Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Preparation
2.2. Biochar Characterization
2.3. Adsorption Studies
3. Results and Discussion
3.1. Biochar Characterization before and after Pb(II) Adsorption
3.2. Adsorption of Pb by Biochar
3.3. Adsorption of Iodine by Biochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Wang, X.; Li, N.; Tao, J.; Yan, B.; Cui, X.; Chen, G. Adsorption of Lead from Aqueous Solution by Biochar: A Review. Clean Technol. 2022, 4, 629–652. Available online: https://www.mdpi.com/journal/cleantechnol (accessed on 26 May 2024). [CrossRef]
- Naseem, R.; Tahir, S.S. Removal of Pb (II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res. 2001, 35, 3982–3986. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.; De la Rosa, J.M. Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil. Sustainability 2020, 12, 6025. Available online: www.mdpi.com/journal/sustainability (accessed on 26 May 2024). [CrossRef]
- Zhao, J.J.; Shen, X.-J.; Domene, X.; Alcañiz, J.-M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. J. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Zhang, F.S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Tahir, A.H.F.; Al-Obaidy, A.H.M.J.; Mohammed, F.H. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012171. [Google Scholar] [CrossRef]
- Ghanim, A.N. Utilization of date pits derived bio-adsorbent for heavy metals in wastewater treatment: Review. Al-Qadisiyah J. Eng. Sci. 2023, 16, 058–069. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Alasmary, Z. Efficient Remediation of Cadmium- and Lead-Contaminated Water by Using Fe-Modified Date Palm Waste Biochar-Based Adsorbents. Int. J. Environ. Res. Public Health 2023, 20, 802. [Google Scholar] [CrossRef] [PubMed]
- Thabeta, W.M.; Ahmedb, S.B.; Abdelwahaba, O.; Soliman, N.F. Enhancement Adsorption of Lead and Cadmium Ions from Waste Solutions Using Chemically Modified Palm fibers. Egypt. J. Chem. 2020, 63, 4917–4927. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Removal of lead(II) from aqueous solution using date seed-derived biochar: Batch and column studies. Appl. Water Sci. 2018, 8, 181. [Google Scholar] [CrossRef]
- Zare, L.; Ghasemi-Fasaei, R. Investigation of Equilibrium Isotherm and Kinetic Modeling to Assess Sorption Characteristics of Nitrate onto Palm Leaf Biochar. Iran. J. Chem. Chem. Eng. 2019, 38, 5. [Google Scholar]
- Barman, B.K.; Barman, S.; Roy, M.N. Inclusion complexation between tetrabutylphosphonium methanesulfonate as guest and α- and β-cyclodextrin as hosts investigated by physicochemical methodology. J. Mol. Liq. 2018, 264, 80. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.-L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd (II) and Pb (II). Chemosphere 2019, 239, 124745. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.J.; Lee, L.Y.; Hiew, B.Y.Z.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Multistage optimizations of slow pyrolysis synthesis of biochar from palm oil sludge for adsorption of lead. Bioresour. Technol. 2017, 245, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, H.; Cao, Y. Pb (II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 556, 177–184. [Google Scholar] [CrossRef]
- Banerjee, D.; Chen, X.; Lobanov, S.S.; Plonka, A.M.X.; Chan Daly, J.A.; Kim, T.; Thallapally, P.K.; Parise, J.B. Iodine adsorption in metal organic frameworks in the presence of humidity. ACS Appl. Mater. Interfaces 2018, 10, 10622. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoaty, Y.H.; Tessema, T.D.; Choudhury, F.A.; EL-Kadri, O.M.; EL-Kaderi, H.M. Nitrogen rich porous polymers for carbon dioxide and iodine sequestration for environmental remediation. ACS Appl. Mater. Interfaces 2018, 10, 16049. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Clarke, W.; Pratt, S. Cycling of iodine by microalgae: Iodine uptake and release by a microalgae biofilm in a groundwater-holding pond. Ecol. Eng. 2016, 94, 286. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, X.; Gao, L.; Qiu, F.; Xu, J.; Rong, J.; Pan, J. Hierarchically porous bismuth oxide/layered double hydroxide composites: Preparation, characterization, and iodine adsorption. J. Clean. Prod. 2017, 144, 220. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, T.; Li, T.; Chen, Q.; Bai, P.; Liu, F.; Yuan, Z.; Zheng, W.; Luo, X.; Yan, W.; et al. Highly efficient capture of iodine in spent fuel reprocessing offgas by novelly porous copper-doped silica zeolites. Sep. Purif. Technol. 2022, 290, 120895. [Google Scholar] [CrossRef]
- Xie, W.; Cui, D.; Zhang, S.R.; Xu, Y.H.; Jiang, D.L. Iodine capture in porous organic polymers and metal-organic frameworks materials. Mater. Horiz. 2016, 6, 1571. [Google Scholar] [CrossRef]
- Al-Fulaiti, B.; El-Shafey, E.S.I.; Al Kindi, S.H.S.; Abdel-Jalil, R.J. Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives. Pol. J. Environ. Stud. 2022, 31, 5571–5582. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Higaki, S.; Ito, S.; Ishida, Y.; Terao, K. Effects of 2-hydroxypropyl α-cyclodextrin on the radioactive iodine sorption on activated carbon. J. Radioanal. Nucl. Chem. 2021, 328, 659. [Google Scholar] [CrossRef]
- Windiastuti, E.; Indrasti, N.S.; Hasanudin, U.; Bindar, Y.; Suprihatin. The Influence of Pretreatment and Post Treatment with Alkaline Activators on the Adsorption Ability of Biochar from Palm Oil Empty Fruit. J. Ecol. Eng. 2023, 24, 242–251. [Google Scholar] [CrossRef]
- Thoe, J.M.L.; Surugau, N.; Chong, H.L.H. Application of Oil Palm Empty Fruit Bunch as Adsorbent: A Review. Trans. Sci. Technol. 2019, 6, 9–26. [Google Scholar]
- Mahmoud, E.R.I.; Aly, H.M.; Hassan, N.A.; Aljabri, A.; Khan, A.L.; El-Labban, H.F. Biochar from Date Palm Waste via Two-Step Pyrolysis: A Novel Approach for Cu (II) Removal from Wastewater. Processes 2024, 12, 1189. [Google Scholar] [CrossRef]
- Hergert, H.L. Infrared spectra of lignin and related compounds. II. Conifer lignin and model compounds1,2. J. Org. Chem. 1960, 25, 405–413. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Madej, J. Comparison of photoacoustic, diffuse reflectance attenuated total reflectance and transmission infrared spectroscopy for the study of biochar. Pol. J. Chem. Technol. 2018, 20, 75–83. [Google Scholar] [CrossRef]
- Abdulrazzaq, H.; Jol, H.; Husni, A. Biochar from Empty Fruit Bunches, Wood, and Rice Husks: Effects on Soil Physical Properties and Growth of Sweet Corn on Acidic Soil. J. Agric. Sci. 2015, 7, 192–200. Available online: www.ccsenet.org/jas (accessed on 26 May 2024). [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Saelee, K.; Yingkamhaeng, N.; Nimchua, T.; Sukyai, P. The 6 Extraction and Characterization of cellulose from sugarcane bagasse by using environmental friendly method. In Proceedings of the 26th Annual Meeting of the Thai Society for Biotechnology and International Conference, Chiang Rai, Thailand, 26–29 November 2014. [Google Scholar]
- Prapagdee, S.; Piyatiratitivorakul, S.; Petsom, A.; Tawinteung, N. Application of biochar for enhancing cadmium and zinc phytostabilization in Vigna radiata L. cultivation. Water Air Soil Pollut. 2014, 225, 2233. [Google Scholar] [CrossRef]
- Tong, X.U.E.; Ren-Qing, W.; Zhang, M.-M.; Jiu-Lan, D.A.I. Adsorption and desorption of mercury (II) in three forest soils in Shandong Province, China. Pedosphere 2013, 23, 265–272. [Google Scholar]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Zhang, H.; Cheng, H.; Yan, Y.; Chang, M.; Cao, Y.; Huang, F.; Zhang, G.; Yan, M. Spent Ganoderma lucidum substrate derived biochar as a new bio-adsorbent for Pb2+/Cd2+ removal in water. Chemosphere 2020, 241, 125121. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hou, J.; Wu, J.; Miao, L. The effect of carbonization temperature on the capacity and mechanisms of Pb (II) adsorption by microalgae residue-derived biochar. Ecotoxicol. Environ. Saf. 2021, 225, 112750. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, Y.; Xing, B.; Qin, X.; Zhang, C.; Xia, H. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 2021, 314, 128074. [Google Scholar] [CrossRef]
- Gao, R.; Xiang, L.; Hu, H.; Fu, Q.; Zhu, J.; Liu, Y.; Huang, G. High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Sci. Total Environ. 2019, 699, 134262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Dai, Y.; Zhang, M.; Feng, C.; Qin, B.; Zhang, W.; Zhao, N.; Li, Y.; Ni, Z.; Xu, Z.; et al. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ. 2020, 717, 136894. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yao, Y.; Li, D.; Wu, F.; Zhang, C.; Gao, B. Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag (I) and Pb (II). Sci. Total Environ. 2018, 640–641, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Singh, P.; Sarswat, A.; Steele, P.H.; Pittman, C.U., Jr. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. J. Colloid Interface Sci. 2015, 448, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Fan, X.; Tsang, D.C.; Wang, F.; Shen, Z.; Hou, D.; Alessi, D.S. Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere 2019, 235, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Aloysius, A.P. Adsorption of Lead from Aqueous Solution using Modified Activated Carbon prepared from Palm Kernel Slell. Ph.D. Thesis, Universiti Putra Malaysia, Serdang, Malaysia, March 2018. [Google Scholar]
- Aloud, S.S.; Hameed, B.H.; Yusop, M.F.M.; Alharbi, H.A.; Giesy, J.P.; Alotaibi, K.D. Adsorption of Pb2+ by Activated Carbon Produced by Microwave-Assisted K2CO3 Activation of Date Palm Leaf Sheath Fibres. Water 2023, 15, 3905. [Google Scholar] [CrossRef]
- Powar, R.V.; Gangil, S. Effect of temperature on iodine value and total carbon contain in biochar produced from soybean stalk in continuous feed reactor. J. Agric. Eng. 2015, 8, 26–30. [Google Scholar] [CrossRef]
- Yenisoy-Karakas, S.; Aygün, A.; Günes, M.; Tahtasakal, E. Physical and chemical characteristics of polymerbased spherical activated carbon and its ability to adsorb organics. Carbon 2004, 42, 477–484. [Google Scholar] [CrossRef]
- Hernandez-Maglinao, J.; Capareda, S.C. Improving the Surface Areas and Pore Volumes of Biochar Produced from Pyrolysis of Cotton Gin Trash via Steam Activation Process. Int. J. Eng. Sci. 2019, 3, 15–18. [Google Scholar]
- Saleh, M.E.; Mahmoud, A.H.; Rashad, M. April Biochar usage as a cost-effective bio-sorbent for removing NH4-N from wastewater. In Proceedings of the International Conference the Global Climate Change, Biodiversity and Sustainability: Challenges and Opportunities—An International Conference Focused on the Arab MENA Region and EuroMed, Alexandria, Egypt, 15–18 April 2013; pp. 15–18. [Google Scholar]
- Castiglioni, M.; Rivoira, L.; Ingrando, I.; Del Bubba, M.; Bruzzoniti, M.C. Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review. Molecules 2021, 26, 5063. [Google Scholar] [CrossRef] [PubMed]
- Tamrin, K.F.; Zahrim, A.Y. Determination of optimum polymeric coagulant in palm oil mill effluent coagulation using multiple-objective optimisation on the basis of ratio analysis (MOORA). Environ. Sci. Pollut. Res. 2017, 24, 15863–15869. [Google Scholar] [CrossRef] [PubMed]
- Jawad, A.H.; Abdulhameed, A.S.; Bahrudin, N.N.; Hum, N.N.M.F.; Surip, S.N.; Syed-Hassan, S.S.A.; Yousif, E.; Sabar, S. Microporous activated carbon developed from KOH activated biomass waste: Surface mechanistic study of methylene blue dye adsorption. Water Sci. Technol. 2021, 84, 1858–1872. [Google Scholar] [CrossRef] [PubMed]
- Schroder, A.; Kluppel, M.; Schuster, R.H.; Heidberg, J. Energetic surface heterogeneity of carbon black. Kautschuk Gummi Kunststoffe 2001, 54, 260–266. Available online: http://www.plastverarbeiter.de/ai/resources/36a867629d7.pdf (accessed on 26 May 2024).
- Wampler, W.A.; Nikiel, L.; Evans, E.N. carbon black. In Rubber Compounding: Chemistry and Applications, 2nd ed.; Rodgers, B., Ed.; CRC Press: Boca Raton, FL, USA, 2016; Chapter 6; pp. 209–250. [Google Scholar]
- Hess, W.M.; Herd, C.R. Microstructure, morphology, and general physical properties. In Carbon Black: Science and Technology, 2nd ed.; Donnet, J.-B., Bansal, R.C., Wang, M.J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1993; Chapter 3; pp. 89–174. [Google Scholar]
Amount of Biochar (g/10 mL) | The Mean Concentration of Pb(II) (mg/L) | % of Adsorption |
---|---|---|
0 | 100 | 0 |
0.02 | 0.15 | 99.85 |
0.04 | 0.11 | 99.89 |
0.06 | 0 | 100 |
0.08 | 0 | 100 |
Amount of Biochar (g/50 mL) | % of Adsorption |
---|---|
0.1 | 24.1 |
0.2 | 27.7 |
0.3 | 33.7 |
0.4 | 39.7 |
pH | % Adsorption |
---|---|
2 | 24.1 |
3 | 27.7 |
4 | 33.7 |
5 | 39.5 |
6 | 39.7 |
Initial Concentration (mg/L) | % Adsorption |
---|---|
20 | 55.4 |
40 | 50 |
60 | 47.1 |
80 | 43.4 |
100 | 39.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, E.R.I.; Aly, H.M.; Hassan, N.A.; Aljabri, A.; Khan, A.L.; El-Labban, H.F. Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions. Processes 2024, 12, 1370. https://doi.org/10.3390/pr12071370
Mahmoud ERI, Aly HM, Hassan NA, Aljabri A, Khan AL, El-Labban HF. Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions. Processes. 2024; 12(7):1370. https://doi.org/10.3390/pr12071370
Chicago/Turabian StyleMahmoud, Essam R. I., Hesham M. Aly, Noura A. Hassan, Abdulrahman Aljabri, Asim Laeeq Khan, and Hashem F. El-Labban. 2024. "Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions" Processes 12, no. 7: 1370. https://doi.org/10.3390/pr12071370
APA StyleMahmoud, E. R. I., Aly, H. M., Hassan, N. A., Aljabri, A., Khan, A. L., & El-Labban, H. F. (2024). Utilizing Date Palm Leaf Biochar for Simultaneous Adsorption of Pb(II) and Iodine from Aqueous Solutions. Processes, 12(7), 1370. https://doi.org/10.3390/pr12071370