J.; Jang, S.M.; Zheng, Y.F.; Lee, Y.S.; Lee, S.J.; Bae, S.K. Simultaneous quantification of caffeine and its three primary metabolites in rat plasma by liquid chromatography–tandem mass spectrometry. Food Chem. 2013, 141, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Onn Kit Loh, G.; Yii Ling Wong, E.; Goh, C.Z.; Tze Fung Tan, Y.; Lee, Y.L.; Pang, L.H.; Shahridzo, S.H.; Damenthi, N.; Hermansyah, A.; Long, C.M.; et al. Simultaneous determination of tramadol and paracetamol in human plasma using LC-MS/MS and application in bioequivalence study of fixed-dose combination. Ann. Med. 2023, 55, 2270502. [Google Scholar] [CrossRef] [PubMed]
- Boltia, A.; Soudi, A.T.; Elzanfaly, L.S.; Zaazaa, H.E. Development and validation of chromatographic methods for simultaneous determination of paracetamol, orphenadrine citrate and caffeine in presence of p-aminophenol; quantification of p-aminophenol nephrotoxic impurity using LC–MS/MS. J. Chromatogr. Sci. 2020, 58, 223–233. [Google Scholar] [CrossRef]
- Fekry, R.A.; Kelani, K.M.; Fayez, Y.M.; Tantawy, M.A. Comparative validated chromatographic methods for the simultaneous determination of caffeine, codeine, paracetamol along with the related compound “p-aminophenol” in tablets. J. Planar Chromatogr.-Mod. TLC 2022, 35, 51–59. [Google Scholar] [CrossRef]
- Ibrahim, H.; Hamdy, A.M.; Merey, H.A.; Saad, A.S. Simultaneous determination of paracetamol, propyphenazone and caffeine in presence of paracetamol impurities using dual-mode gradient HPLC and TLC densitometry methods. J. Chromatogr. Sci. 2021, 59, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Shakeel, F.; Ali, A.; Alqarni, M.H.; Foudah, A.I.; Aljarba, T.M.; Alkholifi, F.K.; Alshehri, S.; Ghoneim, M.M.; Ali, A. Simultaneous determination of caffeine and paracetamol in commercial formulations using greener normal-phase and reversed-phase HPTLC methods: A contrast of validation parameters. Molecules 2022, 27, 405. [Google Scholar] [CrossRef] [PubMed]
- Ferchiou, R.; Soussi, M.A.; Ghedira, D.; Ferchiou, D.; Douki, W.; Najjar, M.F. Development and validation of a simple thin-layer chromatography–smartphone method for plasma paracetamol quantification. J. Planar Chromatogr.-Mod. TLC 2023, 36, 251–256. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Aljarba, T.M.; Alshehri, S.; Alam, P. Simultaneous detection of chlorzoxazone and paracetamol using a greener reverse-phase HPTLC-UV method. Separations 2022, 9, 300. [Google Scholar] [CrossRef]
- Wahyuningsih, E.; Isnaeni. Identification of paracetamol and caffeine in jamu powders simultaneously using TLC-densitometry. Berk. Ilm. Kim. Farm. 2023, 10, 18–22. [Google Scholar] [CrossRef]
- Gupta, M.K.; Ghuge, A.; Parab, M.; Al-Refaei, Y.; Khandare, A.; Dand, N.; Waghmare, N. A comparative review on High-Performance Liquid Chromatography (HPLC), Ultra Performance Liquid Chromatography (UPLC) & High-Performance Thin Layer Chromatography (HPTLC) with current updates. Curr. Issues Pharm. Med. Sci. 2022, 35, 224–228. [Google Scholar] [CrossRef]
- Farid, N.F.; Naguib, I.A.; Abdelhamid, N.S.; Anwar, B.H.; Magdy, M.A. Validated ecofriendly chromatographic method for quantitative determination of anti-migraine quaternary mixture. J. Sep. Sci. 2020, 43, 2330–2337. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.T.; Ramadan, N.K.; El-Ragehy, N.A.; El-Zeany, B.A. Thin layer chromatography–spectrodensitometric determination of a three-component mixture of propyphenazone, caffeine, ergotamine tartrate, and two of their impurities with application to tablets, spiked human plasma, and green profile assessment. J. Planar Chromatogr.-Mod. TLC 2023, 36, 295–305. [Google Scholar] [CrossRef]
- Silva, W.P.; Silva, L.A.J.; França, C.H.; Sousa, R.M.F.; Muñoz, R.A.A.; Richter, E.M. Square-wave voltammetric determination of propyphenazone, paracetamol, and caffeine: Comparative study between batch injection analysis and conventional electrochemical systems. Electroanalysis 2017, 29, 1860–1866. [Google Scholar] [CrossRef]
- Gergov, G.; Alin, A.; Katsarov, P.; Simeonov, V.; Yankov, D.; Al-Degs, Y. Net analyte signal-based methods for the simultaneous determination of paracetamol. propyphenazone and caffeine by UV spectrophotometry. Bulg. Chem. Commun. 2018, 50, 265–273. [Google Scholar]
- Ozgur, M.U.; Alpdogan, G.; Asci, B. A Rapid spectrophotometric method to resolve ternary mixtures of propyphenazone, caffeine, and acetaminophen in tablets. Monatshefte Chem. 2002, 133, 219–223. [Google Scholar] [CrossRef]
Symbol | System | Composition | Volumetric Ratio |
---|---|---|---|
A | NP | acetone—chloroform—ammonia | 10:40:0.5 |
B | n-hexane—acetone—ammonia | 25:25:0.5 | |
C | chloroform—toluene—ethylene acetate—methanol—80% acetic acid | 18:18:7.5:6:0.3 | |
D | RP | methanol—water | 25:25 |
E | methanol—water | 30:20 | |
F | methanol—water | 40:10 |
Mobile Phase | Technique | Chromatographic Plates | LOD of Caffeine [µg/spot] | RF | LOD of Propyphenazone [µg/spot] | RF | LOD of Paracetamol [µg/spot] | RF |
---|---|---|---|---|---|---|---|---|
A | NP-TLC | 1.05554 | 0.059 | 0.12 | 0.099 | 0.73 | 0.106 | 0.13 |
1.05747 | 0.023 | 0.76 | 0.091 | 0.83 | 0.032 | 0.66 | ||
NP-HPTLC | 1.05548 | 0.023 | 0.16 | 0.091 | 0.84 | 0.077 | 0.16 | |
1.13728 | 0.080 | 0.34 | 0.048 | 0.86 | 0.016 | 0.17 | ||
1.13726 | 0.144 | 0.52 | - | - | 0.021 | 0.73 | ||
B | NP-TLC | 1.05554 | 0.133 | 0.15 | 0.076 | 0.83 | 0.054 | 0.25 |
1.05747 | 0.048 | 0.77 | 0.086 | 0.89 | 0.195 | 0.86 | ||
NP-HPTLC | 1.05548 | 0.010 | 0.38 | 0.046 | 0.75 | 0.030 | 0.57 | |
1.13728 | 0.090 | 0.39 | 0.175 | 0.79 | 0.025 | 0.40 | ||
1.13726 | 0.193 | 0.89 | 0.247 | 0.94 | 0.090 | 0.77 | ||
C | NP-TLC | 1.05554 | 0.054 | 0.47 | 0.029 | 0.60 | 0.016 | 0.38 |
1.05747 | 0.067 | 0.76 | 0.045 | 0.86 | 0.025 | 0.72 | ||
NP-HPTLC | 1.05548 | 0.073 | 0.55 | 0.039 | 0.72 | 0.037 | 0.42 | |
1.13728 | 0.057 | 0.52 | 0.026 | 0.70 | 0.035 | 0.39 | ||
1.13726 | 0.091 | 0.92 | 0.084 | 0.98 | 0.052 | 0.84 |
Mobile Phase | Technique | Chromatographic Plates | LOD of Caffeine [µg/spot] | RF | LOD of Propyphenazone [µg/spot] | RF | LOD of Paracetamol [µg/spot] | RF |
---|---|---|---|---|---|---|---|---|
D | RP-TLC | 1.05747 | 0.040 | 0.52 | 0.086 | 0.19 | 0.133 | 0.65 |
1.05559 | 0.120 | 0.20 | 0.085 | 0.06 | 0.170 | 0.55 | ||
RP-HPTLC | 1.13726 | 0.104 | 0.48 | 0.046 | 0.15 | 0.084 | 0.57 | |
1.15498 | - | - | - | - | - | - | ||
E | RP-TLC | 1.05747 | 0.074 | 0.60 | 0.030 | 0.39 | 0.203 | 0.85 |
1.05559 | 0.072 | 0.32 | 0.089 | 0.13 | 0.104 | 0.65 | ||
RP-HPTLC | 1.13726 | 0.117 | 0.62 | 0.062 | 0.36 | 0.058 | 0.70 | |
1.15498 | 0.051 | 0.21 | 0.035 | 0.10 | 0.135 | 0.48 | ||
F | RP-TLC | 1.05747 | 0.084 | 0.75 | 0.041 | 0.61 | 0.056 | 0.85 |
1.05559 | 0.019 | 0.51 | 0.024 | 0.47 | 0.053 | 0.74 | ||
RP-HPTLC | 1.13726 | 0.055 | 0.71 | 0.041 | 0.70 | 0.088 | 0.79 | |
1.15498 | 0.086 | 0.62 | 0.030 | 0.60 | 0.199 | 0.91 |
Technique | Caffeine | Propyphenazone | Paracetamol |
---|---|---|---|
Range of LOD [µg/spot] | |||
NP-TLC | 0.023 ÷ 0.133 | 0.029 ÷ 0.091 | 0.016 ÷ 0.195 |
NP-HPTLC | 0.010 ÷ 0.193 | 0.026 ÷ 0.247 | 0.016 ÷ 0.052 |
RP-TLC | 0.019 ÷ 0.120 | 0.024 ÷ 0.089 | 0.053 ÷ 0.203 |
RP-HPTLC | 0.051 ÷ 0.117 | 0.030 ÷ 0.062 | 0.084 ÷ 0.199 |
Plate | Symbol of Mobile Phase | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
1.05554 | propyphenazone paracetamol | |||||
1.05747 | caffeine paracetamol | caffeine | propyphenazone paracetamol | caffeine | propyphenazone | propyphenazone |
1.05559 | caffeine propyphenazone | |||||
1.05548 | caffeine propyphenazone paracetamol | propyphenazone paracetamol | ||||
1.13728 | propyphenazone paracetamol | paracetamol | propyphenazone paracetamol | |||
1.13726 | paracetamol | propyphenazone | propyphenazone | |||
1.15498 | propyphenazone | propyphenazone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bober-Majnusz, K.; Pyka-Pająk, A. Comparison of the Limit of Detection of Paracetamol, Propyphenazone, and Caffeine Analyzed Using Thin-Layer Chromatography and High-Performance Thin-Layer Chromatography. Processes 2024, 12, 1153. https://doi.org/10.3390/pr12061153
Bober-Majnusz K, Pyka-Pająk A. Comparison of the Limit of Detection of Paracetamol, Propyphenazone, and Caffeine Analyzed Using Thin-Layer Chromatography and High-Performance Thin-Layer Chromatography. Processes. 2024; 12(6):1153. https://doi.org/10.3390/pr12061153
Chicago/Turabian StyleBober-Majnusz, Katarzyna, and Alina Pyka-Pająk. 2024. "Comparison of the Limit of Detection of Paracetamol, Propyphenazone, and Caffeine Analyzed Using Thin-Layer Chromatography and High-Performance Thin-Layer Chromatography" Processes 12, no. 6: 1153. https://doi.org/10.3390/pr12061153
APA StyleBober-Majnusz, K., & Pyka-Pająk, A. (2024). Comparison of the Limit of Detection of Paracetamol, Propyphenazone, and Caffeine Analyzed Using Thin-Layer Chromatography and High-Performance Thin-Layer Chromatography. Processes, 12(6), 1153. https://doi.org/10.3390/pr12061153