Offshore Wind Power Foundation Corrosion Rate Prediction Model Based on Improved SHO Algorithm
Abstract
:1. Introduction
- (1)
- The main elements of the offshore wind power foundation corrosion rate are extracted using kernel principal component analysis, which reduces the modeling workload of the offshore wind power foundation corrosion prediction model.
- (2)
- The improvement of the spotted hyena algorithm by the nonlinear adjustment of convergence factor and Lévy flight strategy, which accelerates the convergence speed of the algorithm and improves the optimization ability.
- (3)
- Based on the improved spotted hyena algorithm, the least squares support vector machine’s penalty parameter and kernel function parameter are optimized, and the offshore wind power foundation corrosion rate prediction model is established.
2. Corrosion Characteristics of Offshore Wind Power Foundations
3. Kernel Principal Component Analysis
4. Spotted Hyena Optimization Algorithm Improvement Strategy
4.1. Spotted Hyena Optimization Algorithm
4.2. Nonlinear Adjustment of Convergence Factors
4.3. Levi’s Flight Strategy
5. Corrosion Rate Prediction Model for Offshore Wind Power Foundation Based on ISHO-LSSVM
- (1)
- Obtain sample data. According to the factors affecting the corrosion rate of offshore wind power foundations, the relevant data are collected.
- (2)
- Normalization. To eliminate the error affected by the different scales of the influencing factors, the sample data are normalized to obtain the data set .
- (3)
- KPCA dimensionality reduction. KPCA is used to downsize the data set to obtain the reconstructed indexes .
- (4)
- ISHO parameter optimization. Use ISHO to optimize C and of LSSVM. The process of ISHO can be seen in Figure 3.
- (5)
- Set the initial values and search ranges of penalty parameters C and kernel function parameters, and set the population size of the spotted hyena.
- (6)
- Calculate the current optimal position and check if there are any spotted hyena individuals that are beyond the boundaries and adjust them if any.
- (7)
- Calculate the individual fitness value of the spotted hyena after the position update and compare it with the fitness value of the previous generation to retain the best position of the spotted hyena.
- (8)
- Update the group of spotted hyenas until the spotted hyena position under the individual optimal fitness value is searched.
- (9)
- If the algorithm reaches the termination condition, output the best spotted hyena position, i.e., the optimal solution of C and ; otherwise repeat steps (5) to (9).
- (10)
- The optimal solution of C and is assigned to LSSVM, which is utilized to predict the corrosion rate of offshore wind power foundations.
6. Experimental Verification and Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
the normalized data | |
the original data of an eigenvector | |
, | the maximum and minimum values of the eigenvector, respectively |
α | the column vector of dimension n |
Dh | the distance |
t | the number of iterations |
Pp | the position of the prey |
P(t) | the position |
B | the swing factor |
r1 | a uniformly distributed random number |
E | the convergence factor |
h | the control factor |
NI | the maximum number of iterations |
Ph | the first optimal position |
Ch | the set containing N optimal solutions |
M | the random vector |
Ph(t + 1) | the preserved optimal solution |
e | the natural logarithm |
Q | the attenuation coefficient |
the nonlinear mapping | |
the hyperplane weight vector | |
b | the bias factor |
C | the penalty coefficient |
the slack variable | |
N | the sample capacity of the test set |
the actual value of corrosion rate | |
the predicted value of corrosion rate | |
the average value of corrosion rate |
Appendix A
Sample No. | PH Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 7.91 | 2238.26 | 348.16 | 206.55 | 129.82 | 1.31 | 44.45 | 1327.28 | 323.16 | 116.83 | 0.24 |
2 | 7.66 | 2036.13 | 379.93 | 200.26 | 203.27 | 7.13 | 31.90 | 1260.06 | 301.21 | 135.37 | 0.73 |
3 | 7.66 | 2126.99 | 324.64 | 230.65 | 204.24 | 3.75 | 38.32 | 1235.92 | 282.76 | 139.21 | 0.66 |
4 | 7.11 | 2079.74 | 280.90 | 184.18 | 112.17 | 5.86 | 32.61 | 1095.35 | 275.83 | 109.75 | 0.14 |
5 | 8.20 | 2203.06 | 356.86 | 180.34 | 75.95 | 3.32 | 34.89 | 1200.45 | 272.87 | 126.43 | 0.07 |
6 | 8.05 | 2092.34 | 352.99 | 194.56 | 71.73 | 2.72 | 33.33 | 1110.04 | 277.56 | 148.75 | 0.11 |
7 | 8.42 | 2093.29 | 378.85 | 199.96 | 149.55 | 3.72 | 37.33 | 1110.89 | 270.35 | 135.10 | 0.40 |
8 | 7.58 | 2251.04 | 307.69 | 200.04 | 139.15 | 4.67 | 44.29 | 1182.38 | 268.61 | 166.55 | 0.11 |
9 | 8.25 | 2009.35 | 350.50 | 215.10 | 213.20 | 8.32 | 33.81 | 1185.95 | 251.53 | 164.80 | 0.39 |
10 | 7.23 | 2269.88 | 289.54 | 187.51 | 160.54 | 6.79 | 41.89 | 1005.79 | 275.46 | 132.85 | 0.23 |
11 | 8.36 | 2150.76 | 389.83 | 227.22 | 196.36 | 7.99 | 42.12 | 1337.89 | 278.20 | 115.25 | 0.31 |
12 | 8.45 | 2165.70 | 388.05 | 226.22 | 152.89 | 5.51 | 41.42 | 1121.73 | 332.87 | 177.63 | 0.14 |
13 | 7.06 | 2041.95 | 338.46 | 235.14 | 88.61 | 8.40 | 35.78 | 1206.93 | 313.07 | 128.07 | 0.50 |
14 | 8.39 | 2034.41 | 315.73 | 223.75 | 70.53 | 2.45 | 35.02 | 1143.15 | 272.08 | 112.30 | 0.46 |
15 | 7.11 | 2014.69 | 344.74 | 219.18 | 205.04 | 9.49 | 41.48 | 1161.25 | 295.00 | 173.66 | 0.01 |
16 | 8.17 | 2158.54 | 347.08 | 214.58 | 128.94 | 3.54 | 34.61 | 1099.25 | 309.11 | 148.48 | 0.15 |
17 | 8.11 | 2045.60 | 305.14 | 224.61 | 80.67 | 9.38 | 33.86 | 1348.56 | 290.87 | 112.99 | 0.10 |
18 | 7.38 | 2072.77 | 375.27 | 212.90 | 165.36 | 8.94 | 42.57 | 1000.23 | 293.01 | 139.10 | 0.41 |
19 | 8.26 | 2346.29 | 299.24 | 180.61 | 137.91 | 5.15 | 31.60 | 1051.99 | 271.93 | 137.06 | 0.56 |
20 | 8.32 | 2342.69 | 379.39 | 197.19 | 197.74 | 5.77 | 44.45 | 1026.08 | 329.00 | 168.69 | 0.12 |
21 | 7.58 | 2229.56 | 347.49 | 238.50 | 93.39 | 7.74 | 36.24 | 1211.59 | 319.43 | 144.41 | 0.19 |
22 | 7.11 | 2117.48 | 300.45 | 181.01 | 164.68 | 5.66 | 34.89 | 1142.87 | 271.17 | 128.07 | 0.41 |
23 | 7.29 | 2174.76 | 365.91 | 192.76 | 101.16 | 2.72 | 41.88 | 1182.86 | 251.45 | 112.10 | 0.56 |
24 | 7.13 | 2304.59 | 340.51 | 222.32 | 178.80 | 3.57 | 42.64 | 1137.51 | 257.50 | 174.07 | 0.35 |
25 | 7.79 | 2066.46 | 300.06 | 175.50 | 105.44 | 6.86 | 43.55 | 1178.54 | 291.39 | 119.55 | 0.11 |
26 | 8.29 | 2090.58 | 352.56 | 209.19 | 145.48 | 5.40 | 35.14 | 1127.39 | 275.18 | 135.26 | 0.56 |
27 | 8.15 | 2025.40 | 318.88 | 195.57 | 152.68 | 7.32 | 39.50 | 1013.45 | 303.50 | 167.91 | 0.58 |
28 | 7.86 | 2252.02 | 366.31 | 234.50 | 161.86 | 4.54 | 41.84 | 1025.18 | 301.61 | 160.49 | 0.57 |
29 | 8.25 | 2221.12 | 352.78 | 181.18 | 86.58 | 9.05 | 43.93 | 1310.35 | 271.39 | 179.89 | 0.24 |
30 | 7.07 | 2121.29 | 304.09 | 177.98 | 171.63 | 9.42 | 30.59 | 1239.06 | 329.98 | 164.17 | 0.17 |
31 | 7.28 | 2057.52 | 384.06 | 238.16 | 105.97 | 6.11 | 37.01 | 1259.99 | 275.26 | 143.48 | 0.40 |
32 | 7.15 | 2078.03 | 354.04 | 201.38 | 197.13 | 5.86 | 30.92 | 1304.22 | 300.91 | 183.60 | 0.39 |
33 | 7.95 | 2096.11 | 351.18 | 210.37 | 127.33 | 3.08 | 35.87 | 1302.04 | 323.26 | 103.43 | 0.19 |
34 | 8.29 | 2076.18 | 377.74 | 185.71 | 183.33 | 6.28 | 44.90 | 1066.20 | 267.38 | 174.57 | 0.47 |
35 | 7.20 | 2258.74 | 356.25 | 198.95 | 179.97 | 2.54 | 34.81 | 1264.56 | 293.88 | 181.48 | 0.32 |
36 | 7.46 | 2110.75 | 332.17 | 228.98 | 173.39 | 5.22 | 34.56 | 1316.49 | 321.35 | 168.06 | 0.21 |
37 | 7.98 | 2043.77 | 339.98 | 171.12 | 127.01 | 4.81 | 43.45 | 1330.64 | 297.69 | 123.32 | 0.55 |
38 | 7.99 | 2346.96 | 294.51 | 220.46 | 174.67 | 2.11 | 34.16 | 1190.28 | 268.59 | 108.87 | 0.28 |
39 | 7.89 | 2340.17 | 321.24 | 231.59 | 110.50 | 8.58 | 32.79 | 1336.60 | 294.30 | 126.18 | 0.10 |
40 | 8.24 | 2173.86 | 285.35 | 232.50 | 162.94 | 3.69 | 44.44 | 1290.95 | 274.93 | 160.94 | 0.19 |
41 | 7.42 | 2130.65 | 368.97 | 215.50 | 156.55 | 4.38 | 32.93 | 1197.14 | 260.17 | 181.86 | 0.12 |
42 | 7.11 | 2263.43 | 367.82 | 197.49 | 135.18 | 8.17 | 30.92 | 1018.90 | 266.40 | 134.82 | 0.17 |
43 | 7.17 | 2070.97 | 386.19 | 233.17 | 77.63 | 3.45 | 30.76 | 1216.82 | 273.08 | 155.66 | 0.46 |
44 | 7.80 | 2276.86 | 320.24 | 229.05 | 179.89 | 9.24 | 41.16 | 1023.68 | 322.32 | 173.73 | 0.41 |
45 | 7.21 | 2046.12 | 288.48 | 171.78 | 149.41 | 9.95 | 38.02 | 1129.15 | 301.83 | 118.52 | 0.25 |
46 | 8.19 | 2251.92 | 364.10 | 228.78 | 212.03 | 7.75 | 33.58 | 1096.08 | 267.93 | 161.85 | 0.13 |
47 | 7.20 | 2265.67 | 351.33 | 208.22 | 146.93 | 9.97 | 34.25 | 1251.08 | 255.02 | 147.07 | 0.21 |
48 | 8.09 | 2263.75 | 388.69 | 172.11 | 144.19 | 6.15 | 40.47 | 1272.56 | 304.71 | 112.48 | 0.24 |
49 | 7.67 | 2297.51 | 321.39 | 229.37 | 75.48 | 3.97 | 41.28 | 1264.80 | 267.92 | 104.53 | 0.10 |
50 | 7.81 | 2043.87 | 314.92 | 191.69 | 70.78 | 5.84 | 31.59 | 1174.21 | 303.64 | 138.71 | 0.57 |
51 | 8.19 | 2129.47 | 287.58 | 234.90 | 173.18 | 9.87 | 39.36 | 1172.94 | 315.14 | 128.88 | 0.20 |
52 | 7.53 | 2104.12 | 346.24 | 198.08 | 207.96 | 9.84 | 36.55 | 1234.40 | 258.62 | 126.66 | 0.55 |
53 | 7.67 | 2036.26 | 388.39 | 200.50 | 144.44 | 3.95 | 32.09 | 1340.48 | 269.20 | 101.94 | 0.46 |
54 | 8.48 | 2030.80 | 386.03 | 208.92 | 107.70 | 6.28 | 34.10 | 1113.40 | 285.19 | 176.82 | 0.27 |
55 | 8.14 | 2161.99 | 372.01 | 228.92 | 71.83 | 5.12 | 38.02 | 1147.17 | 309.01 | 104.46 | 0.52 |
56 | 7.53 | 2238.30 | 356.86 | 230.48 | 106.66 | 9.99 | 43.21 | 1016.68 | 258.10 | 118.04 | 0.16 |
57 | 7.32 | 2293.92 | 376.84 | 205.78 | 142.10 | 8.67 | 36.28 | 1067.72 | 284.13 | 129.92 | 0.17 |
58 | 7.74 | 2032.72 | 330.86 | 228.04 | 176.36 | 7.27 | 42.01 | 1257.12 | 250.49 | 155.79 | 0.19 |
59 | 7.14 | 2251.72 | 328.00 | 189.51 | 88.31 | 9.81 | 35.57 | 1169.14 | 278.13 | 116.77 | 0.24 |
60 | 7.08 | 2091.21 | 349.00 | 215.91 | 201.05 | 3.67 | 41.83 | 1316.71 | 291.07 | 167.70 | 0.28 |
61 | 8.29 | 2117.25 | 358.03 | 212.61 | 120.57 | 6.68 | 44.92 | 1002.34 | 321.71 | 140.49 | 0.12 |
62 | 8.41 | 2127.78 | 284.88 | 181.71 | 159.75 | 8.55 | 41.45 | 1110.21 | 258.29 | 184.98 | 0.18 |
63 | 7.74 | 2313.92 | 345.67 | 225.29 | 122.94 | 2.31 | 34.14 | 1079.63 | 256.49 | 102.50 | 0.28 |
64 | 7.93 | 2031.73 | 343.09 | 197.34 | 109.36 | 8.47 | 40.11 | 1175.68 | 304.94 | 163.11 | 0.15 |
65 | 7.84 | 2333.33 | 301.16 | 200.82 | 206.99 | 4.05 | 39.85 | 1098.16 | 255.61 | 155.94 | 0.49 |
66 | 7.45 | 2011.62 | 382.75 | 178.74 | 99.49 | 3.77 | 33.53 | 1192.98 | 304.10 | 125.90 | 0.60 |
67 | 8.35 | 2113.42 | 336.93 | 236.25 | 165.39 | 9.06 | 44.75 | 1121.94 | 309.74 | 114.10 | 0.24 |
68 | 7.98 | 2314.67 | 331.24 | 218.33 | 97.02 | 6.41 | 40.35 | 1125.20 | 299.20 | 138.92 | 0.21 |
69 | 7.58 | 2226.41 | 305.70 | 208.50 | 77.43 | 2.31 | 33.74 | 1228.85 | 301.13 | 148.67 | 0.11 |
70 | 7.77 | 2326.32 | 327.45 | 185.25 | 198.94 | 4.25 | 30.83 | 1139.43 | 305.80 | 126.63 | 0.26 |
71 | 8.32 | 2297.34 | 303.43 | 177.62 | 186.81 | 7.62 | 32.86 | 1256.10 | 322.48 | 117.24 | 0.25 |
72 | 8.46 | 2010.86 | 352.25 | 193.70 | 142.60 | 2.80 | 41.04 | 1335.83 | 315.15 | 104.43 | 0.29 |
Sample No. | PH Value | ||||
---|---|---|---|---|---|
1 | 3.8667 | 1.4723 | 1.5334 | 1.7113 | 1.1347 |
2 | 0.9639 | 3.3851 | −0.5092 | 1.3585 | 1.9899 |
3 | 3.2178 | 1.2275 | 4.5877 | 1.8631 | 1.8452 |
4 | 3.6379 | 1.3956 | 3.2653 | 2.6756 | 0.0835 |
5 | 2.6605 | 1.4138 | 0.8012 | −0.3450 | −1.6430 |
6 | −0.7152 | 0.6434 | 1.2457 | 4.5684 | −0.2847 |
7 | 2.7125 | 1.4111 | 1.3295 | −0.0465 | 3.1502 |
8 | 1.4475 | 1.4377 | 1.0151 | −0.3530 | 1.6834 |
9 | 1.3440 | 2.3981 | 1.2038 | 0.6798 | 3.9931 |
10 | 1.5487 | 1.4955 | 3.8252 | 3.5191 | 1.3049 |
11 | 1.1278 | 4.4259 | 4.0803 | −0.0458 | 2.4452 |
12 | 1.8761 | 1.9738 | 1.8543 | 0.8789 | −0.1415 |
13 | 1.0710 | 1.3474 | −0.8690 | 1.4715 | −0.6221 |
14 | −0.5449 | 1.8240 | 0.2439 | 0.7325 | 3.3775 |
15 | 2.5506 | 1.3922 | 1.2119 | 4.1506 | 1.1611 |
16 | 1.9410 | 1.0044 | 1.0387 | 1.9385 | 3.7135 |
17 | −1.1983 | 4.2355 | 3.8587 | 1.5143 | 3.8503 |
18 | 1.4657 | 2.8330 | 4.5500 | −1.4133 | 2.1842 |
19 | 1.6368 | 0.4111 | 1.2701 | 3.8163 | 3.2054 |
20 | −0.0681 | 2.0270 | 0.5875 | 0.1574 | 1.4655 |
21 | 1.3528 | 3.6093 | 1.6547 | 1.6997 | 3.5525 |
22 | 1.0196 | −0.9618 | 1.1812 | 2.3189 | 1.0002 |
23 | −0.6334 | 3.4965 | 1.7354 | −1.2712 | −0.1615 |
24 | 0.8840 | 2.5330 | 1.4664 | 0.1676 | 0.4845 |
25 | 1.2855 | −0.7190 | 3.6406 | 1.8047 | 1.4044 |
26 | 1.5093 | 1.9563 | 2.5178 | 1.0232 | 2.3792 |
27 | 0.1170 | 4.1509 | 3.6051 | 1.8205 | 0.1858 |
28 | 4.3603 | 3.4290 | 1.9341 | 1.1619 | 1.8012 |
29 | 1.3271 | 2.0159 | 1.7142 | 3.0885 | 1.3008 |
30 | 4.1483 | 1.9901 | −1.7808 | 1.4474 | 1.9034 |
31 | 1.2267 | 1.3241 | 4.0494 | 0.5719 | 1.5424 |
32 | 1.5910 | 4.1414 | 1.4887 | 1.9710 | 2.0941 |
33 | 1.0090 | 1.3422 | 2.2230 | 2.5956 | 4.3108 |
34 | −0.5153 | 1.4028 | 0.8700 | 2.4284 | 0.4382 |
35 | −0.5839 | 1.3993 | 0.3940 | −0.5932 | 1.2052 |
36 | 3.3077 | 2.4555 | 0.5273 | 1.6901 | 4.3718 |
37 | 1.8809 | 0.3851 | 1.3116 | 1.4645 | 3.8325 |
38 | −1.2419 | −0.8737 | 0.4045 | 0.4332 | −1.3403 |
39 | 4.5197 | 2.4452 | −0.5362 | 1.8641 | −1.3256 |
40 | 2.9916 | −0.3838 | −1.4375 | 3.9473 | −1.2102 |
41 | 1.8133 | 1.6818 | 1.4645 | −1.0576 | 1.5785 |
42 | 1.5323 | 1.9895 | −0.4454 | 2.5103 | 2.9246 |
43 | 0.3773 | 3.2531 | 0.1623 | −1.2305 | 1.5117 |
44 | 1.7237 | 1.5461 | 1.2343 | 2.9519 | 1.2744 |
45 | 2.7996 | 1.1701 | 1.3667 | 1.7061 | 1.5965 |
46 | 3.3535 | 0.6347 | 2.3013 | 1.3888 | 1.9898 |
47 | 3.5015 | 1.8914 | 1.7656 | 3.3636 | 1.9091 |
48 | −0.4978 | 1.8224 | −1.1664 | 4.2226 | 1.4734 |
49 | 1.8082 | −0.0855 | −0.6743 | −0.1832 | −0.7854 |
50 | 2.8001 | 0.7136 | 2.7971 | 1.4468 | 0.2061 |
51 | −0.1693 | 1.0677 | 1.5799 | 0.9540 | 4.1168 |
52 | 1.3731 | 3.9771 | −1.0960 | 3.4502 | −0.9775 |
53 | −0.9404 | 4.7953 | 3.3717 | 1.3110 | 4.7877 |
54 | 3.4656 | 1.5696 | 3.8690 | 1.3556 | 1.9154 |
55 | 1.3066 | 0.3734 | 4.6552 | −0.9089 | 3.8551 |
56 | 1.3848 | 1.0737 | −0.7851 | 0.0726 | −1.2623 |
57 | −0.5064 | 1.3327 | 1.1752 | 1.0100 | 1.0897 |
58 | −0.8443 | −0.0952 | −0.0844 | 1.4798 | 1.7999 |
59 | −0.6794 | −0.3741 | 0.2110 | 3.2230 | 4.0719 |
60 | 3.7750 | 2.2032 | 0.6601 | 1.9699 | 3.4242 |
61 | 1.9985 | 1.5485 | 3.8154 | 1.8493 | 4.4840 |
62 | −0.5110 | 1.2685 | 1.9218 | −1.0822 | 2.1844 |
63 | 1.1061 | 1.2407 | 2.2131 | 0.9143 | 1.3326 |
64 | 3.4188 | 1.3210 | 1.1136 | 2.6456 | −0.6040 |
65 | −1.5663 | 1.3232 | 2.1802 | 1.3925 | 0.3722 |
66 | 1.5363 | −0.3021 | −0.2141 | −0.4896 | 1.6825 |
67 | 2.7397 | 1.9967 | 1.3049 | −0.1274 | 0.7298 |
68 | 1.4288 | 2.7448 | 1.7961 | 1.9226 | 1.0469 |
69 | 1.2406 | 3.8171 | 0.1451 | 1.8871 | −0.2190 |
70 | 1.4798 | 1.1895 | 3.9302 | 1.0689 | 1.3047 |
71 | 1.1092 | 1.7501 | 1.8874 | 4.0020 | −0.2864 |
72 | −1.0091 | 1.0085 | 1.0856 | 0.6599 | 2.6047 |
References
- Ariae, A.R.; Jahangiri, M.; Fakhr, M.H.; Shamsabadi, A.A. Simulation of biogas utilization effect on the economic efficiency and greenhouse gas emission: A case study in Isfahan, Iran. Int. J. Renew. Energy Dev. 2019, 8, 149–160. [Google Scholar] [CrossRef]
- Siampour, L.; Vahdatpour, S.; Jahangiri, M.; Mostafaeipour, A.; Goli, A.; Shamsabadi, A.A.; Atabani, A. Techno-enviro assessment and ranking of Turkey for use of home-scale solar water heaters. Sustain. Energy Technol. Assess. 2020, 43, 100948. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Zhang, H.; Wu, Q.; Cao, X. Stochastic-Distributionally Robust Frequency-Constrained Optimal Planning for an Isolated Microgrid. IEEE Trans. Sustain. Energy 2024. [Google Scholar] [CrossRef]
- Alayi, R.; Jahangiri, M.; Guerrero, J.W.G.; Akhmadeev, R.; Shichiyakh, R.A.; Zanghaneh, S.A. Modelling and reviewing the reliability and multi-objective optimization of wind-turbine system and photovoltaic panel with intelligent algorithms. Clean Energy 2021, 5, 713–730. [Google Scholar] [CrossRef]
- Chui, K.T.; Gupta, B.B.; Vasant, P. A genetic algorithm optimized RNN-LSTM model for remaining useful life prediction of turbofan engine. Electronics 2021, 10, 285. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Tang, Y. Clustered hybrid wind power prediction model based on ARMA, PSO-SVM, and clustering methods. IEEE Access 2020, 8, 17071–17079. [Google Scholar] [CrossRef]
- Peng, W.; Wang, J.; Ying, S. Short-term load forecasting model based on attention-LSTM in electricity market. Power Syst. Technol. 2019, 43, 1745–1751. [Google Scholar] [CrossRef]
- Liu, J.; Pan, C.; Lei, F.; Hu, D.; Zuo, H. Fault prediction of bearings based on LSTM and statistical process analysis. Reliab. Eng. Syst. Saf. 2021, 214, 107646. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Dai, Y. A fuzzy comprehensive CSSVR model-based health status evaluation of radar. PLoS ONE 2019, 14, e0213833. [Google Scholar] [CrossRef]
- Peralta, S.; Sasmito, A.P.; Kumral, M. Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining. J. Sustain. Min. 2016, 15, 85–94. [Google Scholar] [CrossRef]
- Yang, G.; Chai, Y.; Wang, D.; Yan, K.; He, X. Optimal configuration of microgrid with gravity energy storage based on improved algorithm. In Proceedings of the IEEE Conference on Electrical Engineering and Mechatronics Technology, Qingdao, China, 2–4 July 2021; pp. 650–655. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Y.; Huang, L.-L.; Ying, F.; Li, F. Collection System Topology for Deep-Sea Offshore Wind Farms Considering Wind Characteristics. IEEE Trans. Energy Convers. 2022, 37, 631–642. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Lu, X. Research on Time Series Prediction Model for the Trend of Corrosion Rate. In Proceedings of the 2021 IEEE Asia Conference on Information Engineering (ACIE), Sanya, China, 29–31 January 2021; pp. 78–81. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Yang, G.; Zhang, C.; Zhao, K. Machine Learning-Driven Ontological Knowledge Base for Bridge Corrosion Evaluation. IEEE Access 2023, 11, 144735–144746. [Google Scholar] [CrossRef]
- Wan, J.; Shi, M.; Liang, Y.; Qin, L.; Deng, L. Prediction Method of Large-Diameter Ball Valve Internal Leakage Rate Based on CNN-GA-DBN. IEEE Sens. J. 2023, 23, 20321–20329. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Zhu, S.; Yu, Y. Valve internal leakage rate quantification based on factor analysis and wavelet-BP neural network using acoustic emission. Appl. Sci. 2020, 10, 5544. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Jiang, S.; Wang, T.; Yuan, L.; Li, B. Transformer fault diagnosis method based on self-powered RFID sensor tag DBN and MKSVM. IEEE Sens. J. 2019, 19, 8202–8214. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, D. Research on Corrosion Rate Prediction of Buried Pipeline Based on KPCA-Improved PSO-BP Neural Network Model. In Proceedings of the 2023 4th International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM), Nanjing, China, 26–28 May 2023; pp. 557–562. [Google Scholar] [CrossRef]
- Xu, J.H.; Wang, X.W.; Yang, J.J. Short-term load density prediction based on CNN-QRLightGBM. Power Syst. Technol. 2020, 44, 3409–3416. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2018, 65, 5990–5998. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, X. Application of LSTM neural network in forecasting foreign exchange price. J. Phys. Conf. Ser. 2019, 1237, 042036. [Google Scholar] [CrossRef]
- Li, J.; Liu, T.; Wang, X.; Yu, J. Automated asphalt pavement damage rate detection based on optimized GA-CNN. Autom. Construct. 2022, 136, 104180. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Liu, X. Using LSSVM model to predict the silicon content in hot metal based on KPCA feature extraction. In Proceedings of the 2011 Chinese Control and Decision Conference (CCDC), Mianyang, China, 23–25 May 2011; pp. 1967–1971. [Google Scholar] [CrossRef]
- Yamashita, H. Convergence to a second-order critical point by a primal-dual interior point trust-region method for nonlinear semidefinite programming. Optim. Methods Softw. 2022, 37, 2190–2224. [Google Scholar] [CrossRef]
- Kuang, J.; Long, Z. Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms. Int. J. Miner. Metall. Mater. 2024, 31, 337–350. [Google Scholar] [CrossRef]
- Shirazi, A.Z.; Mohammadi, Z. A hybrid intelligent model combining ANN and imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Comput. Appl. 2017, 28, 3455–3464. [Google Scholar] [CrossRef]
Principal Component | Eigenvalue | Variance Contribution/% | Cumulative Variance Contribution/% |
---|---|---|---|
PH value | 1.8652 | 40.75 | 40.75 |
0.9532 | 26.52 | 67.27 | |
0.5236 | 10.24 | 77.51 | |
0.4123 | 7.23 | 84.74 | |
0.2596 | 6.53 | 91.27 | |
0.1321 | 3.35 | 94.62 | |
0.0952 | 1.95 | 96.57 | |
0.0526 | 1.85 | 98.42 | |
0.0412 | 0.71 | 99.13 | |
0.0241 | 0.54 | 99.67 | |
0.0091 | 0.33 | 100 |
Model | ||||||||
---|---|---|---|---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | Training Set | Test Set | |
KPCA-ISHO-LSSVM | 1.03 | 2.86 | 0.06 | 0.15 | 3.35 | 3.74 | 0.998 | 0.995 |
KPCA-SHO-LSSVM | 2.71 | 6.31 | 0.1 | 0.77 | 9.21 | 9.97 | 0.991 | 0.98 |
KPCA-ISHO-BP | 2.44 | 5.09 | 0.09 | 0.3 | 7.16 | 6.31 | 0.994 | 0.984 |
KPCA-PSO-LSSVM | 1.94 | 4.33 | 0.25 | 0.26 | 4.78 | 5.82 | 0.996 | 0.99 |
ISHO-ELM | 1.06 | 5.1 | 0.49 | 0.74 | 7.45 | 6.45 | 0.992 | 0.989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Zhang, F.; Zou, H.; Ma, H.; Wang, H. Offshore Wind Power Foundation Corrosion Rate Prediction Model Based on Improved SHO Algorithm. Processes 2024, 12, 1215. https://doi.org/10.3390/pr12061215
Zhang F, Zhang F, Zou H, Ma H, Wang H. Offshore Wind Power Foundation Corrosion Rate Prediction Model Based on Improved SHO Algorithm. Processes. 2024; 12(6):1215. https://doi.org/10.3390/pr12061215
Chicago/Turabian StyleZhang, Fan, Feng Zhang, Hongbo Zou, Hengrui Ma, and Hongxia Wang. 2024. "Offshore Wind Power Foundation Corrosion Rate Prediction Model Based on Improved SHO Algorithm" Processes 12, no. 6: 1215. https://doi.org/10.3390/pr12061215
APA StyleZhang, F., Zhang, F., Zou, H., Ma, H., & Wang, H. (2024). Offshore Wind Power Foundation Corrosion Rate Prediction Model Based on Improved SHO Algorithm. Processes, 12(6), 1215. https://doi.org/10.3390/pr12061215